Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

William Stein (University of Washington) in Chicago (UIC) at the Atkin Memorial Workshop

University of Washington

April 27-29, 2012

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Joint Work...

This talk represents joint work with Jonathan Bober, Alyson Deines, Joanna Gaski, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, and Paul Sharaba.

Acknowledgement: John Cremona, Lassina Dembele, Noam Elkies, Tom Fisher, Richard Taylor, and John Voight for helpful conversations and data. I used Sage (http://www.sagemath.org) extensively.

Motivation

"The object of numerical computation is theoretical advance."

- Oliver Atkin

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

< ロ > < 同 > < 回 > < 回 >

Contents

- Tables
- Finding all E attached to a newform g
- Finding newforms

< 6 k

1: Tables

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27–29, 2012 5 / 27

2

イロト イヨト イヨト イヨト

Source: These tables and much code were made at a summer REU¹ at University of Washington last summer.

See https://github.com/williamstein/sqrt5.

Remark: If E/F and $\sigma(\sqrt{5}) = -\sqrt{5}$, then E^{σ} is another curve over *F*. All of our tables *do* include *both E* and E^{σ} ! We tried to avoid this redundancy but it caused too much confusion.

¹Research Experience for Undergraduates

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

Counts of Curves over F up to Norm Conductor 1831

Table: Curves over $\mathbb{Q}(\sqrt{5})$

rank	#isog	#isom	smallest Norm(n)
0	745	2174	31
1	667	1192	199
2	2	2	1831
total	1414	3368	-

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

< ロ > < 同 > < 回 > < 回 >

Number of Isogeny Classes over *F* up to Norm Conductor 1831

Table: Number of Isogeny classes of a given size

	size							
bound	1	2	3	4	6	8	10	total
199	2	21	3	20	8	9	1	64
1831	498	530	36	243	66	38	3	1414

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

< ロ > < 同 > < 回 > < 回 >

Rank Data

Table: Counts of classes and curves with bounded norm conductors and specified ranks

		#isog				#isom			
	rank					rank			
bound	0	1	2	total	0	1	2	total	
200	62	2	0	64	257	6	0	263	
400	151	32	0	183	580	59	0	639	
600	246	94	0	340	827	155	0	982	
800	334	172	0	506	1085	285	0	1370	
1000	395	237	0	632	1247	399	0	1646	
1200	492	321	0	813	1484	551	0	2035	
1400	574	411	0	985	1731	723	0	2454	
1600	669	531	0	1200	1970	972	0	2942	
1800	729	655	0	1384	2128	1178	0	3306	
1831	745	667	2	1414	2174	1192	2	3368	
					۰ ا		er κ	er e «	

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

Isogeny Degrees

Table: Isogeny degrees

degree	#isog	#isom	example curve	Norm(n)
None	498	498	$[\varphi + 1, 1, 1, 0, 0]$	991
2	652	2298	[arphi,-arphi+1,0,-4,3arphi-5]	99
3	289	950	$[\varphi, -\varphi, \varphi, -2\varphi - 2, 2\varphi + 1]$	1004
5	65	158	[1,0,0,-28,272]	900
7	19	38	$\left[0, arphi+1, arphi+1, arphi-1, -3arphi-3 ight]$	1025

æ

イロト イポト イヨト イヨト

Torsion Subgroups of Elliptic Curves over *F* (I don't trust this table.)

