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1 Why bother to do this?

Elliptic curves, and the machinery involved in them have been a hot topic
in modern mathematics for quite some time. They came to the fore in the
public consciousness most prevalently because of their deep involvement in
Andrew Wiles’s 1994 proof of Fermat’s Last Theorem. This is in fact when
I first became aware of them. Elliptic curves have become popular perhaps
not only because of their deep and interesting properties, but also because
of their fairly simple definition. The notion of an L-series attached to an
elliptic curve is also a fairly simple notion (as will be explained below), but
the study of the correlation between these two objects has led to many of
the biggest unsolved problems in mathematics today.

The Birch and Swinnerton-Dyer (BSD) conjecture is the statement that
the rank (a simple algebraic invariant) of an elliptic curve is equal to the order
of vanishing at zero (a simple analytic property) of the L-series attached to
that curve. The conjecture was first formulated in the early 1960s, and today
we still don’t have a good way of approaching the problem. With Fermat’s
Last Theorem, even before it was proved, the conjecture was known to hold
for many specific cases. With BSD we don’t even know how to show it is
true for some very seemingly simple cases (for example, curves of rank 4).

Until 1986 it was not even known if the BSD conjecture held for a curve as
simple as y? +y = 23 — Tz + 6. In fact, the proof that it did hold was so deep
that it provided an effective solution to the Gauss class number problem. A
seemingly simple problem such as showing that there existed an elliptic curve
whose L-series had order 3 was a very deep theorem of Gross and Zagier, and
as of this writing, it is an open problem to prove that there is an elliptic curve
whose L-series has order 4 or higher.

It is with these questions in mind that we approach the idea of graphing
the L-series attached to elliptic curves. While we doubt that anything can
be proven through pictures, having pictures as a reference is a very helpful
tool when dealing with these series, and perhaps these pictures will give us
more insight into what is happening with L(E, s).
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2 A quick introduction to Elliptic Curves and
the series associated with them

2.1 All about £

The definition of an elliptic curve is the following: An elliptic curve F is a
cubic curve of the form

y2 + a2y + asy = 2 + agx? + ayx + ag

where the a;’s are constants from a field K. We define the discriminant of
the curve as
A = —bjbg — 8bj — 27b; + 9bybybs

with
by = af +4as, by = 2a4 + ara3, bg= a§ + 4ag.

We require that A # 0. For ease of notation we write [a1, as, as, a4, ag] when
referring to the curve 32 + a12y + asy = 2> + ayx? + a4x + a.

Perhaps one of the most interesting properties of an elliptic curve is that
the points on an elliptic curve form a group. The key step in seeing this is to
note that given any two points on an elliptic curve we can, in a natural way,
define what it means to “add” those two points together. On an intuitive
level, when you add two points together you draw a line connecting them, and
see where that line intersects the elliptic curve. If there is no third point of
intersection then we say that those two points add to “the point at infinity,”
which is the identity element in the group. Otherwise, if they intersect at a
third point, (x,y), then we define that the “addition” of those two points to
be (z, —y). (The reason that you need to switch the y-coordinate is so that
all of the group axioms come out correctly.)

Once you determine that the points do indeed form a group, then the
natural question to ask is, what is this group? If we are considering our
curve over R then the story becomes less interesting. In this case the group
is infinite, as given any = € R one can find y € R such that (z,y) lies on
the curve. It being infinite is not what makes it uninteresting, but it is the
fact that the group is infinitely generated that makes it so. Because it is
infinitely generated there is not much we can say about the group. In fact
for any elliptic curve, the group E(R) is always either S' or S' x Z/2Z.
Where S! is the group formed by the points in the complex plane on the
circle of radius 1 under multiplication.
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Since the problem of E(R) has been solved, we turn our attention to what
happens when we consider our curve over Q. In this case Mordell’s theorem
tells us that the group E(Q) is finitely generated and hence that

E(Q) = ZT XE(Q)tors

where r is a non-negative integer, and E(Q)ors is the finite subgroup of points
of finite order in E(Q). Professor Barry Mazur, in a 1976 theorem, showed
that E(Q)grs must be isomorphic to one of the following groups:

Z/nZ, forn<10orn=12.
(Z)2Z) x (Z/2nZ), forn < 4.

The integer r is called the rank of the elliptic curve. It is a folklore con-
jecture that r can be arbitrarily large, however, the current record is a curve
of rank at least 24. This was discovered by Roland Martin and William
McMillen of the National Security Agency in January 2000.

