Numbers to Elliptic Curyeg

ry of elliptic curves and modular forms is one subject where the
iverse branches of mathematics come together: complex analysis,
geometry, representation theory, number theory. While our point
I be number theoretic, we shall find ourselves using the type of
that one learns in basic courses in complex variables, real var-
gebra. A well-known feature of number theory is the abundance
s and theorems whose statements are accessible to high school
whose proofs either are unknown or, in some cases, are the
decades of research using some of the most powerful tools
entury mathematics. A

ate our choice of topics by one such theorem: an elegant
f so-called ““congruent numbers” that was recently roved
nnell 1983]. A few of the proofs of ecessary results go

§1. Congruent numbers

Here is part of what T i
T 1ate:)p; unnell’s theorem says (the full statement will be
Theorem (Tunnell). Let n be an odd s

o quarefree natural n :
two conditions : umber. Consider the

(A) n is congruent ;
(B) t.he number of_ triples of integers (x, y, z) satisfying 2x* + y?* + 82>
is equal to twice the number of triples satisfying 2x* + y + 32z = n,

Then (A) implies (B), and, if a weak form of the so-called Birch-Swinnerton-
Dyer conjecture is true, then (B) also implies (A).

n

The central concepts in the proof of Tunnell’s theorem— the Hasse- Weil
unction of an elliptic curve, the Birch-Swinnerton-Dyer conjecture,
r forms of half integer weight—will be discussed in later chapters.
ncern in this chapter will be to establish the connection between
numbers and a certain family of elliptic curves, in the process
ggg»deﬁnition and some basic properties of elliptic curves.
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o)

to verify that no two distinct triples X, Y, Z can lead to the same x. We leave
this to the reader (see the problems below). u]

PROBLEMS

1. Recall that a Pythagorean triple is a solutios
equation X? + Y2 = Z2 It is called “'primitive™ if X, ¥, Z have no common factor.
Suppose that a > b are two relatively prime positive integers, not both odd. Show

that X = a? = b%, Y =2ab, Z=a? + b2 form a primitive Pythagorean triple, and
that all primitive Pythagorean triples are obtained in this way.

n (X, Y, Z) in positive integers to the

S

Use Problem 1 to write a flowchart for an al,
gruent numbers (of course, not in increasin,
congruent numbers your algorithm gives. Note that there is no way of knowing
when a given congruent number » will appear in the list. For example, 101 is a
congruent number, but the first Pythagorean triple which leads to an area s? 101
involves twenty-two-digit numbers (see [Guy 1981, p. 106]). One hundred fifty-seven
~ is even worse (see Fig. 1.3). One cannot use this algorithm to establish that some n
- is not a congruent number. Technically, it is not a real algorithm, only a “semi-
algorithm™.

gorithm that lists all squarefree con-
g order). List the first twelve distinct

Show that if 1 were a congruent number, then the equation x* — y* = 4? would
have an integer solution with u odd.

e that 1 is not a congruent number. (Note: A eons‘ed_\lgﬁ@éi‘fl Fe

oposition 1 by

showing that

§2. A certain cubic equation

7

Pythagorean triple X” and Y’ have different parity, and Z’ is odd. We
conclude that (1) x = (Z/2)* = (Z’/2s)? has denominator divisible by 2 and
(2) the power of 2 dividing the denominator of Z is equal to the power of 2
dividing the denominator of one of the other two sides, while a strictly lower
power of 2 divides the denominator of the third side. (For example, in the
triangle in Fig. .2 with area 5, the hypotenuse and the shorter side have a 2 in
the denominator, while the other leg does not.) We conclude that a necessary
condition for the point (x, y) with rational coordinates on the curve y* =
x* — n’x to come from a right triangle is that x be a square and that its
denominator be divisible by 2. For example, when n = 31, the point (41372,
29520/7%) on the curve y? = x3 — 312x does not come from a triangle, even
though its x-coordinate is a square. We next prove that these two conditions
are sufficient for a point on the curve to come from a triangle.