structure	#isom	example curve	Norm(n)
1	296 ²	[0, -1, 1, -8, -7]	225
$\mathbb{Z}/2\mathbb{Z}$	1453	$[\varphi, -1, 0, -\varphi - 1, \varphi - 3]$	164
$\mathbb{Z}/3\mathbb{Z}$	202	[1, 0, 1, -1, -2]	100
$\mathbb{Z}/4\mathbb{Z}$	243	[arphi+1,arphi-1,arphi,0,0]	79
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$	312	[0, arphi+1, 0, arphi, 0]	256
$\mathbb{Z}/5\mathbb{Z}$	56	[1, 1, 1, 22, -9]	100
$\mathbb{Z}/6\mathbb{Z}$	183	$[1, \varphi, 1, \varphi - 1, 0]$	55
$\mathbb{Z}/7\mathbb{Z}$	13	[0, arphi - 1, arphi + 1, 0, -arphi]	41
$\mathbb{Z}/8\mathbb{Z}$	21	[1, arphi + 1, arphi, arphi, 0]	31
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$	51	[arphi+1,0,0,-4,-3arphi-2]	99
$\mathbb{Z}/9\mathbb{Z}$	6	[arphi,-arphi+1,1,-1,0]	76
$\mathbb{Z}/10\mathbb{Z}$	12	[arphi+1,arphi,arphi,0,0]	36
$\mathbb{Z}/12\mathbb{Z}$	6	[arphi,arphi+1,0,2arphi-3,-arphi+2]	220
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/6\mathbb{Z}$	11	[0, 1, 0, -1, 0]	80
$\mathbb{Z}/15\mathbb{Z}$	1	[1, 1, 1, -3, 1]	100
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z}$	2	[1, 1, 1, -5, 2]	45

Table: Distribution of torsion subgroups up to norm conductor 1831

²On the previous slide there were 498 with no isogenies, so this or that

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27–29, 2012 11 / 27

Comparison: F versus \mathbb{Q}

Table: Distribution	of torsion	subgroups	up to	(norm)	conductor	1831
---------------------	------------	-----------	-------	--------	-----------	------

structure	#isom over F	#isom over ${\mathbb Q}$
1	296 (*)	3603
$\mathbb{Z}/2\mathbb{Z}$	1453	4580
$\mathbb{Z}/3\mathbb{Z}$	202	523
$\mathbb{Z}/4\mathbb{Z}$	243	481
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$	312	726
$\mathbb{Z}/5\mathbb{Z}$	56	54
$\mathbb{Z}/6\mathbb{Z}$	183	208
$\mathbb{Z}/7\mathbb{Z}$	13	11
$\mathbb{Z}/8\mathbb{Z}$	21	16
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$	51	60
ℤ/9ℤ	6	4
ℤ/10ℤ	12	8
$\mathbb{Z}/12\mathbb{Z}$	6	2
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/6\mathbb{Z}$	11	6
ℤ/15ℤ	1	0
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z}$	2	1

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27-29, 2012 12 / 27

2

イロト イヨト イヨト イヨト

Shafarevich-Tate Groups

Table: III

# 111	#isom	first curve having # ${ m III}$	Norm(n)
1	3191	$[1, \varphi + 1, \varphi, \varphi, 0]$	31
4	84	[1, 1, 1, -110, -880]	45
9	43	$[arphi+1,-arphi,1,-54686arphi-35336,\ -7490886arphi-4653177]$	76
16	16	$ \begin{bmatrix} 1, \varphi, \varphi + 1, -4976733\varphi - 3075797, \\ -6393196918\varphi - 3951212998 \end{bmatrix} $	45
25	2	[0, -1, 1, -7820, -263580]	121
36	2	$\begin{matrix} [1, -\varphi + 1, \varphi, 1326667\varphi - 2146665, \\ 880354255\varphi - 1424443332 \end{matrix} \end{matrix}$	1580

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27–29, 2012 13 / 27

2

イロト イヨト イヨト イヨト

2: Finding all *E* attached to a newform *g*

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27–29, 2012 14 / 27

The Sec. 74

The Modularity Conjecture

Modularity is critical to making systematic tables.

Conjecture There is a bijection^a

 $\{L(E, s) : E/F \text{ cond } \mathfrak{n}\} \xrightarrow{\text{conj}\cong} \{L(f, s) : \text{ newform } f \in S_{(2,2)}(\Gamma_0(\mathfrak{n}); \mathbb{Q})\}$

^aWe consider *L*-series to be equal only if all of their Euler factors are equal!

