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Purpose

Find a possible “next question to ask”, now that
so much is understood about the Sato-Tate
conjecture due to work of Taylor, Haris, et al.

More generally study the general notion of rate
of convergence in the context of elliptic curves.



Hecke Eigenvalues
Let E be a non-CM elliptic curve over Q, and

ap = p + 1−#E(Fp).

Theorem (Hasse): −1 <
ap

2
√

p
< 1.

Sato and Tate: How are these numbers distributed? A
conjecture...



Convergence to the semicircle distribution

The following slides each contain 8 plots. Each plot
displays the distribution of normalized ap for the lowest
conductor elliptic curves of different rank and all ap for
p < C, for C = 103,104,105,106.

Rank 0 Rank 1 Rank 2
Rank 3 Rank 4 Rank 5
Rank 6 Rank 7 Rank 8



Sato-Tate Frequency Histograms: C = 103



Sato-Tate Frequence Histograms: C = 104



Sato-Tate Frequence Histograms: C = 105



Sato-Tate Frequence Histograms: C = 106



Quantify the convergence?

Barry Mazur: “How can we precisely
quantify the convergence of the blue
data to the red semicircle theoretical
distribution?”



Some Functions (copy on blackboard)

E an elliptic curve; ap = p + 1−#E(Fp)

I X (T ) =

∫ T
−1

√
1− x2dx∫ 1

−1

√
1− x2dx

= area under arc of semicircle

I YC(T ) =
#
{

primes p < C : −1 < ap
2
√

p < T
}

# {primes p < C}
.

I ∆(C) =

√∫ 1

−1
(X (T )− YC(T ))2dT = the L2-norm of the

difference of X (T ) and YC(T ), and ∆(C)∞ the L∞-norm.



The Sato-Tate Conjecture

Let ∆(C)∞ be the max of the difference between the theoretical
semicircle distribution and actual data using primes up to C.

Sato-Tate Conjecture:

lim
C→∞

∆(C)∞ = 0

Theorem (Taylor, M. Harris, et al.): If E has
multiplicative reduction at some prime, then the
Sato-Tate conjecture is true. [Key part of proof
is to establish certain analytic properties of
symmetric power L-functions.]



Plotting ∆ (up to 103)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ3, plot_points=400,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 104)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ4, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 105)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ5, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



Plotting ∆ (up to 106)

sage: e37a = SatoTate(EllipticCurve(’37a’), 10ˆ6)
sage: show(e37a.plot_Delta(10ˆ6, plot_points=200,
max_points=100), ymax=0.1, ymin=0, figsize=[10,3])

The red line is ∆(C)∞ and the blue line is ∆(C). By Sato-Tate,
they both go to 0 as C →∞.



“The next question to ask...”

QUESTION: What about the speed of
convergence? I.e., how does ∆(C) or
∆(C)∞ converge to 0?



The Akiyama-Tanigawa Conjecture

Conjecture (Akiyama-Tanigawa [Math Comp.,
1999]): For every ε > 0, for C � 0 we have

∆(C)∞ 6
1

C1/2−ε .

Theorem (A-T): This conjecture implies the
Generalized Riemann Hypothesis for L(E , s).

See Barry Mazur’s forthcoming Notices paper
for more discussion, references, and pretty
pictures.



Converse

Possibly GRH implies the above conjecture:

From: Shigeki Akiyama <akiyama@math.sc.niigata-u.ac.jp>
Date: Sun, 30 Sep 2007 08:17:02 +0900
Dear Professor Mazur

I feel very honored to have your comments on our old
experimental paper. I was very pleased to read your
expository paper itself, of course including
subsections you wrote us. I did not consider the
error term problem in this comprehensive manner,

My only comment is that a partial converse is true.
If we assume Riemann hypothesis for all symmetric L,
then the conjecture is valid for L_{0,1}. This is
a claim from H. Nagoshi and basically comes from
Erdos-Turan inequility as far as I remember... We
did not explore nor publish this observation.



Log Plots

Let’s test out Akiyama-Tanigawa, instead of
plotting ∆(C) which just goes to 0 quickly, we
instead plot − logC(∆(C)).

1. How does this function compare to
1
2

? I.e.,

does it eventually get within ε of 1
2.

2. Can we find a simple function that
conjecturally nicely approximates
− logC(∆(C))?



Rank 0 curve 11a; p < 106; with 300 sample points

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 1 curve 37a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 2 curve 389a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 3 curve 5077a; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 4 curve [1,-1,0,-79,289]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 5 curve [0, 0, 1, -79, 342]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 6 curve [1, 1, 0, -2582, 48720]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 7 curve [0, 0, 0, -10012, 346900]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Rank 8 curve [0, 0, 1, -23737, 960366]; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.



Elkies rank > 28 curve; p < 106

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Red line is 1/2.

OK, are those lines really going up to 1/2???



Understanding the Data Better?

Can one predict the asymptotic shape of the
curve ∆(C), say, in terms of either arithmetic
invariants of the curve or perhaps in terms of
zeros of L(E , s) on the critical strip?

For some curves ∆(C) is quickly very close to
1/2, e.g., the curves of rank 0 and 1 above.