Proposition 2. Let (x, y) be a point with rational coordinates on the curve
2 = x> — n’x. Suppose that x satisfies the two conditions - (i) it is the square
of a rational number and (ii) its denominator is even. Then there exists a right
triangle with rational sides and area n which corresponds to x under the corre-
spondence in Proposition 1.

PROOF. Let u = \/xe @*. We work backwards through the sequence oﬁzstr.pﬁ
at the beginning of this section. That is, set v = y/u, so that v? = y?/

v? + n? = x? Now let ¢ be the denominator of u, i.e., thsgsmallegt- ¢
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§3. Elliptic curves 11

the line y = 1 in the xy-plane) consisting of the equivalence classes with
nonzero y-coordinate and hence containing a unique triple of the form
(x, 1, 0), together with a single “‘point at infinity” (1, 0, 0). i
the projective line P over a field K to be the set of equlvalenee clas
pairs (x, y) with (x, y) ~ (4x, 2y). Then P can be though
plane (x, y, 1) together with a projective line at infinity,
consists of an ordinary line (x, 1, 0) together with its pomt ati

More generally, n-dimensional projective space |

1. 0)
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3. How many points at infinity are on a parabola in P37 an ellipse? hypﬂligll'l ¥

4. Prove that any two nondegenerate conic secttom in P are
ome linear change of variables.
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are easy to fill in. (By the way, our particular example o
to be the function 7 cot 7x; just take the logarithmic de
sides of the mﬁmte product for the sine
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§5. The field of elliptic functions
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§6. Elliptic curves in Weierstrass form
* to the ring B, is no oy, 5

oduct of the two ideals. . Use either the equation for "2 or the equation for " to prove that Gy = 3G2.

. Prove by induction that all G/s can be expressed as polynomials in G, and
with rational coefficients, i.e., G,e @[ Gy, G,]. We shall later derive this fa

n the x-line splits i, when we study modular forms (of which the G turn out to be examples).

he elliptic cu ;
o thl:: ideal:v:. Ifit . Let w, = it be purely imaginary, and let , = 7. Show that
R VB). In th e the Gy(it, m) approaches 2n*{(k), where {(s) is the Riemann
o at case we know that {(2) = /6, {(4) = 7*/90, £(6) = n/94:
,pé))ms ‘3} Vall“es a £(8). Use Problem 5 to show that 7 *¢(k) e @ for
a on the elljpy; s S 3
g’s and ideals ilsp;l: . Find the limit of g, and g, for the lat

. Show that v = csc? z satisfies the differential
the function
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the Shafarevich,
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Problem 11 so as to get the other values of z for which u= 0(2)
+z+mw, + nw,. 3 e
13. Suppose that g, = 4n?, gy = 0. Take ¢,, ¢, ey so that e
€y, €3, ¢y in this case? Show that , = the lattice
lattice expanded by a factor of ;.
from /2 to w,/2 + w, the point (x, y) =
- points of the ellipti — n*x)
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Now make the change of variables u = f(2), so that f'(z)dz/f(z
€, be the closed path from f( S(2)dz/f

) to f(a + w,) = f(2) trac
goes from « to o + w,. Then ) iR
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R/Z to the elliptic curve given by (a, b Py, boys it i the
Q/Z whicl e torsion subgroup of the elliptic curve.
situation is the two-dimensional analog of the circle group, whose
torsion subgroup is precisely the group of all roots of unity, i.c., all 2=
ust as the cyclotomic fields—the field extensions of @ generated
f uni are central to algebraic number theo
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where the product is taken over nonzero ue C/L such that Nue L, with
one u taken from each pair u, —u. Then fy(z) = Fy(%(2)), where Fy(x) e
- C[x] is a polynomial of degree (N* — 1)/2. The even elliptic function
j;,(e) has N 2 1 simple zeros and a smg]e pole at 0 of order N* — 1.
= 0is Nz
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- (polynomial in x alone). where the polynomial in K[x] has (N* — 4)2
l'D(I)ttsi.s important to note that the algebraic procedl{re described in the last
two paragraphs applies for any elliptic curve y* = f(x) over any field K of
characteristic # 2, not only over subfields of the complex numbers. Thus,
for any K we end up with an expression in the denominator of the x-
coordinate of NP that vanishes for at most N2 — 1 values of (x, y).

