
Bernoulli numbers and the unity of mathematics.

B. Mazur

(A handout for the Hilldale Lecture. )

Here are the first few Bernoulli numbers referred to in the title, dripping down the
left hand side of the page.

B0 = 1

B1 = −1/2

B2 = 1/6

B4 = −1/30

B6 = 1/42

B8 = −1/30

B10 = 5/66

B12 = −691/2730

B14 = 7/6

B16 = −3617/510

B18 = 43867/798

B20 = −174611/330

B22 = 854513/138

B24 = −23634091/2730

B26 = 8553103/6

B28 = −23749461029/870

B30 = 8615841276005/14322

B32 = −7709321041217/510

. . .

These Bernoulli numbers are rational numbers. You’ll notice that except for B1 the
odd number indices are missing as entries of the above list. This is because Bk = 0 for
k > 1 an odd number. Also the even-indexed Bernoulli numbers alternate in sign.

People who work with these numbers sometimes make personal attachments to them;
for example, my favorites in this list are B12 and B32 (in that order). We’ll see why, in
the lecture.

You might wonder how a mere sequence of rational numbers can possibly be a “uni-
fying force” in mathematics as the title of my lecture is meant to suggest. Theories, of
course, can unify: category theory, for example, or set theory; physicists have their quest

1



for a “unified theory of everything.” But how can a bunch of numbers have the effect of
unifying otherwise seemingly disparate branches of our subject?

As we’ll see, for starters, Bernoulli numbers sit in the center of a number of mathe-
matical fields, and whenever, for a given index k the Bernoulli number Bk exhibits some
particular behavior, these different mathematical fields seem to feel the consequences, each
in their own way.

The “Bernoulli Number” Website http://www.mscs.dal.ca/ dilcher/bernoulli.html of-
fers a bibliography of a few thousand articles giving us a sensethat these numbers pervade
mathematics, but to get a more vivid sense of how they do so, we will survey, in the lecture,
the pertinence of Bernoulli numbers in just a few subjects.

There may have been early appearances of the sequence of numbers referred to as
Bernoulli numbers, but it is traditional to think of them as originating in Jacob Bernoulli’s
posthumous manuscript Conjectandi (published 1713).

The text Ars Conjectandi itself might stand for the unity inherent in mathematics. It
ostensibly focusses on combinatorics which, as Bernoulli says, corrects our most frequent
error (counting things incorrectly) and is an art “most useful, because it remedies this
defect of our minds and teaches how to enumerate all possible ways in which several things
can be combined, transposed, or joined with another.”* Bernoulli continues by claiming
that this art is so important that

“neither the wisdom of the philosopher nor the exactitude of the historian, nor the
dexterity of the physician, nor the prudence of the statesman can stand without it.”

He goes on to say that the work of these people depend upon ”conjecturing and every
conjecture involves weighing complexions or combinations of causes.” For Bernoulli, con-

jecturing means quantitatively assessing the likelihood of an outcome, given one’s current
partial knowledge; in other words, “figuring the odds.” Indeed Ars Conjectandi is viewed
as one of the founding texts in probability, but it roams wide. For example, Bernoulli’s
notion of probability, including the famous law of large numbers whose origin is in this
treatise, is not entirely without theological overtones. Bernoulli suggests by some of his
terminology that, in his view, the law exhibits an overarching sense of pre-destination,
for events are constrained to occur in specific ironclad frequencies, even though, from our
finite viewpoint, it might appear as if things were random. Here is how Ars Conjectandi

ends:

“Whence at last this remarkable result is seen to follow, that if the observations of all
events were continued for the whole of eternity (with the probability finally transformed

* I am thankful to Edith Sylla for providing me with a manuscript of her new English
translation (in progress) of Bernoulli’s treatise; all quotations from that treatise, given
below, are from her translation.
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into perfect certainty) then everything in the world would be observed to happen in fixed
ratios and with a constant law of alternation. Thus in even the most accidental and
fortuitous we would be bound to acknowledge a certain quasi necessity and, so to speak,
fatality. I do not know whether or not Plato already wished to assert this result in his
dogma of the universal return of things to their former positions [apocatastasis], in which
he predicted that after the unrolling of innumerable centuries everything would return to
its original state.”

