
Computing Bernoulli Numbers

William Stein

(joint work with Kevin McGown of UCSD)

February 16, 2006

William Stein Computing Bernoulli Numbers

Bernoulli Numbers

Defined by Jacques Bernoulli in posthumous work Ars conjectandi
Bale, 1713.

x

ex − 1
=

∞∑
n=0

Bn

n!
xn

B0 = 1, B1 = −1

2
B2 =

1

6
, B3 = 0, B4 = − 1

30
,

B5 = 0, B6 =
1

42
, B7 = 0, B8 = − 1

30
, B9 = 0,

William Stein Computing Bernoulli Numbers

Connection with Riemann Zeta Function

For integers n ≥ 2 we have

ζ(2n) =
(−1)n+1(2π)2n

2 · (2n)!
B2n

ζ(1− n) = −Bn

n

So for n ≥ 2 even:

|Bn| =
2n!

(2π)n
ζ(n) = ± n

ζ(1− n)
.

William Stein Computing Bernoulli Numbers

Computing Bernoulli Numbers – say B500

sage: a = maple(’bernoulli(500)’) # Wall time: 1.35
sage: a = maxima(’bern(500)’) # Wall time: 0.81
sage: a = maxima(’burn(500)’) # broken...
sage: a = magma(’Bernoulli(500)’) # Wall time: 0.66
sage: a = gap(’Bernoulli(500)’) # Wall time: 0.53
sage: a = mathematica(’BernoulliB[500]’) #W time: 0.18

calcbn (http://www.bernoulli.org) # Time: 0.020
sage: a = gp(’bernfrac(500)’) # Wall time: 0.00 ?!

William Stein Computing Bernoulli Numbers

Computing Bernoulli Numbers – say B1000

sage: a = maple(’bernoulli(1000)’) # Wall time: 9.27
sage: a = maxima(’bern(1000)’) # Wall time: 5.49
sage: a = magma(’Bernoulli(1000)’) # Wall time: 2.58
sage: a = gap(’Bernoulli(1000)’) # Wall time: 5.92
sage: a = mathematica(’BernoulliB[1000]’) #W time: 1.01

calcbn (http://www.bernoulli.org) # Time: 0.06
sage: a = gp(’bernfrac(1000)’) # Wall time: 0.00?!

NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at

computing Bernoulli numbers, and the timing is almost identical to PARI

(for n > 1000), though amusingly Mathematica 5.2 is slow for n < 1000!

William Stein Computing Bernoulli Numbers

World Records?

Largest one ever computed was B5000000 by O. Pavlyk, which was
done in Oct. 8, 2005, and whose numerator has 27332507 digits.
Computing B107 is the next obvious challenge.

Bernoulli numbers are really big!

Sloane Sequence A103233:

n 0 1 2 3 4 5 6 7

a(n) 1 1 83 1779 27691 376772 4767554 ???

Here a(n) = Number of digits of numerator of B10n .

William Stein Computing Bernoulli Numbers

Number of Digits

Clausen and von Staudt: dn = denom(Bn) =
∏

p−1|m

p.

Number of digits of numerator is

dlog10(dn · |Bn|)e

But

log(|Bn|) = log

(
2n!

(2π)n
ζ(n)

)
= log(2) +

n∑
m=1

log(m)− log(2)− n log(π) + log(ζ(n)),

and ζ(n) ∼ 1. In 10 minutes this gives two new entries for Sloane’s
sequence:

a(107) = 57675292 and a(108) = 676752609.

William Stein Computing Bernoulli Numbers

Stark’s Observation (after talk)

Use Stirling’s formula, which, ammusingly, involves small Bernoulli
numbers:

log(Γ(z)) =
1

log(2π)
+

(
z − 1

2

)
log(z)− z +

∞∑
n=1

B2n

2n(2n − 1)z2n−1
.

This would make computation of the number of digits of the
numerator of Bn pretty easy. See
http://mathworld.wolfram.com/StirlingsSeries.html

William Stein Computing Bernoulli Numbers

http://mathworld.wolfram.com/StirlingsSeries.html

Tables?

I couldn’t find any interesting tables at all!

But from
http://mathworld.wolfram.com/BernoulliNumber.html
”The only known Bernoulli numbers Bn having prime numerators
occur for n=10, 12, 14, 16, 18, 36, and 42 (Sloane’s A092132) [...]
with no other primes for n ≤ 55274 (E. W. Weisstein, Apr. 17,
2005).”

