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Let E be an elliptic curve over Q and suppose

P = (x, y) =

(

a

d2
,

b

d3

)

∈ E(Q),

with a, b, d ∈ Z and gcd(a, d) = gcd(b, d) = 1. The naive height of P is

h̃(P ) = log max{|a|, d2},

and the canonical height of P is

h(P ) = lim
n→∞

h(2nP )

4n
.

This definition is not good for computation, because 2nP gets huge very quickly, and
computing 2nP exactly, for n large, is not reasonable.

In [Cre97, §3.4], Cremona describes an efficient method (due mostly to Silverman)
for computing h(P ). One defines local heights ĥp : E(Q) → R, for all primes p, and

ĥ∞ : E(Q) → R such that

h(P ) = ĥ∞(P ) +
∑

ĥp(P ).

The local heights ĥp(P ) are easy to compute explicitly. For example, when p is a

prime of good reduction, ĥp(P ) = max{0,− ordp(x)} · log(p).

This paper is NOT about local heights ĥp, and we will not mention them any

further. Instead, this paper is about a canonical global p-adic height function

hp : E(Q) → Qp.

These height functions are genuine height functions; e.g., hp is a quadratic function,
i.e, hp(mP ) = m2h(P ) for all m. They appear when defining the p-adic regulators
that appear in the Mazur-Tate p-adic analogues of the Birch and Swinnerton-Dyer
conjecture.

Acknowledgement: Barry Mazur, John Tate, Mike Harrison, Christian Wuthrich,
Nick Katz.
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1 The p-Adic Height Pairing

Let E be an elliptic curve over Q and suppose p ≥ 5 is a prime such that E has good
ordinary reduction at p. Suppose P ∈ E(Q) is a point that reduces to 0 ∈ E(Fp) and
to the connected component of EF`

at all bad primes `. We will define functions logp,
σ, and d below. In terms of these functions, the p-adic height of P is

hp(P ) =
1

p
· logp

(

σ(P )

d(P )

)

∈ Qp. (1.1)

The function hp satisfies hp(nP ) = n2hp(P ) for all integers n, so it naturally extends
to a function on the full Mordell-Weil group E(Q). Setting

〈P, Q〉 =
1

2
· (hp(P + Q) − hp(P ) − hp(Q)),

we obtain a nondegenerate pairing on E(Q)/ tor, and the p-adic regulator is the dis-
criminant of this pairing (which is well defined up to sign).

Investigations into p-adic Birch and Swinnerton-Dyer conjectures for curves of
positive rank inevitably lead to questions about such height pairings, which motivate
our interest in computing it to high precision.

We now define each of the undefined quantities in (1.1). The function logp : Q∗

p →
Qp is the unique homomorphism with logp(p) = 1 that extends the homomorphism
logp : 1 + pZp → Qp defined by the usual power series of log(x) about 1. Thus if
x ∈ Q∗

p, we can compute logp(x) using the formula

logp(x) =
1

p − 1
· logp(u

p−1),

where u = p− ordp(x) · x.
The denominator d(P ) is the square root of the denominator of the x-coordinate

of P .
The σ function is the most mysterious quantity in (1.1), and it turns out the

mystery is closely related to the difficulty of computing the p-adic number E2(E, ω),
where E2 is the p-adic weight 2 Eisenstein series. There are many ways to define or
characterize σ, e.g., [MT91] contains 11 different characterizations! Let

x(t) =
1

t2
+ · · · ∈ Z((t))

be the formal power series that expresses x in terms of t = −x/y locally near 0 ∈ E.
Then Mazur and Tate prove there is exactly one function σ(t) ∈ tZp[[t]] and constant
c ∈ Qp that satisfy the equation

x(t) + c = −
d

ω

(

1

σ

dσ

ω

)

. (1.2)

This defines σ, and, unwinding the meaning of the expression on the right, it leads
to an algorithm to compute σ(t) to any desired precision, which we now sketch.
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If we expand (1.2), we can view c as a formal variable and solve for σ(t) as a power
series with coefficients that are polynomials in c. Each coefficient of σ(t) must be
in Zp, so when there are denominators in the polynomials in c, we obtain conditions
on c modulo powers of p. Taking these together for many coefficients yields enough
scraps of information to get c (mod pn), for some small n, hence σ(t) (mod pn).
However, this algorithm is extremely inefficient and its complexity is unclear (how
many coefficients are needed to compute c to precision pn?).

