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Abstract

Suppose E is an elliptic curve over Q with conductor at most 87 and rank
one or conductor at most 19 and rank zero. Then the full Birch and Swinnerton-
Dyer conjecture is true for E. We prove this by ...

1 TODO

1. Define X – mention that it is torsion since H1(Q, E) is torsion.

2. Write up argument that E(K) is a direct sum of E(Q) and EK(Q) up to
powers of 2 (i.e., up to tensoring with Z[1/2]).

3. Summarize that Kolyvagin proves triviality of Sha for 23 curves in “On the
MW and Sha for Weil Elliptic Curves”. Verify that this proves BSD for these
curves (by looking them up in Cremona).

4. Cremona’s remark that says one should do a project like this. Where is it in
his book?

5. Formalize how to use the Gross-Zagier theorem to reduce computing the index
IK = [E(K) : ZyK ] to computing only quantities associated to elliptic curves
over Q. Distinction between the two cases when E/Q has rank 0 and when
it has rank 1.

6. Stoll can show triviality of X when there is a p-isogeny or p = 2.

∗Some of these authors might not even know they are authors, so don’t blame them for any

mistakes below. Blame William Stein.
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7. Mention Cremona-Mazur table of nontrivial Sha, and that we don’t expect
any nontrivial Sha for levels up to 500.

8. Write something about isogeny invariance.

9. Karl Rubin and other people have papers that prove full BSD up to power
of 2 or 3 for CM elliptic curves of rank 0 or 1, maybe. I haven’t read any of
these papers in detail. Look at them, and list the ones of conductor up to 500
that they deal with. Deal with power of 2 as well. (E.g., MathSciNet...)

10. Write up in tex with more details Donnelly’s argument, justify details more
with precise reference, and attribute everything to Donnelly.

11. To what extent do we need to compute Heegner points?

(a) Pete Green’s package.

(b) My package.

(c) Cremona probably has PARI code.

(d) ???

12. Domain of applicability of Kato’s theorems on BSD. Just copy Theorem 0.3
from Grigor’s kato3.dvi with appropriate reference. Will need Proposition 1.1
in Section 1.1.1 of Ribet-Stein.

13. Ultimate goal: Give a provably correct complete algorithm that takes as input
an elliptic curve E over Q of analytic rank at most 1 and outputs either “yes”
the BSD conjecture is true for E, or “no” it is not true for E and here is why.
This should be an algorithm in the classical sense that it terminates on any
valid input. Connection with old paper of Manin.

2 Introduction

Theorem 2.1. Suppose E is an elliptic curve over Q of rank one with conductor
at most bndone or rank zero and conductor at most 19. Then the full Birch and
Swinnerton-Dyer conjecture is true for E.

The rest of this paper is devoted to proving Theorem 2.1. By work of Cremona,
Wiles et al., and Tate it suffices to prove that #X(E) = 1 except for 681B and
571A where we must show that X(E) has order 9 and 4, respectively.
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3 BSD Theorems of Kolyvagin, Kato, et al.

3.1 Mazur-Rubin: Kolyvagin Systems

Let E be an elliptic curve. Suppose p > 3 and ρE,p : GQ → Aut(E[p∞]) is surjective.

4 Problems

1. Surjective: Give an algorithm that, given a non-CM elliptic curve E/Q,
determines the primes p such that ρE,p is not surjective. Should be reasonable
using Serre’s paper, etc.

2. Tamagawa Number Problem: Consider the following rank 0 example:

114C 5 4 [5] [20,1,1] 2C

Our methods only proved that #X(E) | 25, but in fact we have to show that
#X(E) = 1. Using Kato, and assuming that rE = 1, an assumption we could
check ..., we only get again that #X(E) | 25, since LN (E, 1)/ΩE is divisible
by 25: we get one 5 from L(E, 1)/Ω because of the Tamagawa number, and
another 5 from the bad factor at 19, which is 1/(19 − (−1)).

If we use Kato as improved by Mazur and Rubin (see page 75 of “Kolyvagin
Systems”), and if their rE = 1, then we get that

ord5(#X(E)[5∞]) < ord5(LN (E, 1)/ΩE) = 2.

Since ord5(#X(E)[5∞]) is even, it follows that 5 | #X(E)[5∞]. There is

a problem with this: Mazur-Rubin assume that the representation

on E[5∞] is surjective, but I only know that the representation on

E[5] is surjective. The problem isn’t a problem because Lemma 3 on page
IV-23 of Serre’s Abelian `-adic representations and elliptic curves shows that
if p ≥ 5 then GQ → Aut(E[p]) is surjective if and only if GQ → Aut(E[p∞])
is surjective.

The programs in my directory /home/was/people/rubin/reseemtosuggestthe5|
rE .

Alternative idea, which doesn’t work: In this case the Heegner point reduces
to a point in the identity component, but E(K) reduces to something of order
divisible by 5. Thus if we could prove the following refinement of McCal-
lum,Kolyvagin, then we could resolve this example:
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Conjecture 4.1. Suppose yK has infinite order. Then E(K) has rank 1 and
X(E/K) is finite. Further, if p is an odd prime which is unramified in F and
such that ρE,p is surjective, then

ordp(#X(E/K)) ≤ 2 ordp([E0(K) : ZyK ]),

where

E0(K) := ker

(

E(K) →
⊕

v

ΦE,v(Fv)

)

.