So maybe 55274 is the biggest enumeration of Bk ’s ever? Not
anymore... since I just used SAGE to script a bunch of PARI’s on
my new 64GB 16-core computer, and made a table of Bk for
k ≤ 94000. It’s very compressed but takes over 3.4GB.

William Stein Computing Bernoulli Numbers

http://mathworld.wolfram.com/BernoulliNumber.html

Buhler et al.

Basically, compute Bk (mod p) for all k ≤ p and p up to 16 · 106

using clever Newton iteration to find 1/(ex − 1). In particular, “if
g is an approximation to f −1 then ... h = 2g − fg2” is twice as
good. (They also gain a little using other tricks.)

William Stein Computing Bernoulli Numbers

Math 168 Student Project

Figure out why PARI is vastly faster than anything else at
computing Bk and explain it to me.
Kevin McGown rose to the challenge.

/* assume n even > 0. Faster than standard bernfrac for n >= 6 */

GEN

bernfrac_using_zeta(long n)

{

pari_sp av = avma;

GEN iz, a, d, D = divisors(utoipos(n/2));

long i, prec, l = lg(D);

double t, u;

d = utoipos(6); /* 2 * 3 */

for (i = 2; i < l; i++) /* skip 1 */

{ /* Clausen - von Staudt */

ulong p = 2*itou(gel(D,i)) + 1;

if (isprime(utoipos(p))) d = muliu(d, p);

}

/* 1.712086 = ??? */

t = log(gtodouble(d)) + (n + 0.5) * log(n) - n*(1+log2PI) + 1.712086;

u = t / (LOG2*BITS_IN_LONG); prec = (long)ceil(u);

prec += 3;

iz = inv_szeta_euler(n, t, prec);

a = roundr(mulir(d, bernreal_using_zeta(n, iz, prec)));

return gerepilecopy(av, mkfrac(a, d));

}

William Stein Computing Bernoulli Numbers

Compute 1/ζ(n) to VERY high precision

/* 1/zeta(n) using Euler product. Assume n > 0.

* if (lba != 0) it is log(bit_accuracy) we _really_ require */

GEN

inv_szeta_euler(long n, double lba, long prec)

{

GEN z, res = cgetr(prec);

pari_sp av0 = avma;

byteptr d = diffptr + 2;

double A = n / (LOG2*BITS_IN_LONG), D;

long p, lim;

if (!lba) lba = bit_accuracy_mul(prec, LOG2);

D = exp((lba - log(n-1)) / (n-1));

lim = 1 + (long)ceil(D);

maxprime_check((ulong)lim);

prec++;

z = gsub(gen_1, real2n(-n, prec));

for (p = 3; p <= lim;)

{

long l = prec + 1 - (long)floor(A * log(p));

GEN h;

if (l < 3) l = 3;

else if (l > prec) l = prec;

h = divrr(z, rpowuu((ulong)p, (ulong)n, l));

z = subrr(z, h);

NEXT_PRIME_VIADIFF(p,d);

}

affrr(z, res); avma = av0; return res;

}

William Stein Computing Bernoulli Numbers

What Does PARI Do?

Use

|Bn| =
2n!

(2π)n
ζ(n)

and tightly bound precisions needed to compute each quantity.

> (1) Do you know who came up with or implemented the idea
> in PARI for computing Bernoulli numbers quickly by
> approximating the zeta function and using Classen
> and von Staudt’s identification of the denominator
> of the Bernoulli number?

Henri did, and wrote the initial implementation.
I wrote the current one (same idea, faster details).

The idea independently came up (Bill Daly) on pari-dev
as a speed up to Euler-Mac Laurin formulae for zeta or
gamma/loggamma (that specific one has not been tested/
implemented so far).

William Stein Computing Bernoulli Numbers

http://www.bernoulli.org/

Bernd C. Kellner’s program at http://www.bernoulli.org/
(2002-2004) also appears to uses

|Bn| =
2n!

(2π)n
ζ(n)

but Kellner’s program is closed source and noticeably slower than
PARI (2.2.10.alpha). He claims his program “calculates Bernoulli
numbers up to index n = 106 extremely quickly.”

Also: Maxima’s documentation claims to have a function burn
that uses zeta, but it doesn’t work (for me).