Unpublished Remark (Taylor): If $E[3]|_{\text{Gal}(\overline{\mathbb{Q}}/F(\zeta_3))}$ is absolutely irreducible, then modularity follows from recent work of Gee and Kisin.

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

Finding an E attached to a newform g

Theorem

Assume the modularity conjecture. There is an algorithm that takes as input a Hilbert modular newform $g \in S_{(2,2)}(\Gamma_0(\mathfrak{n}); \mathbb{Q})$ and outputs an elliptic curve E/F with L(E, s) = L(g, s).

Proof.

By computing all the rational newforms in $S_{(2,2)}(\Gamma_0(\mathfrak{n}); \mathbb{Q})$, find a bound *B* so that the eigenvalues $a_\mathfrak{p}$ for $N(\mathfrak{p}) \leq B$ determine a newform. Enumerate the countably many elliptic curves E/F in any way you like; when you find one with conductor \mathfrak{n} , use the bound *B* to determine whether or not L(E, s) = L(g, s). Since *E* corresponds to *some* newform, this procedure must terminate with the correct answer.

- Similar argument for abelian varieties of GL₂-type.
- Cremona: "this algorithm is not respectable!"

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

イロト 不得 トイヨト イヨト

Finding an E attached to a newform g

- Naive enumeration previous slide
- Sieved enumeration use a_p to impose congruence conditions
- **Torsion families** use a_p to determine whether $\ell \mid \#E(F)$, and if so search over the family of curves with ℓ -torsion.
- Congruence families if you know E' and that E'[ℓ] ≈ E[ℓ], use Tom Fisher's explicit families.
- Twisting find a minimal conductor twist.
- Cremona-Lingham find curves with good reduction outside n.
- Dembele reverse engineer periods from special values of *L*-series.
- **Elkies** use the λ invariant.

Jon Bober's talk next will have a lot more to say about this.

Finding all E attached to a newform g

Compute the isogeny class of a curve using the following two steps repeatedly on each curve found until we find nothing new.

- Use Billerey (2011) to compute a set *S* of possible prime degrees of isogenies $E \rightarrow E'$.
- ② For each $\ell \in S$, use formulas (e.g., as in Kohel's thesis) to find all $\psi : E \to E'$ of degree ℓ .

Billerey in Code

```
def plstar1(E, g):
    R_{\cdot} < x > = F[]
    t12 = 2048*x^12 -6144*x^10 + 6912*x^8 -3584*x^6 + 840*x^4 -72*x^2 + 1
    t12p = 2048 \times x^{6} - 6144 \times x^{5} + 6912 \times x^{4} - 3584 \times x^{3} + 840 \times x^{2} - 72 \times x + 1
    t24 = 2 * (t12)^2 - 1
    #this is only for primes that have no ramification and have good reduction
    if len(F.primes above(q)) == 1:
        w1 = 1 - 2*(q^{12})*t12(x/(2*q)) + q^{24}
        t1 = E.change ring(F.ideal(q).residue field()).trace of frobenius()
        w = w1(\pm 1)
        m = []
        for zee in factor(ZZ(w)):
            m.append(zee[0])
        return m
    else
        v = F.primes above(q)
        t1 = E.change ring(v[0].residue field()).trace of frobenius()
        t_2 = E.change ring(v[1].residue field()).trace of frobenius()
        w1 = \pm 12p(x^2/(4*a))
        w = 1 - 4*(g^{12})*w1(t1)*w1(t2) - 2*(g^{24})*(1 - 2*(w1(t1)^{2} + w1(t2)^{2})) 
                -4*(a^{3}6)*w1(t1)*w1(t2) + a^{4}8
        m = []
        for zee in factor(ZZ(w)):
            m.append(zee[0])
        return m
def plstar12(E, q):
    #same caveat, only for unramified and good reduction
    if len(F.primes above(q)) == 1:
       t1 = E.change_ring(F.prime_above(q).residue_field()).trace_of_frobenius()
       m = [q]
       trv:
           for v in factor(t1):
                                                                     ・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・
```