(See http://listserv.nodak.edu/scripts/wa. exe?A2=indOO05&L=nmbrthry&P=R182)

2.2 The mysterious L

To every elliptic curve one can attach a certain series that we call L(E, s). To
define L(E, s) recall that we have previously discussed points on an elliptic
curve over such fields as Q or R. However, the notion of points on an elliptic
curve is not limited to these fields. One can consider the number of points
on an elliptic curve over Z/pZ for any prime p (that does not divide the
discriminant of the curve). We denote the number of points on E over Z/pZ
as #E(Z/pZ). We can now define a sequence of numbers a,, such that a, =
p+1—#E(Z/pZ). There is also a slightly more complicated way to define
a, for any number. These a, can be found in PARI by using the ellan
command.
Once we have these a,, we can now define L(E, s):

o

L(E,s) = Z ap,n”*®

n=1

It is a theorem of Breuil, Conrad, Diamond, Taylor, and Wiles that
L(E,s) can be extended to an analytic function on all of C. As with any
other analytic function we can ask what the order of vanishing of L(E, s) is
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at any point. It turns out that the order of vanishing of L(E,s) at s = 1 is
a rather interesting story. In fact the Birch and Swinnerton-Dyer conjecture
is that the order of vanishing at s = 1 is exactly equal to the rank of the
elliptic curve.

In other words, for any elliptic curve, F,

L(E,s) = k(s —1)" + higher order terms

at s = 1. Where here k& # 0 and r is such that E(Q) ~ Z" X E(Q)ors-

The BSD conjecture is fairly amazing in that it asserts the equality of
two seemingly very different quantities.

So far, the BSD conjecture has been proved when ord,_; L(E,s) < 1 by
Gross, Kolyvagin, Zagier, et al. However, for ord > 1 it is still an open
problem, and as was mentioned above, it has yet to be proven that any
elliptic curve has rank 4.

2.3 How I learned to stop worrying and love the A

Using our L-series, and in fact using any L-series one can define the notion
of a A function that is very similar to L(E,s), except that it has more
symmetries. It is defined as follows:

A(Es) = N3 (2n)"°I'(s)L(E, 5).

Where N is the conductor of the curve and I'(s) is the complete I' function
evaluated at s.

However, when only considering those L-series that come from elliptic
curves the associated A-series obeys the following symmetry:

A(E,s)=eA(E,2—s)

where € € {1} is the root number of F (which can be found using el1lrootno
in PARI). Because of this symmetry, the graphs of A(E, s) can look “nicer”
then those of L(E,s) and in the graphs below we produce graphs of both
L(E,s) and A(E, s) for this reason.

3 The formulas and methods used for these
graphs

The question that then needs to be asked is “What does L(E, s) look like?”
This is the question that we set about to answer. In order to do so we use
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the free program PARI (available online at http://www.parigp-home.de/)
to generate a list of points which can then be graphed. Fortunately, PARI
has a nice built-in feature for computing L(F, s) which makes the process
much easier.

The function used to output the L-series data was:

{printellseries(fname, curve) =

E = ellinit(curve);

for(x=1,150,
s=0.0+x/50;
write(fname,"(",s,",",
nice(elllseries(E,s,1)),")"));

}

Where the function nice is:
nice(x)=if (abs(x)<(10"(-25)), return(0), return(x))

This nice function is necessary because otherwise if the value at a certain
point is too small, PARI will output in scientific notation, which makes the
data unreadable by the program used to graph it. This way, values that are
below a certain tolerance are simply converted to 0.

The printellseries function takes as input a filename and a vector
defining a curve. It then outputs a list of points for the L-series of that
curve, computed at intervals of .02 to the file fname.

Using this function, along with a little ingenious shell scripting and the
help of the pstricks package of BKTEX, we were able to generate the graphs
seen in section 4 along with many others.

This method worked well for graphing L(E, s) for real values of s. How-
ever, L(E, s) is in reality a complex analytic function, so it is defined for
any complex value s as well. To solve this problem we could not use the
built-in elllseries function since it was not able to compute L(FE,s) for
complex-valued s.

In order to compute L(E, s), we look to the following formula:

L(E,s)=N7 -(21)*-T(s) "+ ) _an- (Fu(s — 1) —eF,(1— s)).
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Here N is the conductor of the curve, I' is the standard I'-function, ¢ is as

above, and
t+1
2 VN
Fo)=T(t+1,72=) . [ X=] .
VN 2m™n

In the formula for F,(t), I'(z,y) is the standard incomplete I" function. This
formula comes from the solution exercise 24 on page 521 in chapter 10.4
of Henri Cohen’s book Advanced Topics in Computational Number Theory
(Springer-Verlag, March 2000).

The main problem in using PARI for these computations was that the
implementation of the ['-function in PARI does not include complex-valued
arguments. For a while we played with trying to use other formulas to rep-
resent I' so that PARI could be used. In the end, however, we discovered
that the I'-function implementation in Mathematica includes the ability to
compute for complex-valued arguments, and so we decided to use Mathemat-
ica for that part of the computation and simply used the formulas as listed
above. In addition, Mathematica has the ability to output three-dimensional
graphs.