William Stein Computing Bernoulli Numbers

http://www.bernoulli.org/

Kevin McGown Project

The Algorithm: Suppose n ≥ 2 is even.

1. K :=
2n!

(2π)n

2. d :=
∏

p−1|n

p

3. N :=
⌈
(Kd)1/(n−1)

⌉
4. z :=

∏
p≤N

(1− p−n)−1

5. a := (−1)n/2+1 ddKze

6. Bn =
a

d

William Stein Computing Bernoulli Numbers

What About Generalized Bernoulli Numbers?

> (2) Has a generalization to generalized
> Bernoulli numbers attached to an integer
> and Dirichlet character been written
> down or implemented?

Not to my knowledge.

Cheers,
Karim.

William Stein Computing Bernoulli Numbers

Generalized Bernoulli Numbers

Defined in 1958 by H.W. Leopoldt.

f−1∑
r=1

χ(r)
tert

eft − 1
=

∞∑
n=0

Bn,χ
tn

n!

Here χ : (Z/mZ) → C is a Dirichlet character.

These give values at negative integers of associated Dirichlet
L-functions:

L(1− n, χ) = −Bn,χ

n

Kubota-Leopoldt p-adic L-function (p-adic interpolation)...

William Stein Computing Bernoulli Numbers

Bn,ψ Very Important to Computing Modular Forms

Ek,χ,ψ(q) = c0+
∑
m≥1

∑
n|m

ψ(n) · χ(m/n) · nk−1

 qm ∈ Q(χ, ψ)[[q]],

where

c0 =

0 if L = cond(χ) > 1,

−
Bk,ψ

2k
if L = 1.

Theorem
The (images of) the Eisenstein series above generate the Eisenstein
subspace Ek(N, ε), where N = L · cond(ψ) and ε = χ/ψ.

William Stein Computing Bernoulli Numbers

The Torsion Subgroup of J1(p)

Let J1(p) be the Jacobian of the modular curve X1(p).

Conjecture (Stein)

#J1(p)(Q)tor =
p

2p−3
·
∏
χ6=1

B2,χ,

where the χ have modulus p. (Equivalently, the torsion subgroup
is generated by the rational cuspidal subgroup—see Kubert-Lang.)

(This is a generalization of Ogg’s conjecture for J0(p), which
Mazur proved.)

William Stein Computing Bernoulli Numbers

Compute Bn,χ? One way.

Let N=modulus of χ, assumed > 1.

1. Compute g = x/(eNx − 1) ∈ Q[[x]] to precision O(xn+1) by
computing eNx − 1 =

∑
m≥1 Nmxm/m! to precision O(xn+2),

and computing the inverse 1/(eNx − 1), e.g., using Newton
iteration as in Buhler et al.

2. For each a = 1, . . . ,N − 1, compute fa = g · eax ∈ Q[[x]], to
precision O(xk+1). This requires computing
eax =

∑
m≥0 amxm/m! to precision O(xk+1).

3. Then for j ≤ n, we have Bj ,ε = j! ·
N−1∑
a=1

ε(a) · cj(fa), where

cj(fa) is the coefficient of x j in fa.

This requires arithmetic only in Q, except in the last easy step.

William Stein Computing Bernoulli Numbers

Analytic Method

Is there an analytic method to compute Bn,χ that is impressively
fast in practice like the one Cohen/Kellner/etc. invented for Bn?

YES.

William Stein Computing Bernoulli Numbers

Analytic Method

Assume χ primitive now.
If

Kn,χ := (−1)n−1 2n!

(
N

2i

)n

then

Bn,χ =
Kn,χ

πn τ(χ)
L(n, χ)

There is a simple formula for a d such that d · Bn,χ is an algebraic
integer (analogue of Clausen and von Staudt).
For n large we can compute L(n, χ) very quickly to high precision;
hence we can compute Bn,χ (at least if Q(χ) isn’t too big, e.g.,
Q(χ) = Q wouldn’t be a problem). (Note, for small n that L(n, χ)
converges slowly; but then just use the power series algorithm.)
Compute the conjugates of d · Bn,χ approximately; compute
minimal polynomial over Z; factor that over Q(χ), then recognize
the right root from the numerical approximation to d · Bn,χ.

William Stein Computing Bernoulli Numbers