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27-29, 2012 19 / 27

```
m.append(v[0])
       for v in factor(t1^2 - q^2):
           m.append(v[0])
       for v in factor(t1^2 - 4 \times q^2):
           m.append(v[0])
       for v in factor(t1^2 - 3 \times q^2):
           m.append(v[0])
       s1 = set(m)
       m = list(s1)
       return m
   except ArithmeticError:
       return 0
else:
   t1 = E.change ring(F.primes above(g)[0].residue field()).trace of frobenius()
   t2 = E.change_ring(F.primes_above(g)[1].residue_field()).trace_of_frobenius()
  m = [q]
  trv:
       for v in factor((t1^2 + t2^2 - q^2)^2 - 3*(t1^2)*(t2^2)):
           m.append(v[0])
       for v in factor(t1^2 - t2^2):
           m.append(v[0])
       for v in factor(t1^2 + t2^2 - 4 \times g^2):
           m.append(v[0])
       for v in factor((t1^2 + t2^2 - 3*g^2)^2 - (t1*t2)^2):
           m.append(v[0])
       s1 = set(m)
       m = list(s1)
       return m
   except ArithmeticError:
       return 0
```

イロト 不得 トイヨト イヨト 二日

```
def billerey_primes(E):
    ans = set([1])
    Bad = [v[0] \text{ for } v \text{ in } E.conductor().norm().factor()]
    Pr = prime range(1000)
    num = 0
    i = 0
    X = [set([3])]
    while num < 3:
        if not Pr[i] in Bad and Pr[i] != 5:
             trv:
                 X.append(set(_plstar1(E, Pr[i]) + _plstar12(E, Pr[i])))
                 n_{11m} += 1
             except TypeError:
                 pass
        i += 1
    ans = (X[1].intersection(X[2])).intersection(X[3])
    ans = ans.union(set(Bad)).union(set([2, 3, 5]))
    return list(sorted(ans))
```

イロト 不得 トイヨト イヨト 二日

3: Finding newforms

William Stein (University of Washington)

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

April 27–29, 2012 22 / 27

★ ∃ > < ∃ >

< 17 ▶

Computing Hilbert Modular Forms over F

- The algorithm is from Lassina Dembele's Ph.D. thesis. See his *Explicit computation of Hilbert modular forms on* $\mathbb{Q}(\sqrt{5})$ (2005).
- Jacquet-Langlands: Computing Hecke module of Hilbert modular forms of level n over F same as computing Hecke module with basis that right ideal classes in a certain order (of level n) in the Hamilton quaternion algebra over F.
- Solution Dembele: Computing right ideal classes same as computing $\mathbb{P}^1(R/\mathfrak{n})$, where $R = \mathbb{Z}[\varphi] \subset F$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Dembele's Algorithm in One Slide

- Hamiltonian quaternions F[i, j, k] ramified at the infinite places.
 - 2 Maximal order

$$S = R\Big[\frac{1}{2}(1-\overline{\varphi}i+\varphi j), \frac{1}{2}(-\overline{\varphi}i+j+\varphi k), \frac{1}{2}(\varphi i-\overline{\varphi}j+k), \frac{1}{2}(i+\varphi j-\overline{\varphi}k)\Big].$$

- $\mathbb{P}^1(R/\mathfrak{n})$ = equivalence classes of column vectors with two coprime entries *a*, *b* ∈ *R*/\mathfrak{n} modulo the action of $(R/\mathfrak{n})^*$.
- For each $\mathfrak{p} \mid \mathfrak{n}$, fix *choice* of isomorphism $F[i, j, k] \otimes F_{\mathfrak{p}} \approx M_2(F_{\mathfrak{p}})$, which induces a *choice* of left action of S^* on $\mathbb{P}^1(R/\mathfrak{n})$.
- **(5)** Jacquet-Langlands: There's an isomorphism of \mathbb{T} -modules

$$\mathbb{C}[S^* \setminus \mathbb{P}^1(R/\mathfrak{n})] \cong M_{(2,2)}(\Gamma_0(\mathfrak{n})).$$

