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Abstract

These are the notes for a talk I gave at the conference on BSD in Cambridge,
UK in May 2011. The talk is about some approaches to trying to prove something
about finiteness of Shafarevich-Tate groups of elliptic curves over Q of rank at
least 2.

1 Finiteness of X(E/Q)

Consider elliptic curves E and primes p. Let

X = {(E, p) : rank(E) ≥ 2 and X(E/Q)(p) is finite}. (1.1)

Since Shafarevich and Tate conjectured that X(E/Q) is finite for all E, we have the
following much weaker but still open conjecture:

Conjecture 1.1. X is infinite.

Theorem 1.2 (M. Bhargava, Wei Ho, –). Assume one of the following conditions holds:

1. #X(E/Q)[2] is a perfect square for all E,

2. #X(E/Q)[3] is a perfect square for all E,

3. rank(E) ≡ ran(E) (mod 2) for all E.

Then X is infinite.

Proof. Use the method of Bhargava applied to a certain family of curves with either 1
or 2 marked points. The details are substantial.

Next suppose we fix a particular E and consider the set

XE = {p : X(E/Q)(p) is finite},

and the subset
X0
E = {p : X(E/Q)(p) = 0}.

If we wish to show that either of these sets is infinite, there are at least two directions
in which we can go: (1) p-adic L-series and Iwasawa theory, and (2) Heegner point
methods. First we consider p-adic methods.
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1.1 p-adic Methods

Much theoretical and computational work on p-adic heights and Iwasawa theory has
made explicit application of p-adic analogues of the Birch and Swinnerton-Dyer conjec-
ture much more effective in particular cases. For example:

Theorem 1.3 (Coates-Sujatha-Liang). Let E be the CM elliptic curve y2 = x3 − 82x,
which has rank r = 3. Then

X0
E ⊃ {p : p < 30000 is prime, p ≡ 1 (mod 4), p 6= 41}.

The following “theorem” is an enormous computation that is currently only 99.9999...%
done.

Theorem 1.4 (Stein-Wuthrich [SW11]). For every non-CM elliptic curve E with NE ≤
30000 and rE ≥ 2, we have

X0
E ⊃ {p : 5 ≤ p ≤ 1000, p is good ordinary, and ρE,p is surjective}.

Let E be the rank 2 elliptic curve 389a, which is the unique curve of conductor 389.
Using optimized code in Sage (and Psage), the calculation of the theorem takes a total
of 4 minutes: 2 minutes to compute p-adic L-functions, and 2 minutes more to compute
p-adic regulators. The above gives:

Proposition 1.5.
X0
E ⊃ {5 ≤ p < 1000 : p 6= 107, 599}.

I personally see no hope that I can extend this p-adic strategy to prove something
about infinitely many p, or even about infinitely many pairs (E, p). At least, from the
above we know that the set X of Equation (1.1) has cardinality at least one million.

1.2 Heegner Points

The second approach is to use Heegner points, which is a strategy pioneered by Koly-
vagin in the 1980s. The following theorem, which is stated in the abstract of one of his
first papers on Euler systems, is notable because it does not rely on any other deep the-
orems such as Gross-Zagier, modularity, nonvanishing of twists, etc.; those deep results
are needed only to verify the hypothesis of the argument are satisfied by any curve with
analytic rank at most 1.

Theorem 1.6 (Kolyvagin). Let E be the elliptic curve X0(17). Then X(E) is finite.

The proof of this theorem involves constructing Heegner points on X0(17), and using
them to define a set of elements of H1(K,E[pn]) for every prime power pn, and finally
using the elements to bound X(E)(p) for all p.

I have not yet given up all hope that someday we will be able to extend some
argument like this to one specific elliptic curve of rank 2. The rest of this talk is about
some details in this direction.

2 Heegner Points on 389a

For the rest of this article, let E be the elliptic curve 389a, which has rank 2 with
generators P = (−1, 1) and Q = (0, 0).
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The torsion subgroup of E is trivial; moreover, the mod p representations E[p] are
surjective, for all p. The curve E has modular degree 40:

φ : X0(389)→ E, deg(φ) = 40.

Also, let K = Q(
√
−7), which has class number 1 and satisfies the Heegner hypothesis

since N = 389 is split in K. We have ran(E/K) = 3. Fix one of the two choices N of
primes over 389, so we have OK/N ∼= Z/NZ. The Heegner point

x1 = (C/OK ,N−1/OK) ∈ X0(N)(K)

maps to 0 in E:
y1 = φ(x1) = 0 ∈ E(K).