Fitting the “random” Rank 0 curve y2 = x3 + 19x + 234

I The black curve is
1
2
− 1

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.
I Conductor = 24093568 = 27 · 41 · 4591



Low zeros?

sage: EllipticCurve(’11a’).Lseries_zeros(10)
[6.36261389, 8.60353962, 10.0355091,
11.4512586, 13.5686391, 15.9140726,
17.0336103, 17.9414336, 19.1857250,
20.3792605]

sage: EllipticCurve([19,234]).Lseries_zeros(10)
[0.255961213, 0.739839807, 1.03144159,
1.78804887, 2.11227980, 2.42762599,
3.11102036, 3.26810134, 3.68155235,
4.13888170]



Fitting the Rank 3 Curve 5077a

I The black curve is
1
2
− 3/3

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting the Rank 4 [1,-1,0,-79,289]; p < 106

I The black curve is
1
2
− 4/3

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting Rank 8 [0, 0, 1, -23737, 960366]; p < 106

I The black curve is
1
2
− 19/9

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Fitting Rank 28 curve; p < 106

I The black curve is
1
2
− 28/9

log(X )
.

I Green line is − logC(∆(C)∞).
I Blue line is − logC(∆(C)), with a grey tubular numerical

integration error bound.



Conjectural convergence of the measure of
convergence

Conjecture (Stein): For any E there is a constant α such that

− logC(∆(C)) >
1
2
− α

log(C)

for all C.

For comparison, recall the Akiyama-Tanigawa conjecture
asserts that for all ε > 0, we have that

∆(C) 6 O
(

1
C1/2−ε

)
Equivalently,

− logC(∆(C))� 1/2− ε



The Sato-Tate convergence parameter

For an elliptic curve E let α(C) be the infimum of all constants
that minimizes the L2 norm of this (i.e. the distance between
the black and blue curves above!):

− logC(∆(C))−
(

1
2
− α(C)

log(C)

)
.

Thus α(C) is a function of C (and the fixed curve E).

Definition: The Sate-Tate convergence parameter of E is

αE = lim
C→∞

α(C).

(I don’t know if this exists. replace by limsup and liminf?)

Challenge: Find a conjectural formula for kE in terms the
critical zeros of L(E , s)?



Another future direction...

We have

X 1/2−1/ log(X) =
X 1/2

X 1/ log(X)
= e · X 1/2.

We thus entertain the possibility (following the format of the
people who work with random matrices etc.) that the true
distribution is well approximated by something like

a · (log X )b · X c

for appropriate constants a,b, c.
So for the rank 3 example above we might choose

a = e, b = 0, c = 1/2,

but there may be better choices?



More future direction...

1. Restrict to intervals [a,b] ⊂ (−1,1). (This
seems to have little to know impact.)

2. Push computations much further (next slide).



Pushing Computations Further

1. Drew Sutherland (of MIT) has some amazingly fast parallel
C code for computing all ap for p < C quickly (and much
much more – over 20,000 lines of new (pure) C code.

2. On sage.math his code computes all ap for p < C = 107 in
less than 5 seconds!

3. For comparison, C = 107 takes Sage (via PARI) 94
seconds and Magma (via M Watkins’ code) 81.25 seconds
(on sage.math, a 16-core opteron 246.).

4. Drew: “My guess then is that on an idle system it would
take about 5 minutes to do p to 109.”



GRH, BSD, and Convergence
A related idea that Barry Mazur and I came up with recently:

1. Let E be an elliptic curve over Q.
2. Construct a step function like π(X ), but associated to E , so

each step is weighted by ap.
3. Construct an associated step function Ψ(X ) with steps at

the prime powers. The distribution Ψ′(X ) has support at
(most at) the prime powers.

4. Consider the distribution Φ(t) = Ψ′(et )/et/2.
5. It’s Fourier transform is

F (s) =
∑

apnpn log(p) cos(ns log(p)).

6. GRH: The distribution F (s) is discrete with support at the
imaginary parts of the nontrivial zeros of L(E , s).

7. In particular, F has a δ function at 0 exactly if E has
positive analytic rank, i.e., rE ,an > 0.

8. So study the rate of divergence of the sum

F (0) =
∑ apn

pn log(p).



A Numerical Experiment

Let
RE (C) =

∑
pn6C

apn

pn log(p).

Guess: RE (C) ∼ α log(C)β, where β depends only on the rank
of E and α depends on the arithmetic invariants of E .

Experiment: Compute log(RE (C))/ log(log(C)). Does this
depend only on rank of E?

Next we give some data. In each case I give several curves
with a given rank, along with the value of the above quantity for
C = 106:



curve rank log(R_E(C)) / log(log(C)) for C=10ˆ6
37a1 1 0.622551283326
43a1 1 0.664628966956
53a1 1 0.64056834932
57a1 1 0.743607790253
58a1 1 0.639927175062
61a1 1 0.776549775927
65a1 1 0.717652219993

389a1 2 1.00758391471
433a1 2 0.988605592917
446d1 2 1.0273311084
563a1 2 0.987041109677
571b1 2 0.919099487872
643a1 2 0.889281143176
655a1 2 0.925749865705
664a1 2 0.957156816404



curve rank log(R_E(C)) / log(log(C)) for C=10ˆ6

5077a1 3 1.16071903587
11197a1 3 1.14902783005
11642a1 3 1.16976814614
12279a1 3 1.13108926023
13766a1 3 1.14886584781
16811a1 3 1.04598722161
18097b1 3 1.13427759105
18562c1 3 1.12453834551

234446a1 4 1.20905312451
19047851a1 5 1.29409998755
5187563742a1 6 1.34691224576



Because of the log-log’s, etc., I’m probably getting 2 digits
correct above usually, from the huge sum. In pictures though,
the lines are quickly fairly horizontal (so the true limit is likely
close to the above numbers).
The striking thing about the above clumps of numbers (for each
rank), is they all lie in disjoint intervals.


