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Abstract

We explain how to combine deep results from Iwasawa theory with explicit compu-
tation to obtain information about p-parts of Shafarevich-Tate groups of elliptic curves
over Q. This method provides a practical way to compute X(E/Q)(p) in many cases
when traditional p-descent methods are completely impractical.

1 Introduction
1 [[1]]

2

[[2]]
3

[[3]]Let E be an elliptic curve defined over Q and let

y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6 (1)

be a choice of global minimal Weierstrass equation for E. Then Mordell proved [?]4 [[4]]
that the set of rational points E(Q) is an abelian group of finite rank r = rank(E(Q)).
Birch and Swinnerton-Dyer then conjectured that r = ords=1 L(E, s), where L(E, s) is
the Hasse-Weil L-function of E (see Conjecture 2 below). We call ran = ords=1 L(E, s)
the analytic rank of E.

There is no known provably correct general algorithm to compute r, but one can
computationally obtain upper and lower bounds in any particular case. One way to
give a lower bound on r is to search for linearly independent points of small height via
the method of descent, which involves searching for points of even smaller height on
a collection of auxiliary curves. Complex and p-adic Heegner points constructions can
also be used in some cases to bound the rank from below. To give a computable upper
bound on the rank r, apart from the case of analytic ranks 0 and 1 when Kolyvagin’s
work on the Euler systems of Heegner points can be applied, the only general way
of obtaining an upper bound is by doing an n-descent for some integer n > 1. The
2-descents implemented by John Cremona [Cre97], by Denis Simon [?] in PARI and in
MAGMA5, and the 3 and 4 descents in Magma and described in [?], are particularly [[5]]
powerful. But they may fail in practice to compute the exact rank due to the presence
of 2 or 3-torsion elements in the Tate-Shafarevich group.

The Tate-Shafarevich group, denoted by X(E/Q), is a torsion abelian group asso-
ciated to E/Q. It is the kernel of the localization map

0 −→ X(E/Q) −→ H1(Q, E) −→
Y
υ

H1(Qυ, E)

1[[William: Be sure to cite [Col04b], perrin-riou, etc.]]
2[[William: In sections 3–5, it would be good to have an actual short (!) illustrative example in each

section.]]
3[[Christian: Certainly.]]
4[[Christian: I could not find the reference – and I am not sure if we should refer to it anyway]]
5[[Christian: I don’t like capitalized names, maybe smallcaps ?]]
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where the product runs over all places υ in Q. The arithmetic importance of this
group lies in its geometric interpretation. There is a bijection from X(E/Q) to the
Q-isomorphism classes of principal homogeneous spaces C/Q of E which have points
everywhere locally. In particular, such a C is a curve of genus 1 defined over Q whose
Jacobian is isomorphic to E. Nontrivial elements in X(E/Q) correspond to curves C
which defy the Hasse principle, i.e., have a point over every completion of Q, but have
no points over Q.

Conjecture 1. (Shafarevich and Tate) The group X(E/Q) is finite.

These two invariants, the rank r and the Tate-Shafarevich group X(E/Q), are
encoded in the Selmer groups of E. Fix a prime p, and let E(p) denote the Gal(Q̄/Q)-
module of all torsion points of E whose orders are powers of p. The Selmer group
Sp(E/Q) is defined by the following exact sequence:

0 −→ Sp(E/Q) −→ H1(Q, E(p)) −→
Y
υ

H1(Qυ, E) .

Likewise, for any positive integer m,6 the m-Selmer group is defined by the exact [[6]]
sequence

0 → S
(m)(E/Q) → H1(Q, E[m]) −→

Y
υ

H1(Qυ, E)

where E[m] is the subgroup of elements of order dividing m in E.
It follows from the Kummer sequence that there are short exact sequences

0 −→ E(Q)/mE(Q) −→ S
(m)(E/Q) −→ X(E/Q)[m] −→ 0 .

and
0 −→ E(Q)⊗Qp/Zp −→ Sp(E/Q) −→ X(E/Q)(p) −→ 0 .

If the Tate-Shafarevich group is finite, then the Zp-corank of Sp(E/Q) is equal to the
rank r of E(Q).

The finiteness of X(E/Q) is only known for curves of analytic rank 0 and 1 in
which case computation of Heegner points and Kolyvagin’s work on Euler systems
gives an explicit computable multiple of its order. The group X(E/Q) is not known
to be finite for even a single elliptic curve with ran > 2. In such cases, the best one
can do using current techniques is hope to bound the p-part X(E/Q)(p) of X(E/Q),
for specific primes p. Even this might not a priori be possible, since it is not known
that X(E/Q)(p) is finite. However, if it were the case that X(E/Q)(p) is finite
(as Conjecture 1 asserts), then this could be verified by computing Selmer groups
S(pn)(E/Q) for sufficiently many n (see, e.g., [SS04]). Note that practical computation
of S(pn)(E/Q) is prohibitively difficult for all but a few very small pn.

We present in this paper two algorithms using p-adic L-functions Lp(E, T ). They
are p-adic analogs of the complex function L(E, s), see section 3 for the definition.
Both algorithms rely heavily on the work of Kato [Kat04] which is considered to be a
major breakthrough in the direction of a proof of the p-adic version of the Birch and
Swinnerton-Dyer conjecture (see section 5).

The first algorithm finds an provable upper bound for the rank r of E(Q) by simply
computing approximations to the p-adic L-series for various small primes p. Any upper
bound on the vanishing of the Lp(E, T ) at T = 0 is known to be an upper bound on
the rank r. See section 10 for details.

The second algorithm, which is discussed in section 11, gives a new method for
computing bounds on the order of X(E/Q)(p), for specific primes p. We will exclude
p = 2, since traditional descent methods work well at p = 2, and Iwasawa theory is not
as well developed for p = 2. We also exclude some primes p like those for which E has
additive reduction, since much of the theory we rely on has not been developed in this
case yet (see section 3.6 and 11).7 [[7]]

This second algorithm uses again the p-adic L-functions Lp(E, t), but also requires
that the full Mordell-Weil group E(Q) is known. Its output, if it yields some, is a

6[[Christian: sorry, I changed n to m]]
7[[Christian: we say more about the cartan cases ?]]
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proven upper bound on the order of X(E/Q)(p), in particular it will prove the finite-
ness of the p-primary part of the Tate-Shafarevich group. But it will not be able to
give any information about the structure of X(E/Q)(p) as an abelian group or any
information on its elements. For such finer results on the Tate-Shafarevich group, there
is currently no other general method than to use pn-descents as described above.8 The [[8]]
computability of the upper bound on #X(E/Q)(p) relies on several conjectures, such
as the finiteness of X(E/Q)(p) and the conjectures 3 and 4 on the non-degeneracy
of the p-adic height on E. Under the assumption of the so-called main conjecture of
Iwasawa theory (see section 7), the result of the algorithm is known to be equal to the
order of X(E/Q)(p). There are several cases when this conjecture is known to hold by
Greenberg and Vatsal in [GV00], by Grigorov in [Gri05], and in a forthcoming paper
by Skinner and Urban.