That y1 is torsion follows from the Gross-Zagier formula, since ran(E/K) > 1. Since
y1 = 0, we are motivated to consider higher Heegner points yp, which are indexed by
the primes p that are inert in K, which are the primes congruent to 3, 5, 6 (mod 7):

I = { inert primes } = {3, 5, 13, 17, 19, 31, 41, . . .}.

For any p ∈ I, let Op = Z + pOK be the order of conductor p and Np = N ∩ Op. We
have a Heegner point

xp = (C/Op,N−1p /Op) ∈ X0(N)(Kp)

where Kp is the ring class field associated to p (we also will sometimes write K1 for the
Hilbert class field of K, which is just K for our example); thus

Gal(Kp/K1) ∼= (OK/pOK)∗/(Z/pZ)∗

is cyclic of order p+ 1, and Kp is totally ramified at p. Finally, let

yp = φ(xp) ∈ E(Kp).

Proposition 2.1. The point yp has infinite order for all p ∈ I.

Proof. Using Galois theory and that ρE,p is surjective, one can show that E(Kp)tor = 0,
so if yp has finite order, then yp = 0. Since 0 ∈ E(Q) the fiber F = φ−1(0) ∈ X0(N)(Q)
is closed under the action of GQ. Since φ(xp) = 0, we have that xp ∈ F . But by CM
theory, there is a simply transitive group action of Gal(Kp/K) on the Gal(Kp/K)-orbit
of xp, so #F ≥ p+ 1. We thus have

p+ 1 ≤ #φ−1(0) ≤ deg(φ) = 40,
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so p ≤ 39.
To finish the proof we check that yp 6= 0 for each inert prime p ≤ 39, via either of

the following two approaches:

1. Numerical: We use the classical complex analytic approach to numerically com-
puting Heegner points and find, e.g., that

y3 ∼ (.63− .73i,−.47 + 1.39i) 6= 0.

It takes only moments to compute all the other relevant yp.

2. Algebraic: This method is vastly more complicated and much slower than the
numerical method above, but it is purely algebraic and generalizes to allow us to
later verify nontriviality of certain cohomology classes. The main idea is to simply
reduce everything modulo a prime λ of Z over an inert prime, and use rational
quaternion algebras to make each object computable directly modulo λ, hence
avoiding any characteristic 0 computations. Supposing, for example, that λ | 5,
we have the following commuting diagram of abelian groups:

X0(N)(Kp)

uu &&
Div(X0(N)(F52)ss)⊗ F3

π

))

E(Kp)

xx
E(F52)⊗ F3

We compute the divisor group as the free abelian group on the set of right ideal
classes in an Eichler order of level N in the rational quaternion algebra ramified at
5 and ∞. We then compute x1 = x1 (mod λ) by finding (using ternary quadratic
forms as suggested by [JK10]) a right ideal class [I] such that the left order RI
contains OK . We use that Tp(x1) =

∑
σ∈Gal(Kp/K1)

σ(xp) (mod λ) to find all
conjugates of xp. We compute the map π in the diagram only up to scaling by an
automorphism by using that it is T-invariant and surjective (slight generalization
of Ihara’s lemma). For more details, see [Ste11].

Remark 2.2. For a generalize of the above proposition, see [JLS09, §3].

Though it is exciting that yp has infinite order for all inert primes p, we must temper
our enthusiasm with the fact that

TrKp/K1
(yp) = ap(E)y1 = 0 ∈ E(K),

so that the yp do not provide a direct source of nonzero elements of E(K).

3 Selmer Elements for 389a: Kolyvagin’s Idea

For every positive integer n, the (classical) n-Selmer group over a field M sits in the
exact sequence

0→ E(M)/nE(M)
δ−→ Sel(n)(E/M)→X(E/M)[n]→ 0.
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Also, we view Sel(n)(E/M) as a subgroup of the first Galois cohomology group H1(M,E[n]).
For any prime p ∈ I, let np = gcd(p + 1,#E(Fp)). By the Chebotarev density

theorem, we can make np divisible by any power of any prime that we want. We have
the following table of values of np for the first few p, and our elliptic curve 389a:

p 3 5 13 17 19 31 41 47 59 61 73 83 89 97
np 2 3 1 6 5 4 3 2 3 2 1 12 2 1

Fix any choice of generator σp of Gal(Kp/K1), and let

zp =

p∑
i=1

iσip(yp) ∈ E(Kp). (3.1)