Bernoulli initiates his discussion, though, by concentrating on the combinatorics of
what we call binomial coefficients–i.e., “Pascal’s triangle,”–and what he calls his table of
“figurate numbers.”** He writes:

“This Table has clearly admirable and extraordinary properties, for beyond what I
have already shown of the mystery of combinations hiding within it, it is known to those
skilled in the more hidden parts of geometry that the most important secrets of all the
rest of mathematics lie concealed within it.”

This, of course, is a serious claim.

The numbers that will eventually be attached to his name enter Bernoulli’s treatise
only briefly, and in the discussion of closed forms for the sums of k-th powers of consecutive
integers.

The Bernoulli numbers in question are the coefficients of the linear terms of these
polynomial expressions. His predecessors had already made some computations of the
polynomials. In particular, Johann Faulhaber (1580-1635) of Ulm computed the formulas
up to k = 17 in his Mysterium Arithmeticum published in 1615. But Bernoulli chides
them (Wallis included) for first laboriously working out closed expressions for the sums
of consecutive k-th powers and then trying to understand “figurate numbers” in terms of
these formulas, rather than what Bernoulli himself does which is to reverse the procedure;
namely, he bases his analysis on the formula

n−1
∑

k=1

k · (k − 1) · . . . (k − c + 1)

1 · 2 · . . . (c − 1)
=

(n · (n − 1) · . . . (n − c)

1 · 2 · . . . (c)

and he derives the formulas for power sums from this, and then goes on to explain why
this is philosophically, as well as practically, the better method.

He proclaims that one can continue his table without, as he puts it, “digressions,” by
deriving the basic formula that he writes as

(∗)
∑

nc =
1

c + 1
nc+1 +

1

2
nc +

c

2
Anc−1 +

c(c − 1)(c − 2)

4!
Bnc−3+

** The terminology figurate numbers takes off from the fact that the numbers n·(n−1)
2

are triangular numbers; i.e., they count the number of dots in an orderly array forming a
right-angle triangle. Similarly the higher binomial coefficients fill out elementary polytopes
in higher dimensions.
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+
c(c − 1)(c − 2)(c − 3)(c − 4)

6!
Cnc−5+

c(c − 1)(c − 2)(c − 3)(c − 4)(c − 5)(c − 6)

8!
Dnc−7+. . .

where A = 1
6 , B = −

1
30 , C = 1

42 , D = −
1
30 , . . .

These A, B, C, D, . . . of course, are the numbers B2, B4, B6, B8, . . . that will bear his
name. Bernoulli explains how to rapidly compute them (specifically, by induction: for
example if you know A, B, C you can get D by setting n = 1 and c = 8 in the above
formula, etc.). Bernoulli has sketched, in effect, a recurrent procedure for calculating the
B′

ks but there is no difficulty producing some straight “explicit formulas” such as:

Bk =
(−1)kk

2k
− 1

k
∑

i=1

2−i

i−1
∑

j=0

(−1)j

(

i − 1

j

)

(j + 1)k−1.

This formula was published some 170 years after Ars Conjectandi by J. Worpitsky (for the
history and the derivation of this and other explicit formulas, see articles by H.W. Gould,
Explicit formulas for Bernoulli numbers American Mathematical Monthly, 79 (1972) 44-51,
and G. Rza̧dkowsi, A short proof of the Explicit Formula for Bernoulli numbers, American
Mathematical Monthly, 111 (2004) 432-434). More telling for our story is the standard

definition given nowadays. Namely, the Bernoulli numberBk is the coefficient of xk

k! in the
power series expansion

x

ex
− 1

= 1 −

x

2
+

∞
∑

k=2

Bk

xk

k!
.

Bernoulli was proud of his recursive procedure and was not above taunting his prede-
cessors:

“I have found in less than a quarter of an hour that the tenth powers (or the quadrate-

sursolids) of the first thousand numbers beginning from 1 added together equal

91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500,

from which it is apparent how useless should be judged the works of Ismael Bullialdus,
recorded in the thick volume of his Arithmeticae Infinitorum, where all he accomplishes
is to show that with immense labor he can sum the first six powers–part of what we have
done in a single page.”

With that salvo, Bernoulli makes no further mention, in his treatise, of the numbers
we will be concentrating on, and turns his attention to other things. But now it is time for
us to examine exactly how the Bernoulli numbers act as a unifying force, holding together
seemingly disparate fields of mathematics . . .
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