For the last 15 or 20 years, the above unsatisifactory algorithm has been the
standard one for computing p-adic heights, e.g., when investigating p-adic analogues
of the BSD conjecture.

The situation changed a few weeks ago...

2 Using Cohomology to Compute σ

Suppose that E is an elliptic curve over Q given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Let x(t) be the formal series as before, and set

℘(t) = x(t) + (a2
1 + 4a2)/12 ∈ Q((t)).

(The function ℘ satisfies (℘′)2 = 4℘3 − g2℘ − g3, etc.; it’s the formal analogue of the
usual complex ℘-function.) In [MT91], Mazur and Tate prove that

x(t) + c = ℘(t) +
1

12
· E2(E, ω),

where E2(E, ω) is the value of the Katz p-adic weight 2 Eisenstein series at (E, ω), and
the equality is of elements of Qp((t)). Thus computing c is equivalent to computing
E2(E, ω).

This summer, Mazur, Tate, and I explored many ideas for computing E2(E, ω).
Though each was interesting and promising, nothing led to a better algorithm that
just computing c as sketched above. Perhaps the difficult of computing E2(E, ω) is
somehow at the heart of the theory?

Barry wrote to Nick Katz, who fired off the following email:

2.1 Katz’s Email

Date: Thu, 8 Jul 2004 13:53:13 -0400

From: Nick Katz <nmk@Math.Princeton.EDU>

Subject: Re: convergence of the Eisenstein series of weight two

To: mazur@math.harvard.edu, nmkatz@Math.Princeton.EDU

Cc: tate@math.utexas.edu, was@math.harvard.edu

It seems to me you want to use the interpretation of P as the
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"direction of the unit root subspace", that should make it fast to

compute. Concretely, suppose we have a pair (E, \omega) over Z_p, and

to fix ideas p is not 2 or 3. Then we write a Weierstrass eqn for E,

y^2 = 4x^3 - g_2x - g_3, so that \omega is dx/y, and we denote by \eta

the differential xdx/y. Then \omega and \eta form a Z_p basis of

H^1_DR = H^1_cris, and the key step is to compute the matrix of

absolute Frobenius (here Z_p linear, the advantage of working over

Z_p: otherwise if over Witt vectors of an F_q, only \sigma-linear).

[This calculation goes fast, because the matrix of Frobenius lives

over the entire p-adic moduli space, and we are back in the glory days

of Washnitzer-Monsky cohomology (of the open curve E - {origin}).]

Okay, now suppose we have computed the matrix of Frob in the

basis \omega, \eta. The unit root subspace is a direct factor, call

it U, of the H^1, and we know that a complimentary direct factor is

Fil^1 := the Z_p span of \omega. We also know that Frob(\omega) lies

in pH^1, and this tells us that, mod p^n, U is the span of

Frob^n(\eta). What this means concretely is that if we write,

for each n,

Frob^n(\eta) = a_n\omega + b_n\eta,

then b_n is a unit (cong mod p to the n’th power of the Hasse

invariant) and that P is something like the ratio a_n/b_n (up to a

sign and a factor 12 which i don’t recall offhand but which is in my

Antwerp appendix and also in my "p-adic interp. of real

anal. Eis. series" paper).