For a general field K, however, we do not necessarily get exactly N2 — |
nontrivial points of order N. Of course, if K is not algebraically closed, the
coordinates of points of order N may lie only in some extension of K.
Moreover, if K has characteristic p, then there might be fewer points of order
N for another reason: the leading coefficient of the expression in the denom-
inator vanishes modulo p, and so the degree of that polynomial drops. We
shall soon see examples where there are fewer than N2 points of order N
even if we allow coordinates in K*'#¢'.

This discussion has led to the following proposition.

Proposition 15. Let y* = f(x) be an elliptic curve over any field K of characteris-
tic not equal to 2. Then there are at most N? points of order N over any exten-
sion K’ of K.

Now let us turn our attention briefly to the case of K a finite field, in
order to illustrate one application of Proposition 15. We shall later return
to elliptic curves over finite fields in more detail.

Since there are only finitely many points in P? (namely, ¢> + ¢ + 1),
there are certainly only finitely many [ -points on an elliptic curve y* = f(x),
where f(x) € F,[x]. So the group of [F,-points is a finite abelian group.

By the “type” of a finite abelian group, we mean its expression as a
product of cyclic groups of prime power order. We list the orders of all
of the cyclic groups that appear in the form: 2%, 202 272 3% 36 373,
..., 5%, 8P ... But Proposition 15 implies that only certain types can
oceur in the case of the group of F-points on y? = f(x). Namely, for each
prime / there are at most two /-th power components /., /%1, since otherwise
we would have more than /* points of order /. And of course /*'*/ must equal
the power of / dividing the order of the group.

3As a;l example of how this works, let us consider the elliptic curve y* =
X* —n*x over K = [, (the finite field of g = p/ elements), where we must

assume that p does not divide 2. In the case when q =3 (mod4), it is
particularly easy to count the number of F,-points. 4

Propoaitionllﬁ. Let q = p’, pf2n. Suppose that g = 3 (mod 4). Then there are
q + 1 F-points on the elliptic curve y* = x* — p2x.

PrOOF. First, there are four

Eriin points of order 2: the point at infinity, (0, 0),

0). We now count all pairs (x, y) where x # 0, n, —n. We arrange
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3. Set f;(z) = 1. Prove that for N = 2, 3,4, ... we have:

P(N2) = 9@ — u-1 @Sy QUG
In the notation of Proposition 14, suppose that o € Gal(Ky/K) fixes all x-coordinates
of points of order . That is, "‘KN = identity. Show that the image of 0 in GL, (Z/N 7)

is + 1. Conclude that Gal(Ky/Ky) = { £ 1} n G, where G is the image of Gal(K/K)
in GL,(Z/N Z). What is the analogous situation for cyclotomic fields?

=

5. Let L = {mw, + nw,}, and let E be the elliptic curve y* = 4x* — g,(L)x — g,(L).
Notice that E does not change if we replace the basis {®,, w,} of L by another
basis {w], w;}. However, the group isomorphism C/L ~ R/Z x R/Z changes, and
so does the isomorphism from the points of order N on E to Z/NZ x Z|NZ. For
example, the point (2 (w}/N), '(w}/N)), rather than (@ (w,/N), @'(w,/N)), corre-
sponds to (1,006 Z/NZ x Z/NZ. What effect does the change of basis from w; to
o] have on the image of Gal(Ky/K) in GL,(Z/N Z)?