Note that both algorithms can possibly be implemented also to give bounds on
the rank E(K) and bounds on #X(E/K)(p) for number fields K which are abelian
extensions of Q.

9 [[9]]

Acknowledgments. Ralph Greenberg, Robert Pollack

2 The Birch and Swinnerton-Dyer conjecture

If Conjecture 2 below were true, it would yield an algorithm to compute both the rank
r and the order of X(E/Q).

Let E be an elliptic curve over Q, and let L(E, s) be the Hasse-Weil L-function
associated to the Q-isogeny class of E. According to [?] (which completes work initiated
in [?]10), the function L(E, s) is holomorphic on the whole complex plane. Let ωE be [[10]]
the invariant differential dx/(2y + a1x + a3) of a minimal Weierstrass equation (1) of
E. We write ΩE =

R
E(R)

ωE ∈ R>0 for the Néron period of E.

Conjecture 2. (Birch and Swinnerton-Dyer)

1. The order of vanishing of the Hasse-Weil function L(E, s) at s = 1 is equal to the
rank r = rank(E(Q)).

2. The leading term L∗(E, 1) of the Taylor expansion of L(E, s) at s = 1 satisfies

L∗(E, 1)

ΩE

=

Q
υ cυ ·#X(E/Q)

(#E(Q)tors)2
· Reg(E/Q) (2)

where the Tamagawa numbers are denoted by cυ and Reg(E/Q) is the regulator
of E, i.e., the discriminant of the Néron-Tate canonical height pairing on E(Q).

Note that the conjecture (2) is invariant under isogenies defined over Q (see Cas-
sels [Cas65]).

Proposition 1. If Conjecture 2 is true, then there is an algorithm to compute r and
#X(E/Q).

Proof. The proof is well known, but we repeat it here since it illustrates several key
ideas. By naively searching for points in E(Q) we obtain a lower bound on r, which is
closer and closer to the true rank r, the longer we run the search. At some point this
lower bound will equal r, but without using further information we do not know when
that will occur. As explained, e.g., in [Cre97], we can for any k compute L(k)(E, 1) to
any desired precision. Such computations yield upper bounds on ran. In particular, if
we compute L(k)(E, 1) and it is nonzero (to the precision of our computation), then
ran < k. Eventually this method will also converge to give an upper bound on ran,

8[[Christian: maybe you can add here something about visibility.]]
9[[Christian: add an overview over the sections?]]

10[[Christian: I think that is what you meant]]
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though again without further information we do not know when our computed upper
bound on ran equals to the true value of ran. However, if we know Conjecture 2, we
know that r = ran, hence at some point the lower bound on r computed using point
searches, will equal the upper bound on ran computed using the L-series. At this point,
by Conjecture 2 we know the true value of r.

Once r is known, one can compute E(Q) via a point search (and saturation [?]11), [[11]]
hence we can approximate Reg(E/Q) to any desired precision. All other quantities
in (2) can also be approximated to any desired precision. Solving for #X(E/Q) in 2
and computed all other quantities to large enough precision to determine #X(E/Q)
then determines #X(E/Q), as claimed.

12 We wish to emphasize that this algorithm would only produce the order of [[12]]
X(E/Q) but no information about its structure as an abelian group.

The algorithm presented at the end of this article will mimic the ideas of the proof
of this proposition, but instead of working with the complex L-function it will be in a
p-adic setting.

3 The p-adic L-function

We will assume for the rest of this article that E does not admit complex multiplication
(CM), 13 though CM curves are an area of active research for these methods ([?, ?]).14 [[13]]

[[14]]In order to formulate a p-adic analogue of the conjecture of Birch and Swinnerton-
Dyer, one needs first a p-adic version of the analytic function L(E, s). Mazur and
Swinnerton-Dyer [MSD74] have found such a function. We refer to [MTT86] for details
on the construction and the historic references.

Let π : X0(N) −→ E be the modular parametrization of E and let cπ be the Manin
constant, i.e., the positive integer satisfying cπ ·π∗ωE = 2πif(τ)dτ with f the newform
associated to E. Manin conjectured that cπ = 1, and much work has been done toward
this conjecture ([?, ?]).15 [[15]]

Given a rational number r, consider the image π∗({r}) in H1(E,R) of the path
joining r to i∞ in the upper half plane. Define

λ+(r) =
cπ
2
·

 Z
π∗({r})

ωE +

Z
π∗({−r})

ωE

!
= πi ·

„Z i∞

r

f(τ) dτ +

Z i∞

−r

f(τ) dτ

«
There is a basis {γ+, γ−} of H1(E,Z) such that

R
γ+
ωE is equal to ΩE if E(R) is

connected and to 1
2

ΩE otherwise. By a theorem of Manin [Man72], we know that
λ+(r) belongs to Q · ΩE. We define the modular symbol [r]+ ∈ Q to be

[r]+ · ΩE = λ+(r)

for all r ∈ Q. In particular we have [0]+ = L(E, 1) · Ω−1
E . The quantity [r]+ can

be computed either algebraically using modular symbols and linear algebra ([Cre97])
or numerically, by approximating both ΩE using the Gauss arithmetic-geometry mean
and λ+(r) by summing a rapidly convergent series, and bounding the denominator of
λ+(r)/ΩE using results about modular symbols.1617 [[16]]

[[17]]Let p be a prime of semistable reduction. We write18 ap for the trace of Frobenius.
Suppose first that E has good reduction at p. Then Np = p+ 1− ap is the number of
points on Ẽ(Fp). Let X2−ap ·X+p be the characteristic polynomial of Frobenius and

11[[Christian: I think I know what you mean, but I don’t know a reference for it]]
12[[Christian: added]]
13[[Christian: I don’t think we will need the abbreviation]]
14[[Christian: These are two articles I partly read, there are certainly many others, but I don’t think it is

necessary to include more]]
15[[Christian: I guess you though of these two]]
16[[William: This is probably way too vague – I’m being lazy.]]
17[[Christian: I think it would be good if you could say a little bit more. I simply used the magma

implementation, but I always wondered if there is a faster or better way to compute the modular symbols.
p-adically, I mean. Maybe you wish to add a paragraph on the computations of modular symbols ?]]

18The context should make it clear if we speak about ap or a2 and a3 as in (1).
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let α ∈ Q̄p be a root of this polynomial such that ordp(α) < 1. There are two different
possible choices if E has supersingular reduction and there is a single possibility for
primes where E has good ordinary reduction. Now if E has multiplicative reduction at
p, then ap is 1 if it is split multiplicative and ap is −1 if it is non-split multiplicative
reduction. In either multiplicative case, we have to take α = ap.

Define a measure on Z×p with values in Q(α) by

µα(a+ pkZp) =
1

αk
·
»
a

pk

–+
− 1

αk+1
·
»

a

pk−1

–+
for any k > 1 and a ∈ Z×p . Given a continuous character χ on Z×p with values in the
completion Cp of the algebraic closure of Qp, we may integrate χ against µα. Any
invertible element x of Z×p can be written as ω(x) · 〈x〉 where ω(x) is a (p− 1)st root of
unity and 〈x〉 belongs to 1 + 2pZp. We define the analytic p-adic L-function by

Lα(E, s) =

Z
Z×p
〈x〉s−1 dµα(x) for all s ∈ Zp.

where by 〈x〉s−1 we mean expp((s− 1) · logp(〈x〉)). The function Lα(E, s) extends to a
locally analytic function in s on the disc defined by |s− 1| < 1 (see § 13 in [MTT86]).

Let ∞G be the Galois group of the cyclotomic extension Q(µp∞) obtained by ad-
joining to Q all p-power roots of unity. By κ we denote the cyclotomic character

∞G −→ Z×p . Because the cyclotomic character is an isomorphism, choosing a topo-

logical generator γ in Γ = ∞G
4(p−1) amounts to picking an element κ(γ) in 1 + 2pZ×p .

With this choice, we may convert the function Lα(E, s) into a p-adic power series in
T = κ(γ)s−1 − 1. We write Lα(E, T ) for this series in Qp(α)[[T ]]. We have

Lα(E, T ) =

Z
Z×p

(1 + T )
log(x)

log(κ(γ)) dµα(x) . (3)

As in [Pol03], we define the polynomial 19 20 [[19]]

[[20]]
Pn =

X
a∈(Z/pkZ)×

»
a

pk

–+
· (1 + T )

log(a)
log(κ(γ))

=

pk−1−1X
j=0

p−1X
b=1

»
ω(b) · κ(γ)j

pk

–+
· (1 + T )j ,

where we changed the summation by putting a = ω(b) ·κ(γ)j . Then the approximation
as a Riemann sum of the above integral for Lα(E, T ) can be written as

Lα(E, T ) = lim
k→∞

„
1

αk
· Pk −

1

αk+1
· Pk−1

«
.

3.1 The p-adic multiplier

For a prime of good reduction, we define the p-adic multiplier by

εp =
`
1− 1

α

´2
. (4)

19[[William: The meaning of log(a) doesn’t make sense without further explanation. In fact, I think it
means that one makes an arbitrary choice of a ∈ Z/pkZ. Making a different choice can and does change
Pn, but the change is only modulo some controlled power of the maximal ideal of Λ. The substitution
a = ω(b) ·κ(γ)j is one possible choice. Presumably this is made clear in [Pol03], so we can just make a quick
remark about it.

By the way, regarding computation of this sum, there are two approaches to computing the modular
symbols: (1) use linear algebra and compute a presentation for H1(X0(N), Q), as in Cremona, etc.;

(2) Compute the period integrals for the #P1(N) Manin symbols [γ] = {γ(0), γ(∞)} directly numerically,
by using Atkin-Lehner involutions to move around cusps, break paths, etc., then use continued fractions to
write any [a/pk] in terms of Manin symbols [γ]. I’m not 100% certain how general method 2 is. ]]

20[[Christian: I agree. I should have set a before writing the sum. Of course any choice of a’s will make
the polynomials expression for L converge. As to the remark on modular symbols see footnote 17.]]
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For a prime of bad multiplicative reduction, we put

εp =
`
1− 1

α

´
=

(
0 if p is split multiplicative and

2 if p is non-split.

3.2 Interpolation property

The p-adic L-function constructed above satisfies a desired interpolation property with
respect to the complex L-function. For instance, we have that

Lα(E, 0) = Lα(E, 1) =

Z
Z×p
dµα = εp ·

L(E, 1)

ΩE

.

A similar formula holds when integrating nontrivial characters of Z×p against µα. If χ
is the character on ∞G sending γ to a root of unity ζ of exact order pn, then

Lα(E, ζ) =
1

αn+1
· pn+1

G(χ−1)
· L(E,χ−1, 1)

ΩE

.

Here G(χ−1) is the Gauss sum and L(E,χ−1, 1) is the Hasse-Weil L-function of E
twisted by χ−1.

3.3 The good ordinary case

Suppose now that the reduction of the elliptic curve at the prime p is good and ordinary,
so ap is not divisible by p. As mentioned before, in this case there is a unique choice of
root α of the characteristic polynomial x2−apx+p that satisfies ordp(α) < 1. Since α is
an algebraic integer, this implies that ordp(α) = 0, so α is a unit in Zp. We get therefore
a unique p-adic L-function that we will denote simply by Lp(E, T ) = Lα(E, T ). It is
proved in [Wut06] that

Proposition 2. Let E be an elliptic curve with good ordinary reduction at a prime
p > 2. Then the series Lp(E, T ) belongs to Zp[[T ]].

Note that ordp(εp) is equal to −2 ordp(Np) where Np = p + 1 − ap is the number
of points in the reduction Ẽ(Fp) at p.

3.4 Multiplicative case

We have to separate the case of split from the case of non-split multiplicative reduction.
In fact if the reduction is non-split, then the description of the good ordinary case
applies just the same. But if the reduction is split multiplicative (the “exceptional
case” in [MTT86]), then the p-adic L-series must have a trivial zero, i.e., Lp(E, 0) = 0
because εp = 0. By a result of Greenberg and Stevens [GS93] (see also [Kob05] for a
simple proof), we know that

dLp(E, T )

d T

˛̨̨̨
T=0

=
1

logp κ(γ)
·

logp(qE)

ordp(qE)
· L(E, 1)

ΩE

where qE denotes the Tate period of E over Qp. This will replace the interpolation
formula. Note that it is now known thanks to [BSDGP96] that logp(qE) is nonzero.
Hence we define the p-adic L -invariant as

Lp =
logp(qE)

ordp(qE)
6= 0 . (5)

We refer to [Col04a] for a detailed discussion of the different L -invariants and their
connections.
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3.5 The supersingular case

In the supersingular case, that is when ap ≡ 0 (mod p), we have two roots α and β both
of valuation 1

2
. A careful analysis of the functions Lα and Lβ can be found in [Pol03].

The series Lα(E, T ) will not have integral coefficients in Qp(α). Nevertheless one can
still extract two integral series L±p (E, T ). We will not need this description.

There is a way of rewriting the p-adic L-series which relates more easily to the p-adic
height defined in the next section. We follow Perrin-Riou’s description in [PR03].

As before ωE denotes the chosen invariant differential on E. Let ηE = x · ωE. The
pair {ωE, ηE} forms a basis of the Dieudonné module Dp(E) = Qp ⊗ H1

dR(E/Q). This
Qp-vector space comes equipped with a (geometric) Frobenius ϕ acting on it linearly.
Its characteristic polynomial is equal to X2 − p−1 ap X + p−1.

Write Lα(E, T ) as G(T )+α ·H(T ) with G(T ) and H(T ) in Qp[[T ]]. Then we define

Lp(T ) = G(T ) · ωE + ap ·H(T ) · ωE − p ·H(T ) · ϕ(ωE) .

This is a formal power series with coefficients in Dp(E)⊗Qp[[T ]] which contains exactly
the same information as Lα(E, T ). See [PR03] for a direct definition. The Dp-valued
L-series satisfies again certain interpolation properties,21 e.g.

(1− ϕ)−2
Lp(0) =

L(E, 1)

ΩE

· ωE ∈ Dp(E) .

3.6 Additive case

The case of additive reduction is much harder to treat, though we are optimistic that
such a treatment is possible. We have not tried to include the possibility of additive re-
duction in our algorithm. Note that there are two interesting paper of Delbourgo [Del98]
and [Del02] on this subject. We will not refer to this case anymore throughout the pa-
per.

4 p-adic heights

The second term to be generalized in the Birch-Swinnerton-Dyer formula is the real
valued regulator. In p-adic analogues of the conjecture it is replaced by a p-adic reg-
ulator, which is defined using a p-adic analogue of the height pairing. We follow here
the generalized version [BPR93], [PR03], and [MSJ05].

Let ν be an element of the Dieudonné module Dp(E). We will define a p-adic height
function hν : E(Q) −→ Qp which depends linearly on the vector ν. Hence it is sufficient
to define it on the basis ω = ωE and η = ηE.

If ν = ω, then we define
hω(P ) = − log(P )2

where log is the linear extension of the p-adic elliptic logarithm logÊ : Ê(pZp) −→ pZp

defined on the formal group Ê.
For ν = η, we define first the p-adic sigma function of Bernardi σ(z) as in [Ber81].

Denote by t = −x
y

the uniformizer at OE and write z(t) = logÊ(t). Define the Weier-
strass ℘-function as usual by

℘(t) = x(t) +
a2
1 + 4 a2

12
∈ Q((t)) .

Here a1 and a2 are the coefficients of the minimal Weierstrass equation (1) of E. The
function ℘(t) is a solution to the usual differential equation. We define the sigma-
function of Bernardi to be a solution of the equation

−℘(t) =
d

ωE

„
1

σ
· dσ
ωE

«
21Perrin-Riou writes in [PR03] the multiplier as (1−ϕ)−1 · (1−p−1ϕ−1) and she multiplies the right hand

side with L(E/Qp, 1)−1 = Np ·p−1. It is easy to see that (1−ϕ)·(1−p−1ϕ−1) = 1−ϕ−(ϕ−ap ·p−1)+p−1 =
Np · p−1.
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such that σ(0) = 0 and σ(t(−P )) = −σ(t(P )). This provides us with a series

σ(t) = t+
a1

2
t2 +

a2
1 + a2

3
t3 +

a3
1 + 2a1a2 + 3a3

4
t4 + · · · ∈ Q((t)) .

As a function on the formal group Ê(pZp) it converges for ordp(t) > 1
p−1

.
Given a point P in E(Q) there exists a multiple m · P such that σ(t(P )) converges

and such that m · P has good reduction at all primes. Denote by e(m · P ) ∈ Z the
square root of the denominator of the x-coordinate of m · P . Now define

hη(P ) =
2

m2
· logp

„
σ(t(m · P ))

e(m · P )

«
.

It is proved in [Ber81] that this function is quadratic and satisfies the parallelogram
law.

Finally, if ν = aω + b η then put

hν(P ) = a hω(P ) + b hη(P ) .

This quadratic function induces a bilinear symmetric pairing 〈·, ·〉ν with values in Qp.

4.1 The good ordinary case

Since we have only a single p-adic L-function in the case that the reduction is good
ordinary, we have also to pin down a canonical choice of a p-adic height function.
This was first done by Schneider [Sch82] and Perrin-Riou [PR82]. We refer to [MT91]
and [MSJ05] for more details.

Let να = aω+ b η be an eigenvector of ϕ on Dp(E) associated to the eigenvalue 1
α
.

The value e2 = E2(E,ωE) = −12 · a
b

is the value of the Katz p-adic Eisenstein series of
weight 2 at (E,ωE). Then, if P has good reduction at all primes and lies in the range
of convergence of σ(t), we define the canonical p-adic height of P to be

ĥp(P ) =
1

b
· hνα(P )

= −a
b
· z(P )2 + 2 log

„
σ(t(P ))

e(P )

«
= 2 logp

 
exp( e2

24
log(P )2) · σ(t(P ))

e(P )

!
= 2 logp

„
σp(t(P ))

e(P )

«
. (6)

The function σp(t), defined by the last line, is called the canonical sigma-function,
see [MT91], it is known to lie in Zp[[t]]. The p-adic height defined here is up to the
factor 2 the same as in [MSJ05].22

We write 〈·, ·〉p for the canonical p-adic height pairing on E(Q) associated to ĥp and
Regp(E/Q) for its determinant.

Conjecture 3. (Schneider [Sch82]) The canonical p-adic height is non-degenerate
on the free part of E(Q). In other words, the canonical p-adic regulator Regp(E/Q) is
nonzero.

Apart from the special case treated in [Ber82] of curves with complex multiplication
of rank 1, there are hardly any results on this conjecture. See also [Wut04].

4.2 The multiplicative case

In the case of multiplicative reduction, one may use Tate’s p-adic uniformization (see [Sil94]).
We have an explicit description of the height pairing in [Sch82]. If one wants to have
the same closed formula in the p-adic version of the Birch and Swinnerton-Dyer conjec-
ture for multiplicative primes as for other ordinary primes, the p-adic height has to be

22This factor is needed if one does not want to modify the p-adic version of the Birch and Swinnerton-Dyer
conjecture 5.
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changed slightly. We use here the description of the p-adic regulator given in section
II.6 of [MTT86]. Alas, their formula is not correct as explained by Werner in [Wer98].

Let qE be the Tate parameter of the elliptic curve over Qp, i.e., we have a homo-
morphism ψ : Q̄×

p −→ E(Q̄p) whose kernel is precisely qZ
E. The image of Z×p under ψ

is equal to the subgroup of points of E(Qp) lying on the connected component of the
Néron model of E. Now let C be the constant such that ψ∗(ωE) = C · du

u
where u is a

uniformizer of Q×
p at 1. The value of the weight 2 p-adic Eisenstein series can then be

computed as

e2 = E2(E,ωE) = C2 ·

0@1− 24 ·
X
n>1

X
d|n

d. · qn

1A
Then we use the formula of the good ordinary case to define the canonical σ function
σp(t(P )) = exp( e2

24
z(P )2) ·σ(t(P )). If the reduction is non-split multiplicative, then we

use the formula (6) for the good ordinary case.
Suppose now that the reduction is split multiplicative. Let P be a point in E(Q)

having good reduction at all finite places and with trivial reduction at p. Then

ĥp(P ) = 2 logp

„
σp(t(P ))

e(P )

«
+

logp(u(P ))2

log(qE)

where u(P ) is the unique element of Z×p mapping to P under the Tate parametriza-

tion ψ. The p-adic regulator is formed as before but with this modified p-adic height ĥp.

4.3 The supersingular case

In the supersingular case, we cannot find a canonical p-adic height with values in
Qp. Instead, the height will have values in the Dieudonné module Dp(E). The main
references for this height are [BPR93] and [PR03].

Suppose that ν = aω + b η is any element of Dp(E) not lying in Qp ωE (so b 6= 0).
It can be easily checked that the value of

Hp(P ) =
1

b
· (hν(P ) · ω − hω(P ) · ν) ∈ Dp

is independent of the choice of ν. We will call this the Dp-valued height on E(Q).
On Dp(E) there is a alternating bilinear form [·, ·] characterized by the property

that [ωE, ηE] = 1. Write Regν ∈ Qp for the regulator of hν on a Z-basis of the free part
of E(Q) with respect to some decomposition E(Q) = F ⊕ E(Q)tor (since the height is
0 on torsion, the choice of decomposition does not matter). Then

Regp(E/Q) =
Regν ·ν′ − Regν′ ·ν

[ν′, ν]
∈ Dp(E)

is independent of the choice of ν and ν′ in Dp(E), as long as they do not belong to
Qp ωE. We call this the Dp-valued regulator of E/Q.

It is not difficult to see that Regp(E/Q) = Hp(P ) if the curve is of rank 1 with
generator P . If E(Q) is finite, then Regp(E/Q) is simply ωE. In both these cases the
Dp-valued regulator can not vanish.

If one restricts any p-adic height hν to the fine Mordell-Weil group defined in [Wut07]
to be the kernel

M(E/Q) = ker
“
E(Q)⊗ Zp −→ Ê(Qp)

”
,

where Ê(Qp) is the p-adic completion of E(Qp). The restricted height is then indepen-
dent of the chosen element ν in Dp(E). We call its regulator the fine regulator, which
is an element of Qp defined up to multiplication by a unit in Zp.

In general, the Dp-valued regulator is 0 if and only if the fine regulator vanishes.

Conjecture 4. (Perrin-Riou [PR93, Conjecture 3.3.7.i]) The fine regulator of
E/Q is nonzero for all primes p. In particular, Regp(E/Q) 6= 0 for all primes where
E has supersingular reduction.
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4.4 Normalization

In view of Iwasawa theory, it is actually natural to normalize the heights and the
regulators depending on the choice of the generator γ. In this way the heights depend
on the choice of an isomorphism Γ −→ Zp rather than on the Zp-extension only. This
normalization can be achieved by simply dividing ĥp(P ) and hν(P ) by κ(γ). The
regulators will be divided by κ(γ)r where r is the rank of E(Q). Hence we write

Regγ(E/Q) =
Regp(E/Q)

κ(γ)r

5 The p-adic Birch and Swinnerton-Dyer conjec-
ture

5.1 The ordinary case

The following conjecture is due to Mazur, Tate and Teitelbaum [MTT86]. Rather than
formulating it for the function Lα(E, s), we state it directly for the series Lp(E, T ). It
is then a statement about the development of this function at T = 0 rather than at
s = 1.

Conjecture 5. (Mazur, Tate and Teitelbaum [MTT86]) Let E be an elliptic
curve with good ordinary reduction or with multiplicative reduction at a prime p.

• The order of vanishing of the p-adic L-function Lp(E, T ) at T = 0 is equal to the
rank r, unless E has split multiplicative reduction at p in which case the order of
vanishing is equal to r + 1.

• The leading term L∗p(E, 0) satisfies

L
∗
p(E, 0) = εp ·

Q
υ cυ ·#X(E/Q)

(#E(Q)tors)2
· Regγ(E/Q) (7)

unless the reduction is split multiplicative in which case the leading term is

L
∗
p(E, 0) = Lp ·

Q
υ cυ ·#X(E/Q)

(#E(Q)tors)2
· Regγ(E/Q). (8)

The conjecture assert exact equality, not just equality up to a p-adic unit. However,
the current approaches to the conjecture, which go via the main conjecture of Iwasawa
theory, all prove results up to a p-adic unit, since the characteristic power series is only
defined up to a unit.

5.2 The supersingular case

The conjecture in the case of supersingular reduction is given in [BPR93] and [PR03].
The conjecture relates here an algebraic and an analytic value in the Qp-vector space
Dp(E) of dimension 2. The fact of having two coordinates was used cleverly by Kurihara
and Pollack in [KP05] to construct global points via a p-adic analytic computation.

We say that an element a(T ) ·ωE + b(T ) ·ηE in Dp(E)⊗Qp[[T ]] has order d at T = 0
if d is equal to the minimum of the orders of a(T ) and b(T ).

Conjecture 6. (Bernardi and Perrin-Riou [BPR93]) Let E be an elliptic curve
with good supersingular reduction at a prime p.

• The order of vanishing of the Dp-valued L-function Lp(E, T ) at T = 0 is equal to
the rank r.

• The leading term L∗p(E, 0) satisfies

(1− ϕ)−2 · L∗p(E, 0) =

Q
υ cυ ·#X(E/Q)

(#E(Q)tors)2
· Regγ(E/Q) ∈ Dp(E) (9)
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6 Iwasawa theory of elliptic curves

We suppose from now on that p > 2. Let ∞Q be the Galois extension of Q whose
Galois group is Γ. It is the unique Zp-extension of Qp. Let Λ be the completed group
algebra Zp[[Γ]]. We use the fixed topological generator γ of Γ to identify Λ with Zp[[T ]]
by sending γ to 1 + T . It is well-known that any finitely generated Λ-module admits a
decomposition as a direct sum of elementary Λ-modules. Denote by nQ the nth layer
of the Zp-extension. As before, we may define the p-Selmer group over nQ by the exact
sequence

0 −→ Sp(E/nQ) −→ H1(nQ, E(p)) −→
Y
υ

H1(nQυ, E)

23 24 with the product running over all places υ of nQ. Moreover, we define Sp(E/∞Q) [[23]]

[[24]]to be the limit lim−→ Sp(E/nQ) following the maps induced by the restriction maps

H1(nQ, E(p)) −→ H1(n+1Q, E(p)). The group Sp(E/∞Q) contains essentially the in-
formation about the growth of the rank of E(nQ) and of the size of X(E/nQ)(p) as n
tends to infinity. We will consider the Pontryagin dual

X(E/∞Q) = Hom (Sp(E/∞Q),Qp/Zp)

which is a finitely generated Λ-module (see [CS00]).

6.1 The ordinary case

Assume now that the reduction at p is good and ordinary or of multiplicative type.
Kato’s2526 theorem 17.4 in [Kat04], which uses the work of Rohrlich [?], states that [[25]]

[[26]]X(E/∞Q) is a torsion Λ-module. Hence by the decomposition theorem, we may asso-
ciated to it a characteristic series fE(T ) in Λ. The series

fE(T ) ∈ Zp[[T ]] (10)

is well-defined up to multiplication by a unit in Λ×.
In analogy to the zeta-function of a variety over a finite field, one should think

of fE(T ) as a generating function encoding the growth of the rank and the Tate-
Shafarevich group. For instance, the zeros of fE(T ) at roots of unity whose orders
are powers of p describe the growth of the rank. Since a nonzero power series with
coefficients in Zp can only have finitely many zeros, one can show that the rank of
E(nQ) has to stabilize in the tower nQ. In other words, the Mordell-Weil group E(∞Q)
is still of finite rank.

The following relatively old result is due to Schneider [Sch85] and Perrin-Riou [PR82].
The multiplicative case is due to Jones [Jon89].

Theorem 3 (Schneider, Perrin-Riou, Jones).
The order of vanishing of fE(T ) at T = 0 is at least equal to the rank r. It is equal
to r if and only if the p-adic height pairing is non-degenerate (conjecture 3) and the
p-primary part of the Tate-Shafarevich group X(E/Q)(p) is finite (conjecture 1). In
this case the leading term of the series fE(T ) has the same valuation as

εp ·
Q

υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2
· Regγ(E/Q)

unless the reduction is split multiplicative in which case the same formula holds with εp
replaced by Lp.

23[[William: Would you be opposed to using the notation Sp(E/nQ)? It’s clearer and easier to read in
this case.]]

24[[Christian: I agree. But do we want to change to X(∞Q, E) which is certainly not very standard ? Or
X(nQ, E) ?]]

25[[William: that fE(T ) | L]]
26[[Christian: no. it is actually a step in proving the divisibility.]]
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6.2 The supersingular case

The supersingular case is much more complicated, since the Λ-module X(E/∞Q) is
not torsion. A very beautiful approach to the supersingular case has been found by
Pollack [Pol03] and Kobayashi [Kob03]. As mentioned above there exists two p-adic
series L±p (E, T ) to which will correspond two new Selmer groups X±(E/∞Q) which
now are Λ-torsion. Despite the advantages of this ±-theory, we are using the approach
of Perrin-Riou here. See section 3 in [PR03].

Let TpE be the Tate module and define ∞H1
loc to be the projective limit of the

cohomology groups H1(nQp, TpE) following the corestriction maps. Here nQp is the
localization of nQ at the unique prime p above p. Perrin-Riou [PR94] has constructed
a Λ-linear Coleman map Col from ∞H1

loc to a sub-module of Qp[[T ]]⊗Dp(E).
Define the fine Selmer group to be the kernel

R(E/nQ) = ker (S(E/nQ) −→ E(nQp)⊗Qp/Zp) .

It is again a consequence of the work of Kato, namely theorem 12.4 in [Kat04], that
the Pontryagin dual Y (E/∞Q) of R(E/∞Q) is a Λ-torsion module. Denote by gE(T )
its characteristic series.

Let Σ be any finite set of places in Q containing the places of bad reduction for
E and the places ∞ and p. By GΣ(nQ), we denote the Galois group of the maximal
extension of nQ unramified at all places which do not lie above Σ. Next we define

∞H1
glob as the projective limit of H1(GΣ(nQ), TpE). It is a Λ-module of rank 1 and it

is actually independent of the choice of Σ.
Choose now any element ∞c in ∞H1

glob such that Zc = ∞H1
glob /(Λ ·∞c) is Λ-torsion.

Typically the “zeta element” of Kato could be such a choice.2728 Write hc(T ) for the [[27]]

[[28]]characteristic series of Zc. Then we define an algebraic equivalent of the Dp(E)-valued
L-series by

fE(T ) = gE(T ) · Col(∞c) · hc(T )−1 ∈ Qp[[T ]]⊗Dp(E)

where by Col(∞c) we mean the image of the localization of ∞c to ∞H1
loc under the

Coleman map Col. The resulting series fE(T ) is independent of the choice of ∞c. Of
course, fE(T ) is again only defined up to multiplication by a unit in Λ×.

Again we have an Euler-characteristic result due to Perrin-Riou [PR93]:

Theorem 4 (Perrin-Riou).
The order of vanishing of fE(T ) at T = 0 is at least equal to the rank r. It is equal to
r if and only if the Dp(E)-valued regulator Regp(E/Q) is nonzero (conjecture 4) and
the p-primary part of the Tate-Shafarevich group X(E/Q)(p) is finite (conjecture 1).
In this case the leading term of the series (1− ϕ)−2 fE(T ) has the same valuation asY

υ

cυ ·#X(E/Q)(p) · Regγ(E/Q)

Note that we simplified the right hand term in comparison to (9), because Np ≡ 1
(mod p) and hence #E(Q)tors must be p-adic unit if the reduction at p is supersingular.

7 The Main Conjecture

The main conjecture links the two p-adic power series (3) and (10) of the previous
sections. We formulate everything now simultaneously for the ordinary and the super-
singular case, even if they are of quite different nature. We still assume that p 6= 2.

Conjecture 7. (Main conjecture of Iwasawa theory for elliptic curves) If E
has good or non-split multiplicative reduction at p, then there exists an element u(T ) in
Λ× such that Lp(E, T ) = fE(T ) ·u(T ). If the reduction of E at p is split multiplicative,
then there exists such a u(T ) in T · Λ×.

27[[William: Huh?]]
28[[Christian: The Euler system elements in the H1 are called zeta elements in Kato. Do you want me to

omit the sentence or write more about it ?]]
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Much is now known about this conjecture. To the elliptic curve E we attach the
mod-p representation

ρ̄p : Gal(Q̄/Q) −→ Aut(E[p]) ∼= GL2(Fp)

of the absolute Galois group of Q. Serre proved that ρ̄p is almost always surjective (note
that by hypothesis E does not have complex multiplication) and that for semistable
curves surjectivity can only fail when there is an isogeny of degree p defined over Q.
See [Ser72] and [Ser96].

Kato’s Theorem 5.
Suppose that E has semistable reduction at p and that ρ̄p is either surjective or that its
image is contained in a Borel subgroup. Then there exists a series d(T ) in Λ such that
Lp(E, T ) = fE(T ) · d(T ). If the reduction is split multiplicative then T divides d(T ).

The main ingredient for this theorem is in theorem 17.4 in [Kat04] for the good
ordinary case when ρ̄p is surjective, or in [Wut06] when there is a p-isogeny. For the
exceptional case we refer to [Kob05]29. The statement of the main conjecture for su- [[29]]
persingular primes is known to be equivalent to Kato’s formulation in Conjecture 12.10
in [Kat04] and to Kobayashi’s version in [Kob03].

In particular the theorem applies to all odd primes p if E is a semistable curve. For
the remaining cases, e.g., if the image of ρ̄p is contained in the normalizer of a Cartan
subgroup, one obtains only a weaker statement:

Kato’s Theorem 6.
Suppose the image of ρ̄p is not contained in a Borel subgroup of GL2(Fp) and that ρ̄p

is not surjective, then there is an integer m > 0 such that fE(T ) divides pm ·Lp(E, T ).

Greenberg and Vatsal [GV00] have shown that in certain cases the main conjecture
holds. There is hope that the main conjecture will be proved soon for primes p subject
to certain conditions. We are awaiting the forthcoming paper of Skinner and Urban.

8 If the L-series does not vanish

Suppose the Hasse-Weil L-function L(E, s) does not vanish at s = 1. In this case
Kolyvagin proved that E(Q) and X(E/Q) are finite. In particular Conjecture 1 is
valid; also, Conjectures 3 and 4 are trivially true in this case.

Let p > 2 be a prime of semistable reduction such that the representations ρ̄p is
either surjective or has its image contained in a Borel subgroup of GL2(Fp). By the
interpolation property, we know that Lp(E, 0) is nonzero, unless E has split multiplica-
tive reduction.

