A brief note on computing p-adic L-series of elliptic curves

Robert Pollack

February 3, 2007

1 Definition of *p*-adic *L*-series

Let E/\mathbf{Q} be an elliptic curve. Fix p a prime number. Denote by $\left[\frac{r}{s}\right]^+$ the positive modular symbol of E associated to $\frac{r}{s}$ (defined up to choice of sign). Let α be a root of $x^2 - a_p x + p$ with $\operatorname{ord}_p(\alpha) < 1$. Here $a_p := p + 1 - E(\mathbf{F}_p)$. Such an α is unique in the ordinary case and is actually in \mathbf{Z}_p^{\times} . In the supersingular case, there are two choices for alpha both conjugate in a quadratic extension of \mathbf{Q}_p . Define a distribution on \mathbf{Z}_p^{\times} by

$$\mu_{E,\alpha}^+(a+p^n\mathbf{Z}_p) = \frac{1}{\alpha^n} \left[\frac{a}{p^n}\right]^+ - \frac{1}{\alpha^{n+1}} \left[\frac{a}{p^{n-1}}\right]^+$$

Then the *p*-adic *L*-series of *E* is defined as a function on the \mathbf{C}_p -valued characters of \mathbf{Z}_p^{\times} by integration with respect to $\mu_{E,\alpha}^+$. Here,

$$L_p(E,\alpha,\chi) = \int_{\mathbf{Z}_p^{\times}} \chi \ d\mu_{E,\alpha}^+$$

where $\chi : \mathbf{Z}_p^{\times} \to \mathbf{C}_p$ is a character.

2 Powers series expression for the *p*-adic *L*-series

Pick γ a topological generator of $1+pZ_p$. Then characters of $1+pZ_p$ are defined uniquely by their value on γ . For $u \in \mathbf{C}_p$ with $|u-1|_p < 1$, define a character χ_u on \mathbf{Z}_p^{\times} by first taking the natural projection of \mathbf{Z}_p^{\times} onto $1+pZ_p$ and then mapping γ onto u.

The *p*-adic *L*-series $L_p(E, \alpha, \chi_u)$ is then analytic in the variable *u* and we will denote its expansion about u = 1 by $L_{E,p,\alpha}(T) \in \mathbf{Q}_p(\alpha)[[T]]$. This power series is convergent on the open unit disc of \mathbf{C}_p . We have that

$$L_{E,p,\alpha}(u-1) = L_p(E,\alpha,\chi_u).$$

3 Explicit polynomial approximations of $L_{E,p,\alpha}(T)$

We can approximate $\int_{\mathbf{Z}_p^{\times}} \chi \ d\mu_{E,\alpha}^+$ via Riemann sums. The details of this calculation will not be done here. However, the end result is a sequence $L_n(T)$ of polynomials in $\mathbf{Q}_p(\alpha)[T]$ that converge to the *p*-adic *L*-series. Here,

$$L_n(T) = \sum_{j=0}^{p^{n-1}-1} \left(\sum_{a=1}^{p-1} \mu_{E,\alpha}^+ \left(\{a\} \gamma^j + p^n Z_p \right) \right) \cdot (1+T)^j$$

where $\{a\}$ is the Teichmuller lifting of a.

4 Computer calculations

The above formula for $L_n(T)$ allows one to readily approximate them on a computer. One can only approximate them as they have $Q_p(\alpha)$ coefficients.

In the ordinary case, α is in \mathbb{Z}_p^{\times} and $L_n(T)$ should have \mathbb{Z}_p coefficients. This is known when E[p] is irreducible, but it is conjectured to happen generally. Analyzing the rate of convergence of the $L_n(T)$, one can see that it suffices to compute everything mod p^n (taking care with possible p's in the denominators of the modular symbols). Computing $\{a\}, \alpha$ and $(1+T)^j \mod p^n$ is very easy. All that is left to compute is $\left[\frac{a}{p^n}\right]^+$ and $\left[\frac{a}{p^{n-1}}\right]^+$ for a prime to p between 1 and p^n . This is the most time consuming part of the calculation.

In the supersingular case, α is in a quadratic extension of \mathbf{Q}_p and $\mu_{E,\alpha}^+$ has p's in its denominators on order about $p^{\frac{n}{2}}$. In this case $L_n(T)$ will not have \mathbf{Z}_p coefficients. Nonetheless, no essential information is lost if one computes $\{a\}$ and $(1+T)^j$ only mod p^n . The end result should be that $L_n(T) = G_n(T) + H_n(T) \cdot \alpha$ with $G_n, H_n \in \mathbf{Q}_p[T]$ and scaling by $p^{\frac{n+2}{2}}$ will put both of them in $\mathbf{Z}_p[[T]]$.