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Outline

1. Implementation
Wrapping matplotlib classes

2. Basic Functions
Functions provided to users

3. Plotting
Making image files from SAGE functions

4. Visualizing Number Theory (the fun part)
Using SAGE mathematical and graphics functions together

Alex Clemesha Visualization of Number Theory with SAGE



I Desire:
We want SAGE to have excellent graphics capabilities

I Solution:
Gnuplot license says: “ Permission to modify the software is
granted, but not the right to distribute the complete modified
source code.”

PyX, still considering, 3D capabilities look good, but no pngs,
svg, but not ruled out.

Use matplotlib by John Hunter
(http://matplotlib.sourceforge.net)!

...but matplotlib provides users a very “Matlab-like” interace,
because after all thats what it was designed to do. So instead
we wrap matplotlib’s classes with our own more
“Mathematica-like” interface.
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I class that handles all the data of a graphic

from matplotlib.figure import Figure

I classes that handle the generation of the image files
for png files:

FigureCanvasAgg

for ps or eps files:

FigureCanvasPS

for svg files (svg is an XML graphics format):

FigureCanvasSVG
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Basics functions

I plotting

plot(f, xmin, xmin, **options)
parametric_plot((fx, fy), xmin, xmax, **options)
list_plot(L, **options)

I Graphics objects

circle((x, y), radius)
disk((x, y), radius, theta1, theta2)
line(xydata)
point((x, y))
polygon(xydata)
text(string, (x, y))
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Making the image files

I Once you have Graphics object g you can:

g.show(**options)
g.save(**options)

I If you have several Graphics objects g1,...,gn you can:

ga = graphics_array([[g1, g2],[g3, g4]])
ga.show(**options)
ga.save(**options)
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User defined functions

Two (equivalent) ways of creating user defined functions:

I Regular functions:

def zrf(t):
return zeta(1/2 + I*t).real()

def zif(t):
return zeta(1/2 + I*t).imag()

I Lambda functions:

zrl = lambda t: zeta(1/2 + I*t).real()
zil = lambda t: zeta(1/2 + I*t).imag()
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p1 = plot(zrf,-25,25,rgbcolor=(0,0,1))
p2 = plot(zif,-25,25,rgbcolor=(1,0,0))
(p1 + p2).save(’zeta.png’,figsize=[4,4])
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It is conjectured that all values s = σ + it such that ζ(s) = 0,
σ > 0, have the form s = 1/2 + it. Here we look at the real part
of ζ(s) versus the imaginary part.

p3 = parametric_plot((zrl, zil),-25,25, \
rgbcolor=hue(0.6),plot_points=1000)

p3.save(’zetap.png’,ymin=-2,ymax=2,figsize=[3,3])
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Proposition: Let p be a prime number congruent to 1 mod 4.
There exists a right triangle with integer sides such that the length
of the hypotenuse is p (e.g., 5, 13, 17). In Z[i ] = {a + bi |a, b ∈ Z}
the numbers p lose their irreducibilty, so we can factor them there.
For example: 132 = (3 + 2i)2(3− 2i)2 = 52 + 122

#prime number congruent to 1 mod 4:
L = [p for p in primes(30) if (p-1)%4 == 0]; L
[5,13,17,29]

#construct the Number Field
K.<I> = NumberField(x^2 + 1)
K.factor_integer(13)[0][0].gens_reduced()[0]
3*I - 2
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gg = Graphics() #empty Graphics object
gl = [] #empty list

for p in L:
z = K.factor_integer(p)[1][0].gens_reduced()[0]
zz = z^2
a,b = abs(zz[0]),abs(zz[1])
lv = [[0, 0], [a, 0], [a, b], [0, 0]]
l = line(lv, rgbcolor=(0,0,1))
sv = (a, b, sqrt(a^2 + b^2))
s = "$(%s,\ %s,\ %s)$"%sv
t = text(s, (2*a/3, b/4), fontsize=8)
gg += l
gl.append((l + t))
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Here is the result of connecting the points we found from the
above code which factors prime numbers in Z[i ].
gg.save(’triples1.png’,figsize=[6,4])
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Here is a graphics array of the above triangles.
graphics array([gl[0:2],gl[2:4]]).save(’triples2.png’)
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Here we take the first 1000 coefficients of the q−expansion of the
modular form corresponding to the elliptic curve y2 + y = x3 + x2 − 2x .

E = EllipticCurve("37a")
ans = E.anlist(1000)
g,h = Graphics(),Graphics()
m = abs(max(ans))
for i,an in zip(range(len(ans)),ans):

c = (0,0,1) #blue
if is_prime(i):

c = (1,0,0) #if prime color point red
h += point((i,an), pointsize=2, rgbcolor=c)

g += point((i,an), pointsize=2, rgbcolor=c)
g += plot(lambda x: 2*sqrt(x), 2, n, rgbcolor=(0,1,0))
h += plot(lambda x: 2*sqrt(x), 2, n, rgbcolor=(0,1,0))
g.save("ec37an.eps",figsize=[3,3])
h.save("ec37ap.eps",figsize=[3,3])
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It is a theorem by Hasse that |ap| ≤ 2
√

p for all primes p. Prime
points are red, non-prime points are blue and the line 2

√
p is green.
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Here is some SAGE code that draws spirals for a given constant c.

c = 37/41
g = Graphics()
for k in range(1000):

xr = k*cos(2*pi*c*k)
yr = k*sin(2*pi*c*k)
g += point((xr, yr), rgbcolor=hue(0.4+0.2*(k%2)))

g.save(’spiral.png’, figsize=[6,6], draw_axis=False)
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If you have any c ∈ Q you will always eventually see ’arms’ appear,
i.e., the point (cos(2πck), sin(2πck)) will repeat as k runs through
the integers. For the below examples k = 0, ..., 2000.

first with c = 1/5 then with c = 37/41.
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Above code with c =
√

2. Note that
√

2 has the continued fraction
1 + 1

2+ 1

2+ 1
2+..

.
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c = golden ratio. Note that the golden ratio has continued
fraction. 1 + 1

1+ 1

1+ 1
1+..

.
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