So in terms of speed of convergence, ONCE you have Frob, you

have to iterate it n times to calculate P mod p^n. Best, Nick

2.2 The Algorithms

The following algorithms culminate in an algorithm for computing hp(P ) that incor-
porates Katz’s ideas with the discussion elsewhere in this paper. I have computed
σ and hp in numerous cases using the algorithm described below, and using my im-
plementations of the “integrality” algorithm described above and also Wuthrich’s
algorithm, and the results match. The analysis of some of the necessary precision is
not complete. I also have not analyzed the complexity.

The first algorithm computes E2(E, ω).

Algorithm 2.1 (Evaluation of E2(E, ω)). Given an elliptic curve over Q and prime p,
this algorithm computes E2(E, ω) ∈ Qp (to precision O(pn) say) . We assume that
Kedlaya’s algorithm is available for computing a presentation of the p-adic Monsky-
Washnitzer cohomology of E − {(0, 0)} with Frobenius action.
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1. Let c4 and c6 be the c-invariants of a minimal model of E. Set

a4 ← −
c4

24 · 3
and a6 ← −

c6

25 · 33
.

2. Apply Kedlaya’s algorithm to the hyperelliptic curve y2 = x3 + a4x + a6 (which is
isomorphic to E) to obtain the matrix M of the action of absolute Frobenius on
the basis

ω =
dx

y
, η =

xdx

y

to precision O(pn). (We view M as acting from the left.)

3. We know M to precision O(pn). Compute the nth power of M and let

(

a
b

)

be

the second column of Mn. Then Frobn(η) = aω + bη

4. Output M and −12a/b (which is E2(E, ω)), then terminate.

The next algorithm uses the above algorithm to compute σ(t).

Algorithm 2.2 (The Canonical p-adic Sigma Function). Given an elliptic curve E
and a good ordinary prime p, this algorithm computes σ(t) ∈ Zp[[t]] modulo (pn, tm) for
any given positive integers n, m. (I have not figured out exactly what precision each
object below must be computed to.)

1. Using Algorithm 2.1, compute e2 = E2(E, ω) ∈ Zp to precision O(pn).

2. Compute the formal power series x = x(t) ∈ Q[[t]] associated to the formal group
of E to precision O(tm).

3. Compute the formal logarithm z(t) ∈ Q((t)) to precision O(tm) using that z(t) =
∫

dx/dt

(2y(t) + a1x(t) + a3)
, where x(t) = t/w(t) and y(t) = −1/w(t) are the formal

x and y functions, and w(t) is given by the explicit inductive formula in [Sil92,
Ch. 7]. (Here t = −x/y and w = −1/y and we can write w as a series in t.)

4. Using a power series “reversion” (functional inverse) algorithm (see e.g., Math-
world), find the power series F (z) ∈ Q[[z]] such that t = F (z). Here F is the
reversion of z, which exists because z(t) = t + · · · .

5. Set ℘(t) ← x(t) + (a2
1 + 4a2)/12 ∈ Q[[t]] (to precision O(tm)), where the ai

are the coefficients of the Weierstrass equation of E. Then compute the series
℘(z) = ℘(F (z)) ∈ Q((z)).

6. Set g(z) ←
1

z2
− ℘(z) +

e2

12
∈ Qp((z)). (Note: The theory suggests the last term

should be −e2/12 but the calculations do not work unless I use the above formula.
Maybe there are two normalizations of E2 in the literature?)

7. Set σ(z) ← z · exp

(
∫ ∫

g(z) dz dz

)

∈ Qp[[z]].

8. Set σ(t) ← σ(z(t)) ∈ t·Zp[[t]], where z(t) is the formal logarithm computed above.
Output σ(t) and terminate.
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Remark 2.3. The trick of changing from ℘(t) to ℘(z) is essential so that we can
solve a certain differential equation using just operations with power series.

The final algorithm uses σ(t) to compute the p-adic height.

Algorithm 2.4 (p-adic Height). Given an elliptic curve E over Q, a good ordinary
prime p, and an element P ∈ E(Q), this algorithm computes the p-adic height hp(P ) ∈
Qp to precision O(pn). (I will ignore the precision below, though this must be not be
ignored for the final version of this paper.)

