A brief note on computing p-adic L-series of elliptic curves

Robert Pollack

February 3, 2007

1 Definition of p-adic L-series

Let E / \mathbf{Q} be an elliptic curve. Fix p a prime number. Denote by $\left[\frac{r}{s}\right]^{+}$the positive modular symbol of E associated to $\frac{r}{s}$ (defined up to choice of sign). Let α be a root of $x^{2}-a_{p} x+p$ with $\operatorname{ord}_{p}(\alpha)<1$. Here $a_{p}:=p+1-E\left(\mathbf{F}_{p}\right)$. Such an α is unique in the ordinary case and is actually in \mathbf{Z}_{p}^{\times}. In the supersingular case, there are two choices for alpha both conjugate in a quadratic extension of \mathbf{Q}_{p}. Define a distribution on \mathbf{Z}_{p}^{\times}by

$$
\mu_{E, \alpha}^{+}\left(a+p^{n} \mathbf{Z}_{p}\right)=\frac{1}{\alpha^{n}}\left[\frac{a}{p^{n}}\right]^{+}-\frac{1}{\alpha^{n+1}}\left[\frac{a}{p^{n-1}}\right]^{+}
$$

Then the p-adic L-series of E is defined as a function on the \mathbf{C}_{p}-valued characters of \mathbf{Z}_{p}^{\times}by integration with respect to $\mu_{E, \alpha}^{+}$. Here,

$$
L_{p}(E, \alpha, \chi)=\int_{\mathbf{z}_{p}^{\times}} \chi d \mu_{E, \alpha}^{+}
$$

where $\chi: \mathbf{Z}_{p}^{\times} \rightarrow \mathbf{C}_{p}$ is a character.

2 Powers series expression for the p-adic L-series

Pick γ a topological generator of $1+p Z_{p}$. Then characters of $1+p Z_{p}$ are defined uniquely by their value on γ. For $u \in \mathbf{C}_{p}$ with $|u-1|_{p}<1$, define a character χ_{u} on \mathbf{Z}_{p}^{\times}by first taking the natural projection of \mathbf{Z}_{p}^{\times}onto $1+p Z_{p}$ and then mapping γ onto u.

The p-adic L-series $L_{p}\left(E, \alpha, \chi_{u}\right)$ is then analytic in the variable u and we will denote its expansion about $u=1$ by $L_{E, p, \alpha}(T) \in \mathbf{Q}_{p}(\alpha)[[T]]$. This power series is convergent on the open unit disc of \mathbf{C}_{p}. We have that

$$
L_{E, p, \alpha}(u-1)=L_{p}\left(E, \alpha, \chi_{u}\right)
$$

3 Explicit polynomial approximations of $L_{E, p, \alpha}(T)$

We can approximate $\int_{\mathbf{Z}_{p}^{\times}} \chi d \mu_{E, \alpha}^{+}$via Riemann sums. The details of this calculation will not be done here. However, the end result is a sequence $L_{n}(T)$ of polynomials in $\mathbf{Q}_{p}(\alpha)[T]$ that converge to the p-adic L-series. Here,

$$
L_{n}(T)=\sum_{j=0}^{p^{n-1}-1}\left(\sum_{a=1}^{p-1} \mu_{E, \alpha}^{+}\left(\{a\} \gamma^{j}+p^{n} Z_{p}\right)\right) \cdot(1+T)^{j}
$$

where $\{a\}$ is the Teichmuller lifting of a.

4 Computer calculations

The above formula for $L_{n}(T)$ allows one to readily approximate them on a computer. One can only approximate them as they have $Q_{p}(\alpha)$ coefficients.

In the ordinary case, α is in \mathbf{Z}_{p}^{\times}and $L_{n}(T)$ should have \mathbf{Z}_{p} coefficients. This is known when $E[p]$ is irreducible, but it is conjectured to happen generally. Analyzing the rate of convergence of the $L_{n}(T)$, one can see that it suffices to compute everything mod p^{n} (taking care with possible p 's in the denominators of the modular symbols). Computing $\{a\}, \alpha$ and $(1+T)^{j} \bmod p^{n}$ is very easy. All that is left to compute is $\left[\frac{a}{p^{n}}\right]^{+}$and $\left[\frac{a}{p^{n-1}}\right]^{+}$for a prime to p between 1 and p^{n}. This is the most time consuming part of the calculation.

In the supersingular case, α is in a quadratic extension of \mathbf{Q}_{p} and $\mu_{E, \alpha}^{+}$has p 's in its denominators on order about $p^{\frac{n}{2}}$. In this case $L_{n}(T)$ will not have \mathbf{Z}_{p} coefficients. Nonetheless, no essential information is lost if one computes $\{a\}$ and $(1+T)^{j}$ only $\bmod p^{n}$. The end result should be that $L_{n}(T)=G_{n}(T)+H_{n}(T) \cdot \alpha$ with $G_{n}, H_{n} \in \mathbf{Q}_{p}[T]$ and scaling by $p^{\frac{n+2}{2}}$ will put both of them in $\mathbf{Z}_{p}[[T]]$.