S* acts through the *octonian* group (which is finite and explicit).
 T_p([x]) = ∑[αx], where sum is over the classes [α] ∈ S/S* with N_{red}(α) = π_p, where π_p is fixed choice of positive generator of p.

Implementation Notes

- **O** Critical that we can compute with $\mathbb{P}^1(R/\mathfrak{n})$ very, very, very quickly.
- Prime power n = p^e case: Each [x : y] ∈ P¹(R/p^e) has a unique representative [1 : b] or [a : 1] with a divisible by p. Easy to put any [x : y] in this canonical form.
- Seneral case: factor n = ∏^m_{i=1} p^e_i. Have a bijection P¹(R/n) ≃ ∏^m_{i=1} P¹(R/p^e_i), thus reducing to the prime power case. Represent elements of R/n as *m*-tuples in ∏ R/p^e_i, making computation of the bijection trivial.
- Orew Sutherland-style tricks) We minimize dynamic memory allocation speeding up the code by an order of magnitude, by making some arbitrary bounds.
- Painful to implement, but it is fast. Not included in Sage yet: http://trac.sagemath.org/sage_trac/ticket/12465

What Next?

My group's project at the 2012 MRC in Snowbird Utah (June 24–30, 2012) will be to compute Hilbert newforms in $S_{(2,2)}(\Gamma_0(\mathfrak{n}))$ as far as possible, gather *arithmetic statistics* about them (e.g., analytic ranks), make conjectures, and perhaps prove something.

Example Goal: Does the first elliptic curve of rank 3 have norm conductor 163² or not?

rank	norm(n)	equation	person
0	31 (prime)	$[1, \varphi + 1, \varphi, \varphi, 0]$	Dembele
1	199 (prime)	[0 ,-arphi- 1 , 1 ,arphi, 0]	Dembele
2	1831 (prime)	[0,-arphi,1,-arphi-1,2arphi+1]	Dembele
3	$26,569 = 163^2$	[0,0,1,-2,1]	Elkies
4	1,209,079 (prime)	$[1, -1, 0, -8 - 12\varphi, 19 + 30\varphi]$	Elkies
5	64,004,329	$[0, -1, 1, -9 - 2\varphi, 15 + 4\varphi]$	Elkies

Epilogue (or Prologue)

```
On Wed, Feb 2, 2011 at 12:18 PM, William Stein <wstein@gmail.com> wrote:
> Hi John [Voight].
>
> I'm planning to try to say something about these sorts of things...
> mainly that I'm ignorant in each case. But I'm curious what thoughts
> you might have about these ...
>
      -- stein-watkins style search
>
      -- elkies approach: O(sgrt(5)) curves
>
>
      -- rank info
>
      -- gens (simon 2-descent output)
      -- L-function (fast computation of a_p?)
>
      -- congruence number
>
      -- isogeny class (enumerate)
>
      -- root number
>
      -- torsion subgroup
>
>
      -- tamagawa numbers
>
      -- all integral points
      -- Kodaira symbols
>
      -- zeros of L(E/F,s) in critical strip
>
      -- notion of "canonical" minimal weierstrass model
>
      -- picture
>
      -- height pairing / regulator
>
>
      -- heegner points
      -- #Sha(E/F) -- when hypo of Zhang's work satisfied, there is hope.
>
      -- images of Galois reps?
>
>
      -- as much as possible of the above for modular abelian varieties A f.
```

Elliptic Curves Over $F = \mathbb{Q}(\sqrt{5})$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.