1. [Prepare Point] Compute an integer m such that mP reduces to 0 ∈ E(Fp) and
to the connected component of EF`

at all bad primes `. For example, m could
be the least common multiple of the Tamagawa numbers of E and #E(Fp). Set
Q ← mP and write Q = (x, y).

2. [Denominator] Let d be the positive integer square root of the denominator of x.

3. [Compute σ] Compute σ(t) using Algorithm 2.2, and set s ← σ(−x/y) ∈ Qp.

4. [Logs] Compute hp(Q) ←
1

p
logp

(s

d

)

, and hp(P ) ←
1

m2
· hp(Q). Output hp(P )

and terminate.

3 Future Directions

Suppose Et is an elliptic curves over Q(t). It might be extremely interesting to
obtain formula for E2(Et) as something like (?) a power series in Qp[[t]]. This might
shed light on the analytic behavior of the p-adic modular form E2, and on Tate’s
recent surprising experimental observations about the behavior of the (1/j)-expansion
of E2E4/E6.

It would also be interesting to do yet more computations in support of p-adic
analogues of the BSD conjectures of [MTT86], especially when E/Q has large rank.
Substantial theoretical work has been done toward these p-adic conjectures, and
this work may be useful to algorithms for computing information about Shafarevich-
Tate and Selmer groups of elliptic curves. For example, in [PR03], Perrin-Riou uses
her results about the p-adic BSD conjecture in the supersingular case to prove that
X(E/Q)[p] = 0 for certain p and elliptic curves E of rank > 1, for which the work
of Kolyvagin and Kato does not apply. Mazur and Rubin (with my computational
input) are also obtaining results that could be viewed as fitting into this program.

I would like to optimize the implementation of the algorithm. Probably the most
time-consuming step is computation of E2(E, ω) using Kedlaya’s algorithm. My cur-
rent implementation uses Michael Harrison’s implementation of Kedlaya’s algorithm
for y2 = f(x), with f(x) of arbitrary degree. Perhaps implementing just what is
needed for y2 = x3 + ax + b might be more efficient. Also, Harrison tells me his
implementation isn’t nearly as optimized as it might be.

It might be possible to compute p-adic heights on Jacobians of hyperelliptic curves.
Formulate everything above over number fields, and extend to the case of additive

reduction.
Supersingular reduction?
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4 Examples

The purpose of this section is to show you how to use the MAGMA package I wrote
for computing with p-adic heights, and give you a sense for how fast it is.

> function EC(s) return EllipticCurve(CremonaDatabase(),s); end function;

> E := EC("37A");

> Attach("padic_height.m");

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73,

79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;

5 22229672 + O(5^11)

Time: 0.040

7 317628041 + O(7^11)

...

89 15480467821870438719 + O(89^10)

Time: 1.190

97 -11195795337175141289 + O(97^10)

Time: 1.490

> E := EC("389A");

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;

5 -3871266 + O(5^11)

Time: 0.260

7 483898350 + O(7^11)

...

89 9775723521676164462 + O(89^10)

Time: 1.330

97 -13688331881071698338 + O(97^10)

Time: 1.820

> E := EC("5077A");

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 17, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;

5 655268*5^-2 + O(5^7)

Time: 0.800

7 -933185758 + O(7^11)

...

89 -3325438607428779200 + O(89^10)
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Time: 1.910

97 -5353586908063282167 + O(97^10)

Time: 2.010

--------

> E := EC("37A");

> time regulator(E,5,50);

115299522541340178416234094637464047 + O(5^51)

Time: 1.860

> Valuation(115299522541340178416234094637464047 - 22229672,5);
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> time regulator(E,97,50);

-5019271523950156862996295340254565181870308222348277984940964806\

97957622583267105973403430183075091 + O(97^50)

Time: 31.7
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