4 Graphing L,LA:R — R

Figure 1 is a graph of the L-series for the curve y? —y = 23 + 22 — 10z — 20.
This curve has conductor 11 which is the curve of smallest conductor. The
circle on the graph is drawn around the point (1,0), which is the critical point
with respect to the BSD conjecture. It is critical in the sense that at this
point the L-series should have the same order of vanishing as the rank of the
elliptic curve. On this graph note that the graph does not appear to pass
through that point. This would indicate that the rank of the L-series at 1 is
zero. However, we also know that the rank of this curve is zero. Hence this
graph agrees with the BSD conjecture.

Using our data we can compare the L-series for various curves of rank 1.
This is shown in Figure 2. The curves show in this graph are [0,0,1,—1,0]
with conductor 37, [0,1,1,0,0] with conductor 43, [1,—1,1,0,0] with con-
ductor 53, and [0, —1, 1, —2, 2] with conductor 57.

We can also compare the L-series of various curves all of rank 2 (Figure 3).
The conductors of these curves are 389, 433, 1001, and 3185 respectively.
Note how the difference in conductors relates to the peak of the L-series
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Figure 1: A graph of the L-series for [0,—1,1, —10, —20]
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Figure 3: Curves of rank 2

between x =0 and z = 1.

We make the similar comparison for some curves of rank 3 in Figure 4.
The three curves shown in this Figure are E; = [0,0,1,—7,6] which has
conductor 5077, Fy = [1,—1,1,—6,0] which has conductor 11197, and E3 =
[1,—-1,0,—16, 28] which has conductor 11642.

Note that as in the case of the curves of rank 2, the graphs are arranged
according to conductor. In this case, a curve of higher conductor is always less
than a curve of lower conductor. One might be led to turn this observation
into a conjecture, and in fact we were at first going to do so. However, closer
examination of the evidence shows that while it may sometimes be true, it is
not always the case that if the conductor of E is larger than that of F5 then
|L(E1,z)| > |L(E2,z)|, as might be at first believed. One counter example
of this can be seen with two curves of rank 2: Take F; to be [1,1,1, —15, 16]
and Es to be [0,1,1,—4,2]. Then both have rank 2 and the conductor of
E, is 563 and the conductor of Fy is 571. However L(F;,0.5) = 0.34614...
while L(E5,0.5) = 0.27975.. .. Hence the possible conjecture is untrue.

One can also see that the possible conjecture would not hold for curves
of rank 4. This can be seen in Figure 5 which is a graph of the curves
[0,1,1,-72,210], [0,0,1,-7,36], [1,0,0,—202,1089], and [0,1,1, —2,42]. All
of the lines in the graph are so close it is hard to make out exactly what is go-
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E, =10,0,1,—7,6], B> =[1,—1,1,—6,0], B3 =[1,—1,0, —16, 28]
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Figure 5: Curves of rank 4

ing on in the graph. However, looking directly at the data we can see that the
conjecture does not hold. The curve [0, 1,1, —72,210] has conductor 501029.
At the point x = .59 the L-series has the value 1.558791254529780353650676198.
The curve [0,0,1, —7, 36] has conductor 545723 which is larger than the first
curve. However at x = .59 the L-series for this curve has the value
1.408951738645349791068825739. Hence the conjecture does not hold for
N = 4.

With the help of some powerful computing power, we can even calculate
data for curves of rank 5 or higher. An example of a graph of the L-series
for a curve of rank 5 is shown in Figure 6. The curve used for this graph is
[0,1,1, —30, 390] which has rank 5 and conductor 67445803. It was interesting
to note that the L-series of all of the curves of rank 5 that we graphed looked
amazingly similar to the naked eye.

To see what A(E,s) looks like in comparison to L(E,s) we graph both
the A-series and L-series for four curves of different ranks in Figure 7.

In Figure 7, rank(E,)=n. By looking at the graph of the L-series we can
see that the BSD conjecture is plausible: Ey does not pass through (0,1), F;
seems to pass through with order 1, F, flattens out so that it could be seen
as having order 2, and Ej5 curve is even flatter, suggesting that it has order
3.
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Figure 6: A curve of rank 5

5 Graphing A\:C— C

In the above section we graphed L(FE,s) as a function of R. In reality how-
ever, both L(E,s) and A(FE,s) are defined on C as well. Using a mixture
of PARI and Mathematica we were able to produce graphs of Arg(A) and
Abs(A) for various elliptic curves.

Figure 8 is a graph of the argument of A(E,s) for the elliptic curve
[0,—1,1,—10, —20].

We can also see the absolute value of A(E,s) for [0,—1,1,—10,—20] in
Figure 9.

A The Scripts

This paper and the scripts used to generate both 2D and 3D data are available
for general use online at http://modular.fas.harvard.edu/shwayder/.
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