8.1 The good ordinary case

In the ordinary case we have

ε−1
p · Lp(E, 0) =

L(E, 1)

ΩE

= [0]+,

which is a nonzero rational number by [Man72]. In the following inequality, we use the
theorem30 3 of Perrin-Riou and Schneider for the first equality and Kato’s theorem 5
on the main conjecture for the inequality in the second line.3132 [[31]]

[[32]]29[[Christian: I have to omit the reference to [KKT96] as I still haven’t seen this eternal well-hidden
preprint]]

30In the case of analytic rank 0, the theorem is actually relatively easy and well explained in [CS00].
31[[William: What does it mean “in the first line”? “In the second line” ??]]
32[[Christian: better ?]]
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ordp

„
εp ·

Q
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2

«
= ordp(fE(0))

6 ordp(Lp(E, 0))

= ordp

„
L(E, 1)

ΩE

«
+ ordp(εp)

Hence, we have the following upper bound on the p-primary part of the Tate-Shafarevich
group, which is sharp under the assumption of the main conjecture:

ordp (X(E/Q)(p)) 6 ordp

„
L(E, 1)

ΩE

«
− ordp

„ Q
cυ

(#E(Q)tors)2

«
. (11)

This bound agrees with the Birch and Swinnerton-Dyer conjecture. 33 [[33]]

8.2 The multiplicative case

If the reduction is not split, then the above holds just the same.3435 If instead the [[34]]

[[35]]reduction is split multiplicative, we have that Lp(E, 0) = 0 and

L
′
p(E, 0) = Lp ·

L(E, 1)

ΩE

= Lp · [0]+ 6= 0 .

Since the p-adic multiplier is the same on the algebraic as on the analytic side, we can
once again compute it as above to obtain the same bound (11) again.

8.3 The supersingular case

For the supersingular Dp(E)-valued series, we have

(1− ϕ)−2 · Lp(E, 0) =
L(E, 1)

ΩE

· ωE = [0]+ · ωE

which is a nonzero element of Dp(E). The Dp(E)-valued regulator Regp(E/Q) is equal
to ωE. We may therefore concentrate solely on the coordinate in ωE. Write ordp(fE(0))
for the p-adic valuation of the leading coefficient of the ωE-coordinate of fE(T ). Again
we obtain an inequality by using theorem 4

ordp

 Y
υ

cυ ·#X(E/Q)(p)

!
= ordp((1− ϕ)−2 fE(0))

6 ordp((1− ϕ)−2
Lp(E, 0))

= ordp

„
L(E, 1)

ΩE

«
.

8.4 Conclusion

Summarizing the above computations, we have

Theorem 7.
Let E be an elliptic curve such that L(E, 1) 6= 0. Then X(E/Q) is finite and

#X(E/Q) 6 C · L(E, 1)

ΩE

· (#E(Q)tors)
2Q

cυ

where C is a product of a power of 2 and of power of primes of additive reduction and
of powers of primes for which the representation ρ̄p is not surjective and there is no
isogeny of degree p on E defined over Q.

In particular if E is semistable, then C is a power of 2.

This improves Corollary 3.5.19 in [Rub00].

33[[William: This is stronger than what I stated in my previous bsd computation paper.]]
34[[William: Why?]]
35[[Christian: because in all the theorems involved the non-split case never differs form the good ordinary

case. Only the split multiplicative case is exceptional]]
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9 If the L-series vanishes to the first order

We suppose for this section that E has good and ordinary reduction at p and that the
complex L-series L(E, s) has a zero of order 1 at s = 1. The method of Heegner points
and the theorem of Kolyvagin show again that X(E/Q) is finite and that the rank of
E(Q) is equal to 1. Let P be a choice of generator of the free part of the Mordell-Weil
group (modulo torsion). Suppose that the p-adic height ĥp(P ) is nonzero. Thanks to
a theorem of Perrin-Riou in [PR87], we must have the following equality of rational
numbers

1

Reg(E/Q)
· L

′(E, 1)

ΩE

=
1

Regp(E/Q)
·

L′p(E, 0)

(1− 1
α
)2 · log(κ(γ))

where, on the left hand side, we have the canonical real-valued regulator Reg(E/Q) =
ĥ(P ) and the leading coefficient of L(E, s), while, on the right hand side, we have
the p-adic regulator Regp(E/Q) = ĥp(P ) and the leading term of the p-adic L-series.
By the conjecture of Birch and Swinnerton-Dyer (or its p-adic analogue), this rational
number should be equal to

Q
cυ ·#X(E/Q) · (#E(Q)tors)

−2. By Kato’s theorem, one
knows that the characteristic series fE(T ) of the Selmer group divides Lp(E, T ); at
least up to a power of p. Hence the series fE(T ) has a zero of order 1 at T = 0 and
its leading term divides the above rational number in Qp (here we use that E(Q) has
rank 1 so T | fE(T )). Hence we have

Theorem 8.
Let E/Q be an elliptic curve with good ordinary reduction at the odd prime p. Suppose
that the representation ρ̄p is surjective onto GL2(Fp) or that the curve admits an isogeny
of degree p defined over Q. If L(E, s) has a simple zero at s = 1, then the p-primary
part of X(E/Q) is finite and its valuation is bounded by

ordp(#X(E/Q)(p)) 6 ordp

„
(#E(Q)tors)

2Q
cυ

· 1

Reg(E/Q)
· L

′(E, 1)

ΩE

«
In other words the Birch and Swinnerton-Dyer conjecture if true up to a factor

involving only bad and supersingular primes, and primes for which the representation
is neither surjective nor has its image contained in a Borel subgroup.

10 The algorithm for the rank
36 [[36]]

37

[[37]]
Let E/Q be an elliptic curve. We have now a possibility of computing upper bounds

on the rank r of the Mordell-Weil group E(Q). For this purpose, we choose a prime p
satisfying the following conditions

• p > 2,

• E has good reduction at p.

By computing the analytic p-adic L-function Lp(E, T ) to a certain precision, we find
an upper bound, say b, on the order of vanishing of Lp(E, T ) at T = 0. Then

b > ordT=0 Lp(E, 1) > ordT=0 fE(T ) > r

by Kato’s theorems 5 and 6 and by the theorems 3 and 4. Hence we have an upper
bound on the rank r.

36[[William: The procedure described in this section is NOT an algorithm. It depends on “the p-adic Birch
and Swinnerton-Dyer conjecture tells us exactly what the needed precision should be”, but my understanding
is that we do not know enough of that conjecture to read off this precision. Thus given current theorems, we
would never know when we’re done. So this section is not about an algorithm – or it is about an algorithm
that is conditional on knowing the p-adic BSD conjecture. Please clarify.]]

37[[Christian: I agree. So I changed it, but I am not very good in writing such things. Maybe a formal
algorithm would be better]]
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Proposition 9. The computation of an approximation of the p-adic L-series of E for
an odd prime p of good reduction produces an upper bound on the rank r of the Mordell-
Weil group E(Q).

By searching for points of small height on E at the same time, one obtains also
a lower bound on the rank r. Simultaneously one can increase the precision of the
computation of the p-adic L-function in order to try to lower the bound b. Eventually
the lower bound is equal to the upper bound, unless the p-adic Birch and Swinnerton-
Dyer conjecture 5 or 6 is false. This is very similar to the algorithm described in
Proposition 1, except that we do know here that our upper bounds are unconditional.
But we do not know if the algorithm terminates after finitely many steps. Summarizing
we can claim the following.

Proposition 10. There is an algorithm which aims to compute the rank r of an elliptic
curve E/Q using p-adic L-functions. The algorithm succeeds to determine r in a finite
amount of time, unless the p-adic Birch and Swinnerton-Dyer conjectures are false for
all odd primes p of good reduction.

Of course, the algorithm for computing the rank r using m-descents has the same
properties : It tries to determine the rank by searching points and by bounding r from
above by the rank of the various m-Selmer groups. This algorithm terminates after
finitely many steps unless all the p-primary parts of the Tate-Shafarevich groups are
infinite.

But the two algorithms are fundamentally different. The m-descent algorithm is
fast and well-implemented for small m, but it would be extremely time-consuming for
larger m, like m > 8. 38 [[38]]

10.1 Technical remarks

The second condition on the prime p is too strict. We may actually allow primes
of multiplicative reduction, too. Of course in the exceptional case, when E has split
multiplicative reduction, the upper bound b on the order of vanishing of the p-adic
L-function Lp(E, T ) at T = 0 satisfies b > r + 1.

Note that, assuming that the p-adic Birch and Swinnerton-Dyer conjecture holds,
it is easy to predict the needed precision in the computation of the p-adic L-series. So
one can actually compute immediately with the precision which should be sufficient
and concentrate on the search of points of small heights.

For all practical purposes, one has to take p as small as possible. The computation
of the leading term of Lp(E, T ) for curves of higher rank r is very time-consuming
for large p. Also one should avoid primes p with supersingular or split multiplicative
reduction as there the needed precision is much higher and the computation of b is
much slower.

11 The algorithm for the Tate-Shafarevich group
39 [[39]]

The second algorithm that we are presenting here takes as input an elliptic curve E
and a prime p and tries to compute an upper bound on the p-primary part of X(E/Q).
To be able to apply the results in the previous section, we need the following conditions
on (E, p)

• p > 2,

• E does not have additive reduction at p.

• The image of ρ̄p is either the full group GL2(Fp) or it is contained in a Borel
subgroup.

38[[Christian: I think I should add more here]]
39[[Christian: This is rewritten, too.]]

16



Note that, for any given curve E, these conditions apply to all but finitely many primes
p.

Algorithm 11. Given an elliptic curve E/Q and a prime p satisfying the above conditions,
this algorithm tries to give an upper bound for #X(E/Q)(p).

1. Determine the rank r and the full Mordell-Weil group E(Q). Exit with an error if we
fail to do this.

2. Compute the p-adic regulator of E over Q using the efficient algorithm in [MSJ05].
Exit with an error if the p-adic height pairing can not shown to be non-degenerate.

3. Using modular symbols, compute an approximation of the leading term L∗p(E, 0) of
the p-adic L-function Lp(E, T ). If the order of vanishing ordT=0 Lp(E, T ) is equal to
r (or r+1 if E has split multiplicative reduction at p), then we print that X(E/Q)(p)
is finite, otherwise we have to increase the precision of the computation of Lp(E, T ).
It this fails to prove that ordT=0 Lp(E, T ) = r (or r + 1), then exit with an error.

4. Now compute the remaining information, like Tamagawa numbers cυ and the p-adic
multiplier εp. If p is an good ordinary prime or a prime at which E has non-split
multiplicative reduction then let

bp = ordp(L∗p(E, 0)) + 2 · ordp(#(E(Q)(p))− ordp(εp)

−
X

υ

ordp(cυ)− ordp(Regγ(E/Q)) ,

if p is supersingular, then let

bp = ordp((1− ϕ)−2
L
∗
p(E, 0))− ordp(Regp(E/Q))−

X
υ

ordp(cυ) ,

and finally if E has split multiplicative reduction at p then let

bp = ordp(L∗p(E, 0)) + 2 · ordp(#(E(Q)(p))− ordp(Lp)

−
X

υ

ordp(cυ)− ordp(Regγ(E/Q)) .

5. Return that #X(E/Q)(p) is bounded by pbp .

Proof. When arriving at step 4, we have shown that conjecture 3 (or conjecture 4 in
the supersingular case) on the non-degeneracy of the p-adic holds and that X(E/Q)(p)
is indeed finite by theorem 3 (or theorem 4 in the supersingular case). Moreover this
theorems show that

ordp(#X(E/Q)(p)) = ordp(f∗E(0)) + ordp

„
(#E(Q)(p))2

εp ·
Q

υ cυ
· 1

Regγ(E/Q)

«
in the ordinary case (or the same formula where εp replaces by Lp in the split multi-
plicative case) and

ordp(#X(E/Q)(p)) = ordp((1− ϕ)−2 f∗E(0))− ordp(Regp(E/Q))− ordp(
Y
υ

cυ)

in the supersingular case. Finally use Kato’s theorem 5 stating that ordp(f∗E(0)) 6
ordp(L∗p(E, 0)) to prove that bp is indeed an upper bound on ordp(X(E/Q)(p)).

Note that the only inequality in the proof comes from Kato’s theorem. If the main
conjecture holds, and in some cases this is known, then the resulting bound is the actual
order of X(E/Q)(p).
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11.1 Technical remarks

In step 1 we may use several ways to determine the rank and the Mordell-Weil group.
First compute the modular symbol [0]+. If it is not zero, we have that L(E, 1) 6= 0 and
the rank has to be 0. If the order of vanishing of L(E, s) at s = 1 is 1, we may use
Heegner points to find the full Mordell-Weil group, which then is of rank 1. Otherwise
we have to use descent methods or the algorithm in the previous section to bound the
rank from above and a search of points of small height to find a lower bound. When
enough points are found to generate a group of finite index, one has to saturate the
group using infinite descent in order to find the full group E(Q). In practice this step
does not create any problems as step 3 is usually computationally more difficult.

The implementation of the algorithm in [MSJ05] can also be used to compute the
p-adic heights for supersingular primes as in both cases one needs to know the action
of ϕ on Dp(E).

In step 3, it is easy to determine the precision that will be needed to compute the
p-adic valuation of the leading term L∗p(E, 0) if one assumes the complex and the p-adic
version of the conjecture of Birch and Swinnerton-Dyer. Hence it is easy to decide when
to exit at this step.

The algorithm exits with an error only if the Mordell-Weil group could not be
determined (in step 1), if conjecture 3 or 4 is wrong (in step 2), if the p-primary part
of X(E/Q) is infinite or if the main conjecture is false (both in step 3). Hence not the
full variant of the p-adic Birch and Swinnerton-Dyer conjecture is needed, only weaker
statements.

12 Numerical results
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Boston, 1981, pp. 1–14.

[Ber82] Daniel Bertrand, Valuers de fonctions thêta et hauteur p-adiques, Semi-
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