=

=

Show that the group GL,(Z/2Z) is isomorphic to Sj, the group of permutations of

{1, 2, 3}. For each of the following elliptic curves, describe the image in GL,(Z/2Z)

of the galois group over @ of the field generated by the coordinates of the points

of order 2.

(a) »»=x>—nx  (nnot a perfect square)

(b) 2 =x —n’x

(©) ¥»=x—n  (nnota perfect cube)

((sh) =l =

. (a) How many elements are in GL,(Z/3Z)?

(b) Describe the field extension K5 of K = Q generated by the coordinates of all
points of order 3 on the elliptic curve y> = x* — n’x.

(c) Find [K;: @]. What subgroup of GL,(Z/3Z) is isomorphic to Gal(K,/@)?

(d) Give a simple example of an element in GL,(Z/3Z) that is not in the image of
Gal(K,/@); in other words, find a pair of elements z, = (m, w; + n,,)/3,
z,= (n{;w, + n,,)/3 which generate all (mw, + nw,)/3 but such that P. , P.,
cannot be obtained from P, 3, P,z by applying an automorphism to the
coordinates of the latter pair of points.

. In Problem 13 of §1.6, we saw that the lattice corresponding to the curve y* =

o0

x? — n?x is the lattice L of Gaussian integers expanded by a factor w,e R: L =

{miw, + nw,} = w,Z[i].

(a) Show that the map z+ iz gives an analytic automorphism of the additive group
C/L; and, more generally, for any Gaussian integer a + bie Z[i] we have a
corresponding analytic endomorphism of C/L induced by z+ (a + bi)z.

(b) Notice that if b= 0, this is the map z+—»z + z + - - - + z (a times) which gives
¢, Pr—aP on the elliptic curve. By looking at the definition of @(z), ¢'(2).
show that the map z+— iz gives the automorphism ¢, : (x, ) (—x, iy) on the
elliptic curve. This is an example of what’s called “complex multiplication’

Show that ¢, 0¢; = ¢_,, and in fact the map a + bit ¢, is an injection of
the ring Z[i] into the ring of endomorphisms of the group of points on the
elliptic curve.

() If L is a lattice in € and if there exists a complex number o = a + bi, b # 0
such that «L < L, show that o is a quadratic imaginary algebraic integer, and
that L contains a sublattice of finite index of the form w,Z[«].
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these ¢ — 3 x's in pairs {x, —x}. Since f(x) = x* — n’x is an odd function,
and — 1 is not a square in [, (here’s where we use the assumption that g = 3
(mod 4)), it follows that exactly one of the two elements f(x) and f(—x)
—f(x) is a square in [,. (Recall: In the multiplicative group of a finite field,
the squares are a subgroup of index 2, and so the product of two nonsquares
is a square, while the product of a square and a nonsquare is a nonsquare.)
Whichever of the pair x, —x gives a square, we obtain exactly two points
(x, £J/f(x)) or else (—x, + Jf(=x)). Thus, the (¢ — 3)/2 pairs give us
¢ — 3 points. Along with the four points of order two, we have ¢ + 1 F-
points in all, as claimed. o

Notice that when ¢ = 3 (mod 4), the number of F,-points on the elliptic
curve y* = x> — n*x does not depend on 7. This is not true if ¢ = 1 (mod 4).

As an example, Proposition 16 tells us that for ¢ = 7 there are 344 =
2343 points. Since there are four points of order two, the type of the group
of F45-points on y? = x* — n®x must be (2, 22, 43).

