A SIMPLE PROOF OF KRONECKER-WEBER THEOREM

NIZAMEDDIN H. ORDULU

1. INTRODUCTION

The main theorem that we are going to prove in this paper is the following:

Theorem 1.1. Kronecker-Weber Theorem Let K/\mathbb{Q} be an abelian Galois extension. There exists an n such that $K \subset \mathbb{Q}(\zeta_n)$.

Theorem 1.1 is equivalent to the following equality

$$\mathbb{Q}^{ab} = \prod_{n=1}^{\infty} \mathbb{Q}(\zeta_n)$$

where \mathbb{Q}^{ab} denotes the maximal abelian extension (the field that contains all the abelian extensions of \mathbb{Q} .) So basically theorem 1.1 says that the maximal abelian extension of \mathbb{Q} is the compositum of the cyclotomic extensions of \mathbb{Q} . Therefore it gives a classification of abelian extensions of \mathbb{Q} . In general the abelian extensions of a number field can be classified by means of class field theory. In this paper we present a proof of theorem 1.1 without appealing to class field theory. A remarkable aspect of this work is that it makes use of the local-global principle. In other words we obtain theorem 1.1 from the following theorem:

Theorem 1.2. Local Kronecker-Weber Theorem Let K/\mathbb{Q}_p be an abelian Galois extension. There exists an n such that $K \subset \mathbb{Q}_p(\zeta_n)$

2. NOTATIONS AND FUNDAMENTAL THEOREMS

Throughout this paper p will denote a rational prime, \mathbb{Q}_p the completion of rational numbers with respect to p-adic valuation, K_p the completion of a number field K with respect to one of its prime ideals \mathfrak{p} and ζ_n a primitive *n*th root of unity.

We start with basic facts and well known theorems from algebraic number theory. We give some of the proofs.

Definition 2.1. Let K and L be finite extensions of \mathbb{Q} (or \mathbb{Q}_p .) The smallest field containing K and L is called the compositum of K and L and denoted as KL.

NIZAMEDDIN H. ORDULU

Theorem 2.2. Let K and L be finite Galois extensions of $\mathbb{Q}.Gal(KL/\mathbb{Q})$ is isomorphic to the subgroup $\{(\phi, \psi) | \phi|_{K \cap L} = \psi|_{K \cap L}\}$ of $Gal(K/\mathbb{Q}) \times Gal(L/\mathbb{Q})$. Similar argument holds for \mathbb{Q}_p .

Proof Let $G = Gal(KL/\mathbb{Q})$ and $H = \{(\phi, \psi) | \phi|_{K \cap L} = \psi|_{K \cap L}\}$. Clearly the map $\Lambda : G \to H$, $\sigma \to (\sigma|_K, \sigma|_L)$ defines an injective homomorphism between G and H. We show that this homomorphism is indeed an isomorphism by showing that |G| = |H|. Let $M = K \cap L$ and let $[M : \mathbb{Q}] = m$, [KL : K] = k and [KL : L] = l. Viewing A = Gal(KL/K) and B = Gal(KL/L) as subgroups of Gal(KL/M) one can easily show that $A \cap B = \{id|_{KL}\}$ and the fixed field of AB is M. It follows that [KL : M] = kl. So [K : M] = l and [L : M] = k. Combining with $[M : \mathbb{Q}] = m$ and simple counting shows that |H| = klm. But $|G| = [KL : \mathbb{Q}] = [KL : M][M : \mathbb{Q}] = klm$ so we are done.

Theorem 2.3. Let L/\mathbb{Q} be an abelian Galois extension and let

$$Gal(L/\mathbb{Q}) \cong \prod_{i=1}^{m} G_i.$$

Then

$$L = \prod_{i=1}^m L^{G_i}$$

Similar argument holds for \mathbb{Q}_p .

Proof It suffices to prove for m = 2. Let $L/\mathbb{Q} = G_1 \times G_2$. Then $L^{G_1} \cap L^{G_2} = \mathbb{Q}$. By theorem 2.2 $Gal(L^{G_1}L^{G_2}) = G_1 \times G_2$. From this the theorem follows.