We emphasize that zp depends on the choice of generator. From zp we obtain a class τp
in the Selmer group as follows:

[zp] ∈ (E(Kp)/npE(Kp))
Gal(Kp/Q) // H1(Kp, E[np])

Gal(Kp/Q)

H1(Q, E[np])

∼=

OO

τp ∈ Sel(p)(E/Q)

OO

(If we replace σp by a different choice, then τp is scaled by a unit.) That τp is in
the Selmer group, and not just H1 uses that ran(E/Q) > 1, as explained in [Gro91,
Prop. 6.2].

Theorem 3.1 (Kolyvagin). If a prime ` divides order(τp) for some inert prime p, then
X(E/Q)(`) is finite. If ord`(order(τp)) = ord`(np) ≥ 1, then X(E/Q)[`] = 0.

The following is implied by conjectures in [Kol91]. We emphasize that here we are
only making a conjecture about the curve 389a.

Conjecture 3.2 (Kolyvagin). For every prime ` there is some p ∈ I with ` | order(τp).

In fact, because X(E/K)an = 1, we expect more strongly that for every prime `,
there is a p ∈ I such that ord`(order(τp)) = ord`(np) ≥ 1.

As evidence for the conjecture, the paper [JLS09] gave numerical evidence that τ5 has
order n5 = 3; however, we emphasize that this was only evidence, since the method of
that paper was not made rigorous (in theory it could have been wrong due to insufficient
numerical precision). As more evidence, the paper [Ste11] proves, using a generalization
of the algebraic construction of the proof of Proposition 2.1 above, that many classes
τp are nonzero (for a few dozen triples (E,K, p), for various E); that computation also
led to some interesting results about how the images of the classes τp are distributed in

Sel(`)(E/K), which will appear in a future paper of Stein-Weinstein.
We have the following table, where the three ? cases mean that the indicated com-

putation is not 100% certain yet.
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p np order(τp) τp (up to scalar!)
3 2 2 δ(Q)
5 3 3 δ(P +Q)
13 1 1 δ(0)
17 6 1? δ(0)
19 5 5 δ(P )
31 4 4? δ(Q)
41 3 3 δ(P + 2Q)
· · · · · · · · · · · ·
419 35 35? ?

Applying Kolyvagin’s Theorem 3.1, we have

Proposition 3.3. {3, 5} ⊂ X0
E.

This is much less impressive than Proposition 1.5, but there is (in my opinion) vastly
more hope that an approach using Heegner points could eventually generalize to show
that XE is infinite.

4 A Higher Rank Gross-Zagier Formula

We continue to let E be the elliptic curve 389a, but allow the quadratic imaginary
field K to vary. We require only that 389 split in K and ran(E/K) = 3, so D =
−7,−11,−19,−20,−24,−35, . . . are all allowed, butD = −264 is not (since ran(E/K) =
5). Let ` ∈ I be any inert prime and fix λ | ` a prime in Z. Let p be an inert prime with
#E(F`) | np. Recall the point zp from (3.1), and let zp be the image of zp under the
map E(Kp) → E(F`2) got by reduction modulo λ. In fact, zp lands in E(F`), because
zp is fixed by complex conjugation. Since E(F`)/npE(F`) = E(F`), the point zp does
not depend on the choice of λ (though it does depend up to a unit scaling on the choice
of σp). Let π` : E(Q)→ E(F`) be the reduction modulo ` homomorphism.

Definition 4.1. Let

W` = π−1` (〈zp : all such p〉) ⊂ E(Q).

It is trivial that W` is a finite index subgroup of E(Q).
I make the following conjecture about the subgroups W`, which would imply Con-

jecture 3.2.

Conjecture 4.2. The set of indexes {[E(Q) : W`] : ` ∈ I} is bounded.

The following conjecture is then a higher-rank analogue of the Gross-Zagier formula:

Conjecture 4.3. If W` has maximal index, then [E(Q) : W`] =
√

#X(E/K), and
moreover

L(3)(E/K, 1)

3!
= ΩE/K · Reg(W`) · Reg(ED(Q)),

up to a power of 2. Here ΩE/K = 2 Vol(C/Λ)/
√
|D|.

“It is always a good idea to try to prove true theorems.” – Bryan Birch
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