As a more interesting example, let ¢ = p = 107. Then there are 108 =
2233 points. The group is either of type (2,2, 33) or of type (2, 2, 3, 3%).
To resolve the question, we must determine whether there are 3 or 9 points
of order three. (There must be nontrivial points of order 3, since 3 divides
the order of the group.) Recall the equation for the x-coordinates of points
of order three (see Problem 4 of §7): —3x* + 6n?x® +n*=0, ie, x=
+ny1 £ 2ﬁ/3. Then the corresponding y-coordinates are found by t?king
+./f(x). We want to know how many of these points have both gqordmgtes
in F, o5, rather than an extension of F, ;. We could compute explicitly, using
\/3 = +18in F ¢, S0 that x = +/13, /=11, etc. But even bchre dou'lg
those computations, we can see that not all 9 points have coordinates in
F,o-. This is because, if (x, ) is in [y g7, then(G \/:—ly) is another point
of order three, and its coordinates are not in Fo;. Thus, there are only 3
points of order three, and the type of the group is (2, 2, 3%). 3

Notice that if K is any field of characteristic 3, then the group of K-points
has 70 nontrivial point of order three, because —3x* 4 6n2x? + _n“ =n*#0.
This is an example of the “‘dropping degree”” phenomenon mentioned above.
It turns out that the same is true for any p = 3 (mod 4), namely, t_}le}'e are no
points of order p over a field of characteristic p in that case. Thls is relatgd
to the fact that such p remain prime in the ring of ‘Ga_ussxan integers Z[1].
aring which is intimately related to our particular elliptic curve (see Problem
13 of §6). But we will not go further into that now.

PROBLEMS

1. For the elliptic curve y* = 4x® — g,x — g, express p(Nz) as a rational function
of (z) when N = 2.

2. Let fy(2) be the elliptic functions defined above. Express f3(2) as a polynomial in

0.
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o

Each of the following points has finite order N on the given elliptic curve. In each
case, find its order.

(a) P=(0,4) 0ny*=4x>+ 16

(b) P=(2, 8)on y:
()R R=(2:3)lonp2
(d) P=(3,8)ony?
(e) P=(3,12)on — 14x2 + 81x

) P=(0, X3 —x?

(8 P=(1,0)0ny* + xy+y=x>—x?—3x+3,

— 43x + 166

§9. Points over finite fields, and the congruent
number problem

We have mainly been interested in elliptic curves E over @, particularly the
elliptic curve y*> = x* — n’x, which we shall denote E,. But if K is any field
whose characteristic p does not divide 2n, the same equation (where we
consider #» modulo p) is an elliptic curve over K. We shall let E,(K) denote
the set of points on the curve with coordinates in K. Thus, Proposition 16
in the last section can be stated: If ¢ = 3 (mod 4), then #E,(F,) = ¢ + 1.

The elliptic curve E, considered as being defined over F,, is called the
“reduction” modulo p, and we say that E, has “‘good reduction™ if p does
not divide 2n, i.e., if y> = x> — n’x gives an elliptic curve over F,. More
generally, if y* = f(x) is an elliptic curve E defined over an algebraic number
field, and if p is a prime ideal of the number field which does not divide the
denominators of the coefficients of (x) or the discriminant of f(x), then by
reduction modulo p we obtain an elliptic curve defined over the (finite)
residue field of p.

At first glance, it may seem that the elliptic curves over finite fields—
which lead only to finite abelian groups—are not a serious business, and
that reduction modulo p is a frivolous game that will not help us in our
original objective of studying @-points on y* = x* — n’x. However, this is
far from the case. Often information from the various reductions modulo p
can be pieced together to yield information about the Q-points. This is
usually a subtle and difficult procedure, replete with conjectures and unsolved
problems. However, there is one result of this type which is simple enough
to give right now. Namely, we shall use reduction modulo p for various
primes p to determine the torsion subgroup of E,(Q), the group of @-points
ony®=x>— n’x.

In any abelian group, the elements of finite order form a subgroup,
called the “torsion subgroup”. For example, the group E(C) of complex
points on an elliptic curve is isomorphic to C/L, which for any lattice L is
isomorphic to R/Z x R/Z (see Problem 2 of §L.5). Its torsion subgroup
corresponds to the subgroup @/Z x Q/Z = R/Z x R/Z, ie., in C/L it
consists of all rational linear combinations of @, and @,.