Theorem 2.4. Let L/K be a finite Galois extension. (L and K can be number fields or local fields) Let \mathfrak{p} be a prime ideal of K. Then \mathfrak{p} factorizes in L as

$$\mathfrak{p} = \mathfrak{b}_1^e \mathfrak{b}_2^e ... \mathfrak{b}_a^e$$

The number e is called the ramification index. The degree of the extension of the residue fields $\mathcal{O}_L \mod \mathfrak{b}_1 / \mathcal{O}_K \mod \mathfrak{p}$ is denoted by f. If the degree of L/K is n then

$$n = efg.$$

(If K and L are local g = 1) \mathfrak{p} is said to be totally ramified in L if e = n and unramified if e = 1. (If K and L are local fields then we say L/K is unramified or totally ramified if e = 1 or e = n respectively. A number field extension is said to be unramified if all prime ideals are unramified.)

Proof See any introductory Algebraic Number theory book or [S2] p. 101.

Definition 2.5. Let L/K be a Galois extension, \mathfrak{p} a prime of K, \mathfrak{b} a prime lying above \mathfrak{p} . The decomposition group $D_{\mathfrak{b}}$ of \mathfrak{b} is given by $D_{\mathfrak{b}} = \{\sigma \in Gal(L/K) | \sigma(\mathfrak{b}) = \mathfrak{b}\}$.(If L and K are local then $D_{\mathfrak{b}}$ is the whole Galois group.) The ramification group $I_{\mathfrak{b}}$ is defined as follows:

$$I_{\mathfrak{b}} = \{ \sigma \in D_{\mathfrak{b}} \mid \sigma(\alpha) \equiv \alpha \pmod{\mathfrak{b}} \text{ for all } \alpha \in \mathcal{O}_L \}$$

 \mathfrak{p} is unramified in $L^{I_{\mathfrak{b}}}$ and $L^{I_{\mathfrak{b}}}$ is the largest such field among the intermediate fields of L/K.

Theorem 2.6. Let L/K be a Galois extension of number fields. If \mathfrak{p} is a prime of K and $L_{\mathfrak{b}}/K_{\mathfrak{p}}$ is the localization of L/K with respect to \mathfrak{p} , then $Gal(L_{\mathfrak{b}}/K_{\mathfrak{p}}) \cong D_{\mathfrak{b}}$ and the inertia groups of \mathfrak{b} in both extensions are isomorphic.

Proof There exist injections $i_1 : K \hookrightarrow K_{\mathfrak{p}}$ and $i_2 : L \hookrightarrow L_{\mathfrak{b}}$. Certainly any element of $Gal(L_{\mathfrak{b}}/K_{\mathfrak{p}})$ induces an automorphism of $i_2(L)/i_1(K)$. Furthermore since $i_1(K)$ is dense in $K_{\mathfrak{p}}$ and $i_2(L)$ is dense in $L_{\mathfrak{b}}$ the restriction $\Sigma : Gal(L_{\mathfrak{b}}/K_{\mathfrak{p}}) \to Gal(i_2(L)/i_1(K))$ is injective. Furthermore since any automorphism of $L_{\mathfrak{b}}/K_{\mathfrak{p}}$ preserves \mathfrak{b} -adic absolute value the image of Σ must be in $D_{\mathfrak{b}}$. Conversely if $\sigma \in D_{\mathfrak{b}}$ then one can extend σ uniquely to an automorphism of $L_{\mathfrak{b}}/K_{\mathfrak{p}}$.

Theorem 2.7. Let K and L be finite Galois extensions of \mathbb{Q}_p and suppose that L/K is Galois. Then there is a surjective homomorphism between the inertia groups I_L and I_K of L and K.

Proof Let M/\mathbb{Q}_p be the maximal unramified subextension of L/\mathbb{Q}_p . Then the maximal unramified subextension of K/\mathbb{Q}_p is $M \cap K/\mathbb{Q}_p$. Since the restriction homomorphism $Gal(M/\mathbb{Q}_p) \to Gal(M \cap K/\mathbb{Q}_p)$ is surjective, the theorem follows.

Theorem 2.8. The inertia group of the extension $\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p$ is isomorphic to $(\mathbb{Z}/p^e\mathbb{Z})^*$ where p^e is the exact power of p dividing n.

Proof By theorem 2.6 the inertia group of is isomorphic to the inertia group of $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ corresponding to p. Now let $n = p^e m$. Then

$$Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/p^e\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

It is not hard to check that the fixed field of the subgroup isomorphic to $(\mathbb{Z}/m\mathbb{Z})^*$ is $\mathbb{Q}(\zeta_{p^e})$. Furthermore $\mathbb{Q}(\zeta_{p^e})/\mathbb{Q}$ is totally ramified with inertia group $(\mathbb{Z}/p^e\mathbb{Z})^*$. Since $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ is unramified at p no further ramification occurs.

Theorem 2.9. (Hensel's Lemma) Let L be a local field, \mathfrak{b} be its maximal ideal, l be the residue field, $f \in \mathcal{O}_L[x]$ be a monic polynomial, \tilde{f} be its restriction to l, and $\alpha \in l$ be such that $\tilde{f}(\alpha) = 0$ and $\tilde{f}'(\alpha) \neq 0$. Then there exists a root β of f in \mathcal{O}_L such that $\beta = \alpha \pmod{\mathfrak{b}}$.

Proof Let $\beta_0 \in \mathcal{O}_L$ be such that $\beta_0 = \alpha \pmod{\mathfrak{b}}$. Define $\beta_m = \beta_{m-1} - \frac{f(\beta_{m-1})}{f'(\beta_{m-1})}$. It is an easy exercise to show that the sequence $\{\beta_m\}$ converges and the limit is a root of f. For a proof see [F-V] p. 36.

Theorem 2.10. If K/\mathbb{Q} is unramified then $K = \mathbb{Q}$

Proof By a theorem of Minkowski

$$\sqrt{|d_K|} \ge (\frac{\pi}{4})^s \frac{n^n}{n!}$$

where s is half the number of complex embeddings of K and $n = [K : \mathbb{Q}]$. Using this one can show that if n > 1 then $|d_K| > 1$ therefore there exists primes that are ramified. So if all primes are unramified, n = 1.

Theorem 2.11. Let K/\mathbb{Q} be a Galois extension. The Galois group is generated by the inertia groups I_p where p runs through all rational primes.

Proof Let L be the fixed field of the group generated by I_p s. Then L/\mathbb{Q} is unramified so $L = \mathbb{Q}$. The theorem follows.

3. Deriving the Global Theorem from the Local Case

Theorem 3.1. The local Kronecker-Weber theorem implies the Global Kronecker-Weber theorem.

Proof Assume that the local Kronecker-Weber theorem holds for all rational primes. Let K/\mathbb{Q} be an abelian extension and p a rational prime that ramifies in K. Let \mathfrak{b} be a prime lying above p. Consider the localization $K_{\mathfrak{b}}/\mathbb{Q}_p$. The Galois group is the decomposition group of \mathfrak{b} and hence the extension is abelian. By the local Kronecker-Weber theorem $L_{\mathfrak{b}} \subset \mathbb{Q}_p(\zeta_{n_p})$ for some n_p . Let p^{e_p} be the exact power of p dividing n_p . Let

$$n = \prod_{p \ ramifies} p^{e_p}$$

Claim 3.2. $K \subset \mathbb{Q}(\zeta_n)$

proof of the claim Let $L = K(\zeta_n)$. By the proof of theorem 2.7 we know that $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is unramified outside n so the primes that ramify in L are the same as that of K. Let p be a prime that ramifies in L. Then by theorem 2.6 I_p can be computed locally. The localization of L is $L_p = K_{\mathfrak{b}}(\zeta_n) \subset \mathbb{Q}_p(\zeta_{n_p}, \zeta_n) = \mathbb{Q}_p(\zeta_m)$ where m is the least common multiple of n_p and n. Now by theorem 2.8 the inertia groups of $\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$ and $\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p$ are both isomorphic to

 $(\mathbb{Z}/p^e\mathbb{Z})^*$. Since $\mathbb{Q}_p(\zeta_n) \subset L_p \subset \mathbb{Q}_p(\zeta_m)$ by theorem 2.7, the inertia group of L_p is $(\mathbb{Z}/p^{e_p}\mathbb{Z})^*$. Therefore $|I_p| = \phi(p^{e_p})$. By theorem 2.11,

$$|Gal(L/\mathbb{Q})| \le \prod_{p \text{ ramifies}} |I_p| \le \phi(n).$$

It follows that $[L:Q] \leq \phi(n)$, but L already contains $\mathbb{Q}(\zeta_n)$ and $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$. Therefore $L = \mathbb{Q}(\zeta_n)$ from which it follows that $K \subset \mathbb{Q}(\zeta_n)$.

Now let L/\mathbb{Q}_p be an abelian Galois extension. For the proof of the local Kronecker-Weber theorem we handle the following three cases separately:

- The extension is unramified i.e. the maximal ideal of \mathbb{Q}_p remains prime in L.
- The extension is tamely ramified i.e. the ramification degree e is not divisible by p.
- The extension is wildly ramified i.e. the ramification degree e is divisible by p.

4. The Unramified Case

We prove a stronger theorem from which the unramified case of the local Kronecker-Weber theorem follows.

Theorem 4.1. Let L/K be an unramified, finite Galois extension where K and L are finite extensions of $\mathbb{Q}_p L = K(\zeta_n)$ for some n with $p \nmid n$.

Proof Assume that L/K is such an extension. Since e = 1 the inertia group is trivial and therefore the Galois group of L/K is isomorphic to the Galois group of the extension of the residue fields. Let α generate the extension of residue fields l/k. Since α is an element of a finite field with characteristic p, it is a root of unity with order coprime to p. Let n be the order of α . Now apply theorem 2.9 with $f = x^n - 1$ to obtain a root $\beta \in \mathcal{O}_L$ of $x^n - 1$ such that $\beta = \alpha \pmod{\mathfrak{b}}$. Then $[K(\beta) : K] \ge [k(\alpha) : k]$ but the latter has degree equal to [l:k] = [L:K] therefore $L = K(\beta) = K(\zeta_n)$.

Now taking $K = \mathbb{Q}_p$ gives us the desired result.

5. The Tamely Ramified Case

We begin with two auxiliary lemmata.

Lemma 5.1. Let K and L be finite extensions of \mathbb{Q}_p and \wp_K the maximal ideal of \mathcal{O}_K . Suppose L/K is totally ramified of degree e with $p \nmid e$. Then there exists $\pi \in \wp_K \setminus \wp_K^2$ and a root α of $x^e - \pi = 0$ such that $L = K(\alpha)$.

proof Let |.| denote the absolute value on \mathbb{C}_p . Let $\pi_0 \in \wp_K \setminus \wp_K^2$ and let $\beta \in L$ be a uniformizing parameter so that $|\beta^e| = |\pi_0|$. Then $\beta^e = \pi_0 u$ for some $u \in U_L$ (= the units of \mathcal{O}_L) Now since f = 1 the extension of the residue fields is trivial, hence there exists $u_0 \in U_K$ such that $u = u_0 \pmod{\wp_L}$. Therefore $u = u_0 + x$ with $x \in \wp_L$. Let $\pi = \pi_0 u_0$. Then $\beta^e = \pi_0(u_0 + x) = \pi + \pi_0 x$ so $|\beta^e - \pi| < |\pi_0| = |\pi|$. Let $\alpha_1, \alpha_2, ..., \alpha_e$ be the roots of $f(X) = X^e - \pi$. We claim that $L = K(\alpha_i)$ for some i.

Since $|\alpha_i|^e = |\pi|, |\alpha_i| = |\alpha_j|$ for all i, j. We have

$$|\alpha_i - \alpha_j| \le Max\{|\alpha_i|, |\alpha_j|\} = |\alpha_1|.$$

But

$$\prod_{i \neq 1} |\alpha_i - \alpha_1| = |f'(\alpha_1)| = |e\alpha_1^{e-1}| = |\alpha_1|^{e-1}.$$

So $|\alpha_i - \alpha_1| = |\alpha_1|, \forall i \neq 1$. Since

$$\prod_{i} |\beta - \alpha_i| = |f(\beta)| < |\pi| = \prod_{i} |\alpha_i|,$$

we must have $|\beta - \alpha_i| < |\alpha_1|$ for some *i*. Without loss of generality assume that i = 1. Now let *M* be the Galois closure of the extension $K(\alpha_1, \beta)/K(\beta)$. Let $\sigma \in Gal(M/K(\beta))$. We have

$$|\beta - \sigma(\alpha_1)| = |\sigma(\beta - \alpha_1)| = |\beta - \alpha_1| < |\alpha_1| = |\alpha_i - \alpha_1|$$

for $i \neq 1$. But

$$|\alpha_1 - \sigma(\alpha_1)| \le Max\{|\alpha_1 - \beta|, |\beta - \sigma(\alpha_1)|\} < |\alpha_i - \alpha_1|.$$

It follows that $\sigma(\alpha_1) \neq \alpha_i$ for $i \neq 1$. So $\sigma(\alpha_1) = \alpha_1$. Since σ was arbitrary we have $\alpha_1 \in K(\beta)$ thus $K(\alpha_1) \subset K(\beta) \subset L$. But f(X) is irreducible over K by Eisenstein criterion so $[K(\alpha_1):K] = e = [L:K]$. Therefore $L = K(\alpha_1)$.

Lemma 5.2. $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$

Proof It is easy to prove that the maximal ideal of $\mathbb{Q}_p(\zeta_p)$ is given by $(1 - \zeta_p)$. Now consider the polynomial

$$g(X) = \frac{(X+1)^p - 1}{X} = X^{p-1} + pX^{p-2} + \dots + p$$

Then

$$0 = g(\zeta_p - 1) \equiv (\zeta_p - 1)^{p-1} + p \;(mod\;(\zeta_p - 1)^p).$$

 \mathbf{SO}

$$u = \frac{(\zeta_p - 1)^{p-1}}{-p} \equiv 1 \pmod{\zeta_p - 1}.$$

Let $f(X) = X^{p-1} - u$ then $f(1) \equiv 0 \pmod{\zeta_p - 1}$ and $(\zeta_p - 1) \nmid f'(1)$. It follows from theorem 2.9 that there exists $u_1 \in \mathbb{Q}_p(\zeta_p)$ such that $u_1^{p-1} = u$. But then we have

$$(-p)^{1/(p-1)} = \frac{\zeta_p - 1}{u_1} \in \mathbb{Q}_p(\zeta_p)$$

On the other hand $X^{p-1} + p$ is irreducible over \mathbb{Q}_p by Eisenstein's criterion so $\mathbb{Q}_p((-p)^{1/(p-1)})$ and $\mathbb{Q}_p(\zeta_p)$ have the same degree over \mathbb{Q}_p . Therefore $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$.

Now let L/\mathbb{Q}_p be a tamely ramified abelian extension. Let K/\mathbb{Q}_p be the maximal unramified subextension. Then $K \subset \mathbb{Q}_p(\zeta_n)$ for some n by the previous section. L/K is totally ramified with degree $p \nmid e$. By lemma 5.1 $L = K(\pi^{1/e})$ for some π of order 1 in K. Since K/\mathbb{Q}_p is unramified, p is of order 1 in K, so $\pi = -up$ for some unit $u \in K$. Since u is a unit and $p \nmid e$ the discriminant of $f(X) = X^e - u$ is not divisible by p, hence $K(u^{1/e})/K$ is unramified. By theorem 4.1

$$K(u^{1/e}) \subset K(\zeta_M) \subset \mathbb{Q}_p(\zeta_{Mn})$$

for some M. Let T be the compositum of the fields $\mathbb{Q}_p(\zeta_{Mn})$ and L. By theorem 2.2, T/\mathbb{Q}_p is abelian. Since $u^{1/e}, \pi^{1/e} \in T \Rightarrow (-p)^{1/e} \in T$. It follows that $\mathbb{Q}_p((-p)^{1/e})/\mathbb{Q}_p$ is Galois since it is a subextension of the abelian extension T/\mathbb{Q}_p . Therefore $\zeta_e \in \mathbb{Q}_p((-p)^{1/e})$. Since $\mathbb{Q}_p((-p)^{1/e})$ is totally ramified, so is the subextension $\mathbb{Q}_p(\zeta_e)/\mathbb{Q}_p$. But $p \nmid e$, so the latter extension is trivial and $\zeta_e \in \mathbb{Q}_p$. Therefore $e \mid (p-1)$. Now by lemma 5.2,

$$\mathbb{Q}_p((-p)^{1/e}) \subset \mathbb{Q}_p(\zeta_p).$$

Therefore

$$L = K(\pi^{1/e}) = K(u^{1/e}, (-p)^{1/e}) \subset \mathbb{Q}_p(\zeta_{Mnp}).$$

This finishes the tamely ramified case.

NIZAMEDDIN H. ORDULU

6. The Wildly Ramified Case

This part of the proof requires knowledge of Kummer theory. We briefly sketch the proof for details see [W] p. 321. Assume that p is an odd prime. First of all note that we may assume by structure theorem for abelian groups and theorem 2.3, that the extension L/\mathbb{Q}_p is cyclic, totally ramified of degree p^m for some m. Now let K_u/\mathbb{Q}_p be an unramified cyclic extension of degree p^m and let K_r/\mathbb{Q}_p be a totally ramified extension of degree p^m . (K_u can be obtained by taking the extension F/\mathbb{F}_p of degree p^m and lifting the minimal polynomial of its primitive element to $\mathbb{Z}_p[X]$. The root of this polynomial will generate an unramified extension of degree p^m . K_r can be taken to be the fixed field of the subgroup isomorphic to $(\mathbb{Z}/p\mathbb{Z})^*$ in the extension $\mathbb{Q}_p(\zeta_{p^m})/\mathbb{Q}_p$.) By the unramified case of the thorem we know that $K_u \subset \mathbb{Q}_p(\zeta_n)$ for some n. Since $K_r \cap K_u = \mathbb{Q}_p$, by theorem 2.2,

$$Gal(K_rK_u/\mathbb{Q}_p) \cong (\mathbb{Z}/p^m\mathbb{Z})^2.$$

If $L \not\subseteq K_r K_u$ then

$$Gal(K(\zeta_n, \zeta_{p^{m+1}})/\mathbb{Q}_p) \cong (\mathbb{Z}/p^m\mathbb{Z})^2 \times \mathbb{Z}/p^{m'}\mathbb{Z}$$

for some m' > 0. This group has $(\mathbb{Z}/p\mathbb{Z})^3$ as a quotient, so there is a field N such that

$$Gal(N/\mathbb{Q}_p) \cong (\mathbb{Z}/p\mathbb{Z})^3.$$

Following lemma shows that this is impossible.

Lemma 6.1. Let p be an odd prime. There is no extension N/\mathbb{Q}_p such that

$$Gal(N/\mathbb{Q}_p) \cong (\mathbb{Z}/p\mathbb{Z})^3$$

Before proving the above lemma we quote the following lemma without proof. Interested reader can find the proof in [W] p. 327.

Lemma 6.2. Let F be a field of characteristic $\neq p$, let $M = F(\zeta_p)$, and let $L = M(a^{1/p})$ for some $a \in M$. Define the character $\omega : Gal(M/F) \to \mathbb{F}_p^{\times}$ by $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$. Then

L/F is abelian $\Rightarrow \sigma(a) = a^{\omega(\sigma)} \pmod{(M^{\times})^p}$

for all $\sigma \in Gal(M/F)$.

Proof of 6.1 Assume that there exists such an N, then $N(\zeta_p)/\mathbb{Q}_p$ is abelian and $Gal(N(\zeta_p)/\mathbb{Q}_p(\zeta_p)) \cong (\mathbb{Z}/p\mathbb{Z})^3$. This is a Kummer extension so there is a corresponding subgroup $B \subset \mathbb{Q}_p(\zeta_p)^{\times}/(\mathbb{Q}_p(\zeta_p)^{\times})^p$ with $B \cong (\mathbb{Z}/p\mathbb{Z})^3$ and $\mathbb{Q}_p(\zeta_p)(B^{1/p}) = N(\zeta_p)$. Let $a \in B$ and $L = \mathbb{Q}_p(\zeta_p, a^{1/p}) \subset N(\zeta_p)$. Since L/\mathbb{Q}_p is abelian, by lemma 6.2,

$$\sigma(a) = a^{\omega(\sigma)}(mod(\mathbb{Q}_p(\zeta_p)^{\times})^p), \ \sigma \in Gal(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p).$$

Let v be the valuation on $\mathbb{Q}_p(\zeta_p)$ such that $v(\zeta_p - 1) = 1$. Then

$$v(a) = v(\sigma(a)) = \omega(\sigma)v(a) \pmod{p}$$
, for al σ .

Now if $\sigma \neq id$ the above equality gives $v(a) = 0 \pmod{p}$. It is easy to verify that

$$\mathbb{Q}_p(\zeta_p)^{\times} = (\zeta_p - 1)^{\mathbb{Z}} \times W_{p-1} \times U_1$$

where W_{p-1} are the roots of unity in \mathbb{Q}_p and $U_1 = \{u = 1 \pmod{\zeta_p - 1}\}$. Since $p \mid v(a)$ and W_{p-1} 's elements are already pth powers, a is equivalent to an element in U_1 . So assume $a \in U_1$. We can also assume $B \subset U_1/U_1^p$, and $Gal(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p)$ acts via ω . We claim that $U_1^p = \{u = 1 \pmod{\pi^{p+1}}\}$. Let $\pi = 1 - \zeta_p$. Now if $u \in U_1$ then $u = 1 + \pi x$. By looking at the binomial expansion one can show that $u^p = 1 \pmod{\pi^{p+1}}$. Conversely if $u_2 = 1 \pmod{\pi^{p+1}}$ then the binomial series for $(1 + u_2 - 1)^{1/p}$ converges. This proves the claim.

Let $u \in B$. Let $u = 1 + b\pi + \cdots$. Since $\zeta_p = 1 + \pi$ we have $\zeta_p^b = 1 + b\pi + \cdots$. Thus $u = \zeta_p^b u_1$ with $u_1 = 1 \pmod{\pi^2}$. Since

$$\sigma(u) = u^{\omega\sigma} \pmod{U_1^p}$$

substituting $u = u_1 \zeta_p^b$ yields $\sigma(u_1) = u_1^{\omega\sigma} \pmod{U_1^p}$. Write

$$u_1 = 1 + c\pi^d + \cdots$$

with $c \in \mathbb{Z}, p \nmid c$, and $d \geq 2$. Note that

$$\frac{\sigma(\pi)}{\pi} = \frac{\zeta_p^{\omega(\sigma)} - 1}{\zeta_p - 1} = \zeta_p^{\omega\sigma - 1} + \dots + 1 = \omega(\sigma) \ (mod\pi).$$

So $(\sigma(\pi))/\pi = \omega(\sigma) \pmod{\pi}$. We have

$$\sigma(u_1) = 1 + c\omega(\sigma)^d \pi^d + \cdots$$

but

$$u_1^{\omega(\sigma)} = 1 + c\omega(\sigma)\pi^d + \cdots$$

Since $\sigma(u_1) = u_1^{\omega\sigma} \pmod{U_1^p}$ and $U_1^p = \{u = 1 \pmod{\pi^{p+1}}\}$, we have $\sigma(u_1) = u_1^{\omega(\sigma)} \pmod{\pi^{p+1}}$. This means that either $d \ge p+1$ or $d = 1 \pmod{p-1}$. The former means that $u_1 \in U_1^p$ and the latter means that d = p. Clearly $1 + \pi^p$ generates modulo U_1^p the subgroup of $u_1 = 1 \pmod{\pi^p}$. We therefore obtained

$$B \subset \langle \zeta_p, 1 + \pi^p \rangle$$

where $\langle x, y \rangle$ denotes the group generated by x and y. Since $B \cong (\mathbb{Z}/p\mathbb{Z})^3$, we have a contradiction.

NIZAMEDDIN H. ORDULU

For p = 2 one has to make a more careful analysis so we shall omit it here. For the proof of this case see [W] p. 329.

References

- [S1] William Stein, A Brief Introduction to Classical and Adelic Algebraic Number Theory, Course Notes (2004).
- [S2] William Stein, Introduction to Algebraic Number Theory, Course Notes (2005)
- [G] Fernando Q. Gouvea, *p-adic numbers*, (1997).
- [W] Lawrence C. Washington, Introduction to Cyclotomic Fields, (1997)
- [F-V] I. B. Fesenko, S. V. Vostokov Local Fields and their extensions, (2002)

 $E\text{-}mail \ address: \texttt{nizam@mit.edu}$