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The Pythagorean Theorem

a2 + b2 = c2

c

a

b Pythagoras
Approx 569–475BC
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Pythagorean Triples

Triples of integers a, b, c such that

a2 + b2 = c2

(3,4,5)
(5,12,13)
(7,24,25)
(9,40,41)
(11,60,61)
(13,84,85)
(15,8,17)
(21,20,29)
(33,56,65)
(35,12,37)
(39,80,89)
(45,28,53)
(55,48,73)
(63,16,65)
(65,72,97)
(77,36,85)...
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Enumerating Pythagorean Triples

(−1,0)

(0, t)

(x, y) Slope = t =
y

x + 1

x =
1 − t2

1 + t2

y =
2t

1 + t2

If t = r
s
, then a = s2 − r2, b = 2rs, c = s2 + r2

is a Pythagorean triple, and all primitive unordered triples arise
in this way. We can solve two-variable quadratic equations.
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What About Two-variable Cubic
Equations?

Elliptic curve: a (smooth) plane cubic curve
with a rational point (possibly “at infinity”).
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y2 + y = x3 − x

EXAMPLES

y2 + y = x3 − x

x3 + y3 = z3
(homogeneous)

y2 = x3 + ax + b

3x3 + 4y3 + 5z3 = 0
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The Secant Process
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y2 + y = x3 − x

(2,−3)

Fermat?
Obtain a third

(rational!) solution from

two (rational) solutions.
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The Tangent Process

New rational point from a single rational point.
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Iterate the Tangent Process

Fermat

(0,0)

(1,−1)

(2,−3)

(

21

25
,− 56

125

)

(

480106

4225
,
332513754

274625

)

(

53139223644814624290821

1870098771536627436025
,−12282540069555885821741113162699381

80871745605559864852893980186125

)
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The Group Operation
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y2 + y = x3 − x

∞Point at infinity

⊕ =

(−1,0) ⊕ (0,−1) = (2,2)

The set of rational points

on E forms an abelian group.
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SAGE: Software for Algebra and Geometry Experimentation

------------------------------------------------------------------------
SAGE Version 0.7.8, Export Date: 2005-10-05-1650
Distributed under the terms of the GNU General Public License (GPL)
IPython shell -- for help type <object>?, <object>??, %magic, or help

------------------------------------------------------------------------
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: 2*P

(1, 0)
sage: 10*P

(161/16, -2065/64)
sage: 20*P

(683916417/264517696, -18784454671297/4302115807744)
sage: 50*P

(24854671723753819921380822649312751965653209957505606561/
29418784545883822188243570198416287437001335203340988816,

-65343698144990446428357439135977881124804221113554492507243553294512904673973173265/
159564798621271700005828929931002008441744804573070282618997694000714045237979692864)

If you are interested in improving this software, contact me. I

have grant funds to hire undergraduates.

http://modular.ucsd.edu/sage
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The First 150 Multiples of (0,0)

(The bluer the point, the

bigger the multiple.)

Fact: The group E(Q) is

generated by (0,0).

In contrast, y2 + y = x3 − x2 has

only 5 rational solutions!

What is going on here?
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Mordell’s Theorem

Theorem (Mordell). The group E(Q) of rational points on an

elliptic curve is a finitely generated abelian group:

E(Q) ∼= Zr ⊕ T,

with T finite.

Mazur classified the possibilities for T . It is conjectured that r

can be arbitrary, but the biggest r ever found is (probably) 24.
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The Simplest Solution
Can Be Huge

Simplest solution to y2 = x3 + 7823:

x =
2263582143321421502100209233517777

143560497706190989485475151904721

y =
186398152584623305624837551485596770028144776655756

1720094998106353355821008525938727950159777043481

(Found by Michael Stoll in 2002.)
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The Central Question

When does an elliptic curve

have infinitely many solutions?
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Conjectures Proliferated

“The subject of this lecture is rather a special one. I want to de-

scribe some computations undertaken by myself and Swinnerton-

Dyer on EDSAC, by which we have calculated the zeta-functions

of certain elliptic curves. As a result of these computations we

have found an analogue for an elliptic curve of the Tamagawa

number of an algebraic group; and conjectures have proliferated.

[...] though the associated theory is both abstract and technically

complicated, the objects about which I intend to talk are usually

simply defined and often machine computable; experimentally

we have detected certain relations between different in-

variants, but we have been unable to approach proofs of these

relations, which must lie very deep.” – Birch 1965
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Counting Solutions Modulo p

N(p) = # of solutions (mod p)

y2 + y = x3 − x (mod 7)
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The Error Term

Let

ap = p + 1 − N(p).

Hasse proved that

|ap| ≤ 2
√

p.

a2 = −2, a3 = −3, a5 = −2, a7 = −1, a11 = −5, a13 = −2,

a17 = 0, a19 = 0, a23 = 2, a29 = 6, . . .
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Stand and Be Counted

Swinnerton-Dyer
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Birch and Swinnerton-Dyer’s Guess

Swinnerton-Dyer

If an elliptic curve E has positive rank, then perhaps N(p) is on

average larger than p, for many primes p. Maybe

fE(x) =
∏

p≤x

p

N(p)
→ 0 as x → ∞

exactly when E has infinitely many solutions?
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Compute fE(x) =
∏

p≤x

p

N(p)

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.Np(7)
9
sage: def f(x): return mul([p / E.Np(p) for p in primes(x)])

...:
sage: f(3)

6/35
sage: f(20)

2717/69120
sage: f(20)*1.0

0.039308449074074076
sage: def f(x): return mul([float(p / E.Np(p)) for p in primes(x)])
sage: sage: f(10000)

0.012692560835552851
sage: f(20000)

0.013677015955706331
sage: f(100000)

0.010276462823395276
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Graphs of fE(x) =
∏

p≤x
p

N(p)

The following are log-scale graphs of fE(x):

e0 e1 e2 e3 e4 e5 e6

1

11A: y2 + y = x3 − x2 − 10x − 20

e0 e1 e2 e3 e4 e5 e6

1

14A: y2 + xy + y = x3 + 4x − 6

e0 e1 e2 e3 e4 e5 e6

1

37A: y2 + y = x3 − x

e0 e1 e2 e3 e4 e5 e6

1

37B: y2 + y = x3 + x2 − 23x − 50

e0 e1 e2 e3 e4 e5 e6

1

389A: y2 + y = x3 + x2 − 2x
e0 e1 e2 e3 e4 e5 e6

1

5077A: y2 + y = x3 − 7x + 6e0 e1 e2 e3 e4 e5 e6

1

33A: y2 + xy = x3 + x2 − 11x

e0 e1 e2 e3 e4 e5 e6

1

681B: y2 + xy = x3 + x2 − 1154x − 15345

(Shaf.-Tate group order 9)
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Something Better: The L-Function

Theorem (Wiles et al., Hecke) This function extends to a

holomorphic function on the whole complex plane:

L(E, s) =
∏

p∤∆







1

1 − ap · p−s + p · p−2s





 .

Note that formally,

L(E,1) =
∏

p∤∆

(

1

1 − ap · p−1 + p · p−2

)

=
∏

p∤∆

(

p

p − ap + 1

)

=
∏

p∤∆

p

Np
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Real Graph of the L-Series of
y2 + y = x3 − x
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More Graphs of Elliptic Curve
L-functions
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The Birch and Swinnerton-Dyer
Conjecture

Conjecture: Let E be any elliptic curve over Q. Then E has

infinity many solutions if and only if L(E,1) = 0. (More precisely,

the order of vanishing of L(E, s) as s = 1 equals the rank of

E(Q).)
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The Kolyvagin and Gross-Zagier
Theorem

Theorem: If L(E,1) 6= 0 then E has only finitely many solutions.

If L(E,1) = 0 but L′(E,1) 6= 0, then E(Q) has rank 1.
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