A basic theorem of Mordell states that the group £(Q) of Q-points on an
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elliptic curve E defined over @ is a finitely generated abelian group. This
means that (1) the torsion subgroup E(Q),. is finite, and (2) E(Q) is iso-
morphic to the direct sum of E(Q)rs and a finite number of copies of
Z: E(@) ~ E(Q),,,, ® Z". The nonnegative integer r is called the “rank™ of
E(Q). It is greater than zero if and only if £ has infinitely many Q-points
Mordell’s theorem is also true, by the way, if @ is replaced by any algebraic
number field. This generalization, proved by Andre Weil, is known as the
Mordell—Weil theorem. We shall not need this theorem for our purposes,
even in the form proved by Mordell. For a proof, the reader is referred to
Husemuller’s forthcoming book on elliptic curves or else to [Lang 1978b].

We shall now prove that the only rational points of finite order on E, are
the four points of order 2: 0 (the point at infinity), (0, 0), (£n, 0).

Proposition 17. #E,(Q),,., = 4.

ProOF. The idea of the proof is to construct a group homomorphism from
E, (@), to E,(F,) which is injective for most p. That will imply that the
order of E,(Q),, divides the order of E,(F,) for such p. But no number
greater than 4 could divide all such numbers #E,(F,), because we at least
know that # E,(F,) runs through all integers of the form p + 1 for p a prime
congruent to 3 modulo 4 (see Proposition 16).

We begin the proof of Proposition 17 by constructing the homomorphism
from the group of @-points on E, to the group of F,-points. More generally,
we simply construct a map from P§ to [pr. In what follows. we shall always
choose a triple (x, y, z) for a point in P3 in such a way that x, y, and z are
integers with no common factor. Up to multiplication by +1, there is a
unique such triple in the equivalence class. For any fixed prime p, we define
the image P of P = (x, », 2)€ P3 to be the point P = (X, y, 7)€ PZ,, where
the bar denotes reduction of an integer modulo p. Note that P is not the
identically zero triple, because p does not divide all three integers x, y, z.
Also note that we could have replaced the triple (x, y, 2) by any multiple
by an integer prime to p without affecting P.

It is easy to see that if P = (x, y. z) happens to be in E,(Q),ie., if y*z=
x> — n’xz?, then P is in E,(F,). Moreover, the image of P, + P, under this
map is P, + P,, because it makes no difference whether we use the addition
formulas (7.1)(7.4) to find the sum and then reduce mod p, or whether we
first reduce mod p and then use the addition formulas. In other words, our
map is 2 homomorphism from E,(Q) to E,(F,), for any prime p not dividing
2n.

We now determine when this map is not injective, i.e., when two points
P, = (x1, 1, 2,) and P, = (x,,¥,, 2,) in P§ have the same image P =P

in P}p.

Lemma. P, = P, if and only if the cross-product of P, and P, (considered as
vectors in R?) is divisible by p, i.e., if and only if p divides y,z, — Y21, X271 —

Xy2;, and Xy, — X,y
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Notice how the technique of reduction modulo p (more precisely, the use

of Proposition 16 for infinitely many primes p) led to a rather painless proof

of a strong fact: There are no “non-obvious” rational points of finite order
on E,. As we shall soon see, this fact is useful for the congruent number
problem. But a far more interesting and difficult question is the existence
of points of infinite order, i.e., whether the rank r of E,(Q) is nonzero. As
we shall see in a moment, that question is actually equivalent to the question
of whether or not  is a congruent number.

So it is natural to ask whether mod p information can somehow be put
together to yield information about the rank of an elliptic curve. This
subtle question will lead us in later chapters to consideration of the Birch-
Swinnerton—Dyer conjecture for elliptic curves.

For further general motivational discussion of elliptic curves over finite
fields, see [Koblitz 1982].

We now prove the promised corollary of Proposition 17.

Proposition 18. n is a congruent number if and only if E,(Q) has nonzero
rank r.

ProOF. First suppose that 7 is a congruent number. At the beginning of §2,
we saw that the existence of a right triangle with rational sides and area n
leads to a rational point on E, whose x-coordinate lies in (@*)2. Since the
x-coordinates of the three nontrivial points of order 2 are 0, £n, this means
that there must be a rational point not of order 2. By Proposition 17, such a
point has infinite order, i.e.,r > 1.

Conversely, suppose that P is a point of infinite order. By Problem 2(c)
of §1.7, the x-coordinate of the point 2P is the square of a rational number
having even denominator. Now by Proposition 2 in §I.2, the point 2P
corresponds to a right triangle with rational sides and area n (under the
correspondence in Proposition 1). This proves Proposition 18. u}

Notice the role of Proposition 17 in the proof of Proposition 18. It tells
us that the only way to get nontrivial rational points of the form 2P is from
points of infinite order. Let 2E,(Q) denote the subgroup of E, (@) consisting
of the doubles of rational points. Then Proposition 17 is equivalent to the
assertion that 2E,(Q) is a torsion-free abelian group, i.e., it is isomorphic
to a certain number of copies (namely, r) of Z. The set 2E,(Q) — 0 (0 denotes
the point at infinity) is empty if and only if r = 0.

We saw that points in the set 2E,(Q@) — 0 lead to right triangles with
rational sides and area n under the correspondence in Proposition 1. It is
patural to ask whether all points meeting the conditions in Proposition 2,
qier corresp.onding to triangles, are doubles of points. We now prove that
t!xe answer is yes. At the same time, we give another verification of Proposi-
gon 18 (not relying on the homework problem 2(c) of §1.7).

R{npositi.on 19. _There is a one-to-one correspondence between right triangles
vith rational sides X <Y < Z and area n, and pairs of points (x, )€
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PROOF OF LEMMA. First suppose that p divides the cross-product. We consider
two cases:

@) p dividcs‘ x;. Then p divides x,z, and X,);, and therefore divides x,,
because it cannot divide x,, y, and z,. Suppose, for example, that pb—',
(an analogous argument will apply if pf z,). Then P, = (0, 7, 7,, i',f,)':

),) = (0, y;,2,) = P, (where we have used the fact that P
divides y,z, — ¥,2,).

(i) p does not divide x,. Then P, = (X,X,, X7,, X,2,) = (X, X3, X271,
X,7y) = (%1, 71,21) = Py. :

Conversely, suppose that P, = P,. Without loss of generality, suppose
ll]at pl.‘(l (an analogous argument will apply ifl’*)\ or I’*:x)- Then, since
P, = P, = (X,7,. %), We also have pfx,. Hence, (¥,%,, %7, X,7,) =
P, = P, = (X,X,, X, X,Z,). Since the first coordinates are the same, these
two points can be equal only if the second and third coordinates are equal,
i.e., if p divides x, y, — x,y, and x,z, — x,z,. Finally, we must show that p
divides y,z, — y,z;. If both y; and z, are divisible by p, then this is trivial.
Otherwise, the conclusion will follow by repeating the above argument with
x,, X, replaced by y, . y, or by z;, z,. This concludes the proof of the lemma.

We are now ready to prove Proposition 17. Suppose that the proposition
is false, i.e., that E,(Q) contains a point of finite order greater than 2. Then
either it contains an element of odd order, or else the group of points of
order 4 (or a divisor of 4) contains either 8 or 16 elements. In either case we
have a subgroup S = {Py, Py, .. ., P} = E(@)ors: where m = # S is either
8 or else an odd number.

Let us write all of the points P, i=1, ..., m, in the form in the lemma:
P, = (x;, ¥i» z)). For each pair of points P, P;, consider the cross-product
vector (¥iz; — Y2 X;Zi — XiZjp XiVj — xjy,)eIR? Since P, and P, are distinct
points, as vectors in R® they are not proportional, and so their cross-product
is not the zero vector. Let n;; be the greatest common divisor of the coor-
dinates of this cross-product. According to the lemma, the points 7 anc} P,
have the same image P, = P, in E,(F,) if and only if p divides ;. Thus, if p
is a prime of good reduction which is greater than all of th_e ni, 1t.fc.)llo.ws
that all images are distinct, i.e., the map reduction modulo p gives an injection
of S'in E,(F,). aa

But this means that for all but finitely many p the number m must divide
#E,(F,), because the image of S'is a subgroup of order m. 'l"hen for all but
finitely many primes congruent to 3 modulo 4, I_)y Proposition 16 we must
have p = — 1 (mod m). But this contradicts Dincl'llet‘s theorem on primes
in an arithmetic progression. Namely, if 7 =8 this would_mean t}_xat there
are only finitely many primes of the form 8k + 3. If m is odd, it would
mean that there are only finitely many primes of the form 4mk + 3A(1f 3fm),
and that there are only finitely many primes of the form 12k + 7 if 3]m In
all cases, Dirichlet’s theorem tells us that there are iqﬁnitely many primes of
the given type. This concludes the proof of Proposition 17. o
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2E,(Q) — 0. The correspondence is:

& £V Jx -/

JXtn+ Jx—n, 2/x;
5 T = (@A sn(TAS Xy

In light of Proposition 1 of §I.1, Pr iti i
: > 31.1, Proposition 19 is an immediate conse-
qu,em.:e of the following general characterization of the do i
elliptic curves.

ubles of points on
Proposition 20. Let E be the elliptic curve y* = (x — e;)(x — e,)(x — e;) with
ey, €,€3€Q. Let P = (xg, yo)€ E(@) — 0. Then Pe2E(Q) — 0 ifand:;mly if
Xo — €y, Xg — €3, Xo — ¢y are all squares of rational numbers. )

PrOOF. We first nple that, without loss of generality, we may assume that
Xo=10. ATO see this, make the change of variables x’ = x — x,. By simply
translating the geometrical picture for adding points, we see that the point
P’ = (0, y5) on the curve E’ with equation y* = (x — €))(x — e5) (x — €5),
where e; = ¢; — X, is in 2E'(Q) — 0 if and only if our original P were in
2E(Q) — 0. And trivially, the x, — e, are all squares if and only if the (0 — ¢})
are. So it suffices to prove the proposition with x, = 0.

Next, note that if there exists Q € E(Q) such that 20 = P, then there are
exactly four such points 0, Q,, 0,, 05 € E(Q) with 2Q; = P. To obtain Q;,
simply add to Q the point of order two (¢;, 0) € E(Q) (see Problem 5 in §1.7).

Choose a point Q = (x, y) such that 20 = P = (0, y,). We want to find
conditions for the coordinates of one such Q (and hence all four) to be
rational. Now a point Q on the elliptic curve satisfies 20 = P if and only if
the tangent line to the curve at Q passes through —P = (0, —Jj). That is,
the four possible points Q are obtained geometrically by drawing the four
distinct lines emanating from — P which are tangent to the curve.

We readily verify that the coordinates (x, y) are rational if and only if the
slope of the line from —P to Q is rational. The “only if " is immediate.
Conversely, if this slope 7 is rational, then the x-coordinate of Q, which is
the double root of the cubic (mx — yo)? = (x — €1)(x — ;) (x — e3), must
also be rational. (Explicitly, x = (e, + €, + €5 +m*)/2.) In this case the
y-coordinate of Q is also rational: y = mx — Jo- Thus, we want to know
when one (and hence all four) slopes of lines from — P which are tangent to
E are rational. .

A number neC is the slope of a line from —P which is tangent to E if
and only if the following equation has a double root:

(mx—yo)’=(x—el)(x—ez)(x—ea)=x’+ax2+bx+c, ©.1)
with
2
= e =)
a= —e; —e, —ée;3, b=e e, +e€;+ €63, ® ee,e5 {3.2)

where the last equality ¢ = y§ comes from the fact that (0, ) is on the curve
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