Solving Cubic Equations: An Introduction to the Birch and Swinnerton-Dyer Conjecture

William Stein (http://modular.ucsd.edu/talks) October 6, 2005, UCSD Undergraduate Colloquium

The Pythagorean Theorem

Pythagoras Approx 569–475BC

Enumerating Pythagorean Triples

is a Pythagorean triple, and all primitive unordered triples arise in this way. We can solve two-variable quadratic equations.

What About Two-variable Cubic Equations?

Elliptic curve: a (smooth) plane **cubic curve** with a rational point (possibly "at infinity").

The Secant Process

Dbtain a third ³ rational!) solution from ² wo (rational) solutions.

Fermat?

The Tangent Process

New rational point from a single rational point.

7

Iterate the Tangent Process

 $\left({{53139223644814624290821}\over {1870098771536627436025}}, -{{12282540069555885821741113162699381}\over {80871745605559864852893980186125}}
ight)$

SAGE: Software for Algebra and Geometry Experimentation

```
SAGE Version 0.7.8, Export Date: 2005-10-05-1650
 Distributed under the terms of the GNU General Public License (GPL)
 IPython shell -- for help type <object>?, <object>??, %magic, or help
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
      Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: 2*P
      (1, 0)
sage: 10*P
      (161/16, -2065/64)
sage: 20*P
      (683916417/264517696, -18784454671297/4302115807744)
sage: 50*P
      (24854671723753819921380822649312751965653209957505606561/
               29418784545883822188243570198416287437001335203340988816,
      -65343698144990446428357439135977881124804221113554492507243553294512904673973173265/
       159564798621271700005828929931002008441744804573070282618997694000714045237979692864)
```

If you are interested in improving this software, contact me. I have grant funds to hire undergraduates. http://modular.ucsd.edu/sage

The First 150 Multiples of (0,0)

(The bluer the point, the bigger the multiple.)

Fact: The group $E(\mathbb{Q})$ is generated by (0,0).

In contrast, $y^2 + y = x^3 - x^2$ has only 5 rational solutions!

What is going on here?

Mordell's Theorem

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a **finitely generated abelian group**:

$E(\mathbb{Q})\cong\mathbb{Z}^r\oplus T,$

with T finite.

Mazur classified the possibilities for T. It is conjectured that r can be arbitrary, but the biggest r ever found is (probably) 24.

The Simplest Solution Can Be Huge

Simplest solution to $y^2 = x^3 + 7823$:

$x = \frac{2263582143321421502100209233517777}{1}$

143560497706190989485475151904721

 $y = \frac{186398152584623305624837551485596770028144776655756}{1720094998106353355821008525938727950159777043481}$

(Found by Michael Stoll in 2002.)

The Central Question

When does an elliptic curve have infinitely many solutions?

Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these – Birch 1965 relations, which must lie very deep."

The Error Term

 $a_p = p + 1 - N(p).$

Hasse proved that

Let

 $|a_p| \leq 2\sqrt{p}.$

 $a_2 = -2, \quad a_3 = -3, \quad a_5 = -2, \quad a_7 = -1, \quad a_{11} = -5, \quad a_{13} = -2,$ $a_{17} = 0, \quad a_{19} = 0, \quad a_{23} = 2, \quad a_{29} = 6, \quad \dots$

Stand and Be Counted

Swinnerton-Dyer

Birch and Swinnerton-Dyer's Guess

If an elliptic curve E has positive rank, then perhaps N(p) is on average larger than p, for many primes p. Maybe

$$f_E(x) = \prod_{p \le x} \frac{p}{N(p)} \to 0 \text{ as } x \to \infty$$

exactly when E has infinitely many solutions?

Swinnerton-Dyer

Compute
$$f_E(x) = \prod_{p \le x} \frac{p}{N(p)}$$

```
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.Np(7)
9
sage: def f(x): return mul([p / E.Np(p) for p in primes(x)])
   . . . :
sage: f(3)
      6/35
sage: f(20)
      2717/69120
sage: f(20)*1.0
      0.039308449074074076
sage: def f(x): return mul([float(p / E.Np(p)) for p in primes(x)])
sage: sage: f(10000)
      0.012692560835552851
sage: f(20000)
      0.013677015955706331
sage: f(100000)
      0.010276462823395276
```


Graphs of
$$f_E(x) = \prod_{p \le x} \frac{p}{N(p)}$$

The following are log-scale graphs of $f_E(x)$: 681B: $y^2 + xy = x^3 + x^2 - 1154x - 15345$ (Shaf.-Tate group order 9) 33A: $y^2 + xy = x^3 + x^2 - 11x$ 37B: $y^2 + y = x^3 + x^2 - 23x - 50$ \bigvee 14A: $y^2 + xy + y = x^3 + 4x - 6$ ~ 11 A: $y^2 + y = x^3 - x^2 - 10x - 20$ 37A: $y^2 + y = x^3 - x$ 389A: $y^2 + y = x^3 + x^2 - 2x$ 5077A: $y^2 + y = x^3 + x^2 - 2x$ e^{6} e^{4} e^{5} e^{3} e^0 e^2 e^1

Something Better: The *L*-Function

Theorem (Wiles et al., Hecke) This function extends to a holomorphic function on the whole complex plane:

$$L(E,s) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} \right).$$

Note that *formally*,

$$L(E,1) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-1} + p \cdot p^{-2}} \right) = \prod_{p \nmid \Delta} \left(\frac{p}{p - a_p + 1} \right) = \prod_{p \nmid \Delta} \frac{p}{N_p}$$

Real Graph of the *L*-Series of $y^2 + y = x^3 - x$

More Graphs of Elliptic Curve L-functions

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let *E* be any elliptic curve over \mathbb{Q} . Then *E* has infinity many solutions if and only if L(E, 1) = 0. (More precisely, the order of vanishing of L(E, s) as s = 1 equals the rank of $E(\mathbb{Q})$.)

The Kolyvagin and Gross-Zagier Theorem

Theorem: If $L(E, 1) \neq 0$ then *E* has only finitely many solutions. If L(E, 1) = 0 but $L'(E, 1) \neq 0$, then $E(\mathbb{Q})$ has rank 1.