3. Heegner: My Heegner point program needs to be improved. Precision;
maybe use best discriminant, which might not be the smallest (in abs. value).
Look at Cremona’s and Peter’s. OR – just compute L-function and use
mwrank to find what multiple it is of the generator. However, in using mwrank
we need to know that we’ve really found a generator.

E = elliptic curve

G = GCD(H)

B = gcd(#(E(F_p)) : p < 1000, p odd and good)

H = odd part of indexes of Heegner points corr to first five quad imag fields

T = Tamagawa numbers

Thus Sha(E/Q) divides G^2*B^oo*2^oo.

E G B H T verify deg

11A 1 5 [1] [5] 2C5TP 1

14A 1 6 [1] [2,3] 2C3TP 1

15A 1 8 [1] [2,4] 2C 1

17A 1 4 [1] [4] 2C 1

19A 1 3 [1] [3] 2C3TP 1

20A skip

21A 1 8 [1] [4,2] 2C 1

24A skip

26A 1 3 [1] [1,3] 2C3TP 2

26B 1 7 [1] [7,1] 2C7TP 2

30A 1 12 [1] [2,3,1] 2C3TP 1

33A 1 4 [1] [2,2] 2C

35A 1 3 [1] [1,3] 2C3TP

36A 1(skip) [1]
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37B 1 3 [1] [3] 2C3TP

38A 1 3 [1] [1,3] 2C3TP

38B 1 5 [1] [5,1] 2C5TP

39A 1 4 [1] [2,2] 2C

40A 1(skip) [1]

42A 1 8 [1] [8,1,1] 2C

43A

44A 1

45A 1

46A 1 2 [2,1] 2C

48A skip

49A skip

50A skip

50B skip

51A 1 3 [3,1] 2C3TP

52A skip

54A

54B

55A 1 4 [2,2] 2C

56A

56B

57B 1 4 [2,2] 2C

57C 1 5 [10,1] 2C5TP

58B 1 5 [10,1] 2C5TP

62A 1 4 [4,1] 2C

63A skip

64A skip

66A 1 6 [2,3,1] 2C3TP

66B 1 4 [4,1,1] 2C

66C ? 10 [10,5,1] 2C5TP

67A ? 1 [1] 2C

69A 1 2 [2,1] 2C

70A 1 4 [4,2,1] 2C

72A skip

73A 1 2 [3,1] [2] 2C

77B 1 3 [6,1] 2C3TP

77C 1 2 [1,2] 2C

114C 5 4 [5] [20,1,1] 2C
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C = Cremona’s mwrank (2-descent)

TP = Torsion point paper of Stoll (p-isogeny descent in presence of

a rational point of order p).

5 Misc

Proposition 5.1. Suppose E is an elliptic curve over Q and p ≥ 5 is a prime
such that E does not have a rational p-isogeny (equivalently, so that E[p] is an
irreducible Gal(Q/Q) module). If K is a quadratic extension of Q, then E(K) has
no p torsion.

Proof. Suppose z ∈ E[p] is nonzero. Because E[p] is irreducible, the Galois closure
L of Q(z) has Galois group isomorphic to the image H of Gal(Q/Q) in Aut(E[p]).
Because of the Weil pairing, H has order at least p − 1, so since p ≥ 5, we see that
L has degree ≥ 4. If z ∈ E(K), then K = L since K is Galois, and this contradicts
that L has degree ≥ 4.

Conjecture 5.2. Suppose p ≥ 5 and there are no K-rational p-isogenies. Then
Hi(K(E[p])/K, E[p]) = 0 for i = 1, 2.
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Algorithm 6.1. Let E be an elliptic curve over Q of analytic rank at most 1. The
following algorithm computes X(E/Q)[p] for all primes p.

1. [Choose K] Choose the first quadratic imaginary field K that satisfies the Heegner
hypothesis, is such that E/K has analytic rank 1, and whose discriminant is
divisible by at least two primes. Let D be the discriminant of K. Note that the
condition that D be divisible by two primes and that (D, NE) = 1, implies that
Q(E[p]) is linear disjoint from K for all primes p. In fact, this is a necessary and
sufficient condition, since if D is divisible by only one prime p, then because of the
Weil pairing Q(E[p]) will automatically contain K. [[Note: we’ll need a density
argument here to know that such a K exists.]]

2. [Find p-torsion] Decide for which primes p, there is a curve E′ that is Q-isogenous
to E such that E′(K)[p] 6= 0. (We enumerate the Q-isogeny class of E using
[standard method]. Then for each E′ in the Q-isogeny class, compute the torsion
subgroup of E′(K) using [standard method], and see whether or not p divides its
order.) Let B be the product of 2 and these primes.

3. [Root number] Compute the root number of E using the algorithm in [section
blah of Cohen’s Algorithms for ...].

4. [Compute Mordell-Weil]

• If the root number is −1, compute E(Q) (using ..., [possible because of []
implies that the algebraic rank equals the analytic rank since the analytic
rank is at most 1]), and let z be a generator modulo torsion.

• If the root number is +1, compute ED(Q), and let z be a generator modulo
torsion.

5. [Height of Heegner point] Compute the height hK(yK) relative to K of the Heeg-
ner point associated to K using the Gