Sage Days 24: The Development of Symbolic Calculus in Sage

William Stein

July 17, 2010

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Goals for this workshop

"Ask not what Sage can do for you, but what you can do for Sage."

1 Goals for newbies. Learn to:

- Install Sage,
- Navigate the documentation,
- Understand basic structure of the source code,
- Program in Python and Cython, and
- Improve Sage, then submit patches for review.

2 Goals for developers:

- Get function fields into Sage (trac #9054 and related).
- Update Sympy and polish the Sage/Sympy interface.
- Special functions.
- Piecewise functions.
- Runtime addition of attributes to symbolic expressions.

- Clashing of variable names with Maxima.
- Easy access to ripping apart symbolic expressions
- C library interface to Maxima.

Part 1: The Past

Create a viable free open source alternative to Magma, Maple, Mathematica, and Matlab

A viable alternative will have:

- All the mathematical features of Magma, Maple, Mathematica, and Matlab with comparable (or better) speed, including sophisticated symbolic calculus, special functions, global fields, easy of use and documentation.
- Beautiful interactive 2d and 3d graphics.
- A notebook interface and an IDE.
- Commercial support (including customized notebook servers)

Sac

■ Many undergraduate books (e.g., Zimmerman et al.!)

Sage does *not* need to be able to run programs written in the Ma*'s own custom math-only languages. Sage 'aint, Octave, = , =

SAGE = Software for Arithmetic Geometry Experimentation

- I want an open alternative to Magma (ask me why), and I have an extensive research program I've built on it over 6 years. David Joyner (coding theorist) has similar concerns.
- In 2005 number theory and some coding theory (GAP) no Symbolic Calculus.

```
sage: E = EllipticCurve('389a'); E
Elliptic Curve defined by y<sup>2</sup> + y = x<sup>3</sup> + x<sup>2</sup> - 2*x
sage: E.gens()
[(-1 : 1 : 1), (0 : -1 : 1)]
sage: G = matrix(GF(5),4,7,[1,1,1,0,0,0,0,1,0,0,1,1,0,0,0,1,0...
sage: C = LinearCode(G); C
Linear code of length 7, dimension 4 over Finite Field of size 5
sage: C.minimum_distance()
3
```

(Why not Magma?)

- **1** Commercial: Expensive for my collaborators and students
- 2 Closed: Magma's implementation of algorithms a trade secret
- 3 Frustrating: Tight control by John Cannon
- 4 Static: Users can't define their own classes (data types)
- **5** Copy protection: A pain in the ass.
- Language: No eval, no exception handling, no namespaces, little new development on the language, math-only language.
- **7** Developer community: far too small, no public mailing list
- 8 No graphics, no symbolic calculus, no graphical user interface.

- 9 No public bug tracker or list of reported bugs
- **I** No compiler (nothing like Cython)
- 11 ...

(Similar remarks about Maple.)

2006: Maxima/Sage interface

- I taught Calculus (in San Diego) during this time, and used Maxima + GNUplot for demos, and for plots in lecture notes.
- I integrated Maxima into Sage.
- David Joyner wrote Sage Constructions examples of how to do Calculus using the Sage/Maxima interface.

2007: Bobby Moretti (UW undergraduate)

- 2007: Bobby Moretti (UW undergraduate): wrote a pure Python + Maxima symbolic Calculus package.
- Idea and implementation was Bobby's from start to finish
- Made Sage an option for Calculus classes, but too slow compared to Ma* and not flexible enough.

```
sage: f = 1/sqrt(x<sup>2</sup> + 2*x - 1); f
1/sqrt(x<sup>2</sup> + 2*x - 1)
sage: f.integrate(x)
log(2*x + 2*sqrt(x<sup>2</sup> + 2*x - 1) + 2)
```

2008: Gary Furnish (Utah undergraduate): New Symbolics!!

- 2008: Gary Furnish: another undergrad, tried to completely rewrite symbolic calculus in Cython.
- Wrote a lot of Cython code, which lacked a sufficiently mature foundation, so we didn't end up using it.

"Ugly performance enhancing software hacks are often needed to make theoretical algorithms viable." - Gary Furnish, sage-devel, 2008-05-01.

▲ 포 → 포

Sac

2008–2009: GiNAC/Pynac

- July 2008: ISSAC during the boat trip, Burcin suggested investigating integrating GiNAC into Sage.
- Big problem: GiNAC depends on the huge C++ CLN library (basic rings/fields arithmetic), which takes a long time to build, and provides nothing that isn't already in Sage.
- Aug 2008: I wrote the first version of Pynac during an intense two week coding sprint in San Diego.

Key Idea: Rip out the CLN dependence of GiNAC and replace it by Sage/Python. Amazingly, this worked.

 Pynac is a low level C++ library that depends on Sage/Python and provides fast symbolic arithmetic. No integration, series, or other high level algorithms.

Aug 2008 – May 2009: Build complete new symbolic system in Sage on Pynac

■ Finish Pynac and build a new fast symbolic system on top: Burcin (mostly) + Mike Hansen + Carl Witty + Robert Bradshaw + Nick Alexander + me + ···

- This is the main new feature of Sage-4.0.
- Maxima is still used for some things, e.g., symbolic integration, some comparisons, etc.

```
sage: f = 1/sqrt(x<sup>2</sup> + 2*x - 1); f
1/sqrt(x<sup>2</sup> + 2*x - 1)
sage: timeit('f*f')
625 loops, best of 3: 83.5 µs per loop
sage: g = maxima(f)
sage: timeit('g*g')
125 loops, best of 3: 1.41 ms per loop
sage: 1.41/.0835
16.8862275449102
```

- May 2009 today: Burcin (mostly) has further developed symbolics in Sage
- Pynac has been very stable (hardly any changes needed).
- Nils Bruin (and Robert Bradshaw): A new C library interface to Maxima.

Sympy is a Python project mainly by Physics, Engineering, and Science students...

- 2005: Sympy project started by Ondrej Certik (physics undergraduate at the time)
- 2007?: Sympy included in Sage

They have many very hard working developers.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Unflattering Demo of using Sympy in Sage

```
sage: var('x')
sage: f = 1/sqrt(x^2 + 2*x - 1); f
1/sqrt(x^2 + 2*x - 1)
sage: time f.integrate(x)
log(2*x + 2*sqrt(x^2 + 2*x - 1) + 2)
Time: CPU 0.01 s, Wall: 0.02 s
sage: f.integrate(x, algorithm='sympy')
Traceback (most recent call last):
AttributeError: 'Integral' object has no attribute '_sage_'
```

```
sage: from sympy import sqrt, integrate, var
sage: x = var('x')
sage: f = int(1)/sqrt(x**2 + 2*x - 1); f
(-1 + 2*x + x**2)**(-1/2)
sage: time f.integrate(x)
Integral((-1 + 2*x + x**2)**(-1/2), x)
Time: CPU 0.64 s, Wall: 0.65 s
```

Part 2: The Future

Roadmap of Sage project

- Sage-5.0 (2010)
- Sage-6.0 (2011)
- Sage-7.0 (2012)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Roadmap of Sage project

- Sage-5.0 (August 31, 2010)
 - Windows port via Cygwin
 - Upgrade PARI to the latest SVN version
 - Upgrade MPIR to version 2.x
 - Get doctest coverage to 90% (currently at 84.6%)
- Sage-5.x (rest of this year...)
 - Function fields (Hess's algorithms, 2-descent, L-functions)
 - Special functions: support everything in the DLMF:
 - arbitrary precision numerical evaluation (mpmath)

- ロ ト - 4 回 ト - 4 □

- series expansion
- differentiation
- shifts (difference analogue of differentiation)
- Symbolic summation
- Symbolic integration (Risch-Norman algorithm)
- Sage-6.0 (2011)
- Sage-7.0 (2012)

- Sage-5.0 (August 31, 2010).
- Sage-6.0 (2011), some potential goals:
 - Noncommutative symbolic computation (Plural, Weyl Algebras, Graded algebras, Lie algebras).
 - Much improved Sage notebook (scalability, customizability)
 - Textbooks, interacts, etc., integrated with the sage distribution
 - Commercial support (custom notebook servers)
 - Fully switch to using C library interfaces for GAP and Maxima.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

■ Get doctest coverage to 100%

Sage-7.0 (2012)

Roadmap of Sage project

- Sage-5.0 (August 31, 2010).
- Sage-6.0 (2011):
- Sage-7.0 (2012), some potential goals:
 - Fast Groebner basis computation that is competitive with Magma/Maple
 - Vast improvements in Sage for Science and Engineering (documentation, diff'eq, data workflows, reproducible research, instrument support, data formats like HD5)
 - Statistics: something Pythonic/Cythonic and built on top of R + scipy.stats + GSL, which competes with SAS, etc.
 - Switch to Python 3.x
 - Much randomized and unit testing that goes beyond doctesting

... World Domination

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Any questions?