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The Pythagorean Theorem

a2 + b2 = c2

c
a

b Pythagoras
Approx 569–475BC
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Pythagorean Triples

Triples of integers a, b, c such that

a2 + b2 = c2

(3,4,5)
(5,12,13)
(7,24,25)
(9,40,41)
(11,60,61)
(13,84,85)
(15,8,17)
(21,20,29)
(33,56,65)
(35,12,37)
(39,80,89)
(45,28,53)
(55,48,73)
(63,16,65)
(65,72,97)
(77,36,85)...
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Enumerating Pythagorean Triples

(−1,0)

(0, t)

(x, y) Slope = t =
y

x + 1

x =
1 − t2

1 + t2

y =
2t

1 + t2

If t = r
s, then a = s2 − r2, b = 2rs, c = s2 + r2

is a Pythagorean triple, and all primitive unordered triples
arise in this way.
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Fermat’s “Last Theorem”

No “Pythagorean triples” with exponent 3 or higher.
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Wiles’s Proof of FLT Uses Elliptic Curves

An elliptic curve is a nonsingular plane cubic curve
with a rational point (possibly “at infinity”).
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y2 + y = x3 − x

EXAMPLES

y2 + y = x3 − x

x3 + y3 = 1 (Fermat cubic)

y2 = x3 + ax + b

3x3 + 4y3 + 5 = 0
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The Frey Elliptic Curve

Suppose Fermat’s conjecture is FALSE. Then there is a prime

ℓ ≥ 5 and coprime positive integers a, b, c with aℓ + bℓ = cℓ.

Consider the corresponding Frey elliptic curve:

y2 = x(x − aℓ)(x + bℓ).

Ribet’s Theorem: This elliptic curve is not modular.

Wiles’s Theorem: This elliptic curve is modular.

Conclusion: Fermat’s conjecture is true.
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Counting Solutions Modulo p
N(p) = # of solutions (mod p)

y2 + y = x3 − x (mod 7)
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N(7) = 9
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Counting Points

Cambridge EDSAC: The first

point counting supercomputer...

Birch and Swinnerton-Dyer
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The Hecke Eigenvalue

Hasse

Let

ap = p + 1 − N(p).

Hasse proved that

|ap| ≤ 2
√

p.
For y2 + y = x3 − x:

a2 = −2, a3 = −3, a5 = −2, a7 = −1, a11 = −5, a13 = −2,

a17 = 0, a19 = 0, a23 = 2, a29 = 6, . . .
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Elliptic Curves are “Modular”

An elliptic curve is modular if the numbers ap are coefficients of

a “modular form”.

Theorem (Wiles et al.): Every elliptic curve over the rational

numbers is modular.

Wiles at the Institute for Advanced Study
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Modular Forms

The definition of modular forms as holomorphic functions satis-

fying a certain equation is very abstract.

I will skip the abstract definition, and instead give you an ex-

plicit “engineer’s recipe” for producing modular forms. In the

meantime, here’s a picture:
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Computing Modular Forms: Motivation

Motivation: Data about modular forms is extremely useful to

many research mathematicians (e.g., number theorists, cryptog-

raphers). This data is like the astronomer’s telescope images.

I want to compute modular forms on a huge scale using

the SDSC resources, and make the resulting database widely

available. I have done this on a small scale during the last 5

years — see http://modular.fas.harvard.edu/Tables/
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What to Compute: Newforms

For each positive integer N there is a finite list of newforms of

level N . E.g., for N = 37 the newforms are

f1 = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + · · ·
f2 = q + q3 − 2q4 − q7 + · · · ,

where q = e2πiz.

The newforms of level N determine all the modular forms of level

N (like a basis in linear algebra). The coefficients are algebraic

integers. Goal: compute these newforms.

Bad idea – write down many elliptic curves and compute the numbers ap

by counting points over finite fields. No good – this misses most of the

interesting newforms, and gets newforms of all kinds of random levels, but

you don’t know if you get everything of a given level.
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An Engineer’s Recipe for Newforms

Fix our positive integer N . For simplicity assume that N is prime.

1. Form the N + 1 dimensional Q-vector space V with basis the symbols
[0], . . . , [N − 1], [∞].

2. Let R be the suspace of V spanned by the following vectors, for
x = 0, . . . , N−1,∞:

[x] − [N − x]

[x] + [x.S]

[x] + [x.T ] + [x.T 2]

S =
(

0 −1
1 0

)

, T =
(

0 −1
1 −1

)

, and x.
(

a b
c d

)

= (ax + c)/(bx + d).

3. Compute the quotient vector space M = V/R. This involves “intelligent”
sparse Gauss elimination on a matrix with N + 1 columns.

4. Compute the matrix T2 on M given by

[x] 7→ [x. ( 1 0
0 2 )] + [x. ( 2 0

0 1 )] + [x. ( 2 1
0 1 )] + [x. ( 1 0

1 2 )].
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This matrix is unfortunately not sparse. Similar recipe for matrices Tn

for any n.

5. Compute the characteristic polynomial f of T2.

6. Factor f =
∏

gei

i . Assume all ei = 1 (if not, use a random linear combi-
nation of the Tn.)

7. Compute the kernels Ki = ker(gi(T2)). The eigenvalues of T3, T5, etc.,
acting on an eigenvector in Ki give the coefficients ap of the newforms
of level N .



Implementation

• I implemented code for computing modular forms that’s in-

cluded with MAGMA:

http://magma.maths.usyd.edu.au/magma/.

• Unfortunately, MAGMA is expensive and closed source, so

I’m reimplementing everything as part of SAGE:

http://modular.fas.harvard.edu/sage/.

• I’m teaching a course on this topic at UCSD this Fall.

• I’m finishing a book on these algorithms that will be pub-

lished by the American Mathematical Society.
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The Modular Forms Database Project

• Create a database of all newforms of level N for each N < 100000. This
will require many gigabytes to store. (50GB?)

• So far this has only been done for N < 7000 (and is incomplete), so
100000 is a major challenge.

• Involves sparse linear algebra over Q on spaces of dimension up to 200000
and dense linear algebra on spaces of dimension up to 25000.

• Easy to parallelize – run one process for each N .

• Will be very useful to number theorists and cryptographers.

• John Cremona has done something similar but only for the newforms
corresponding to elliptic curves (he’s at around 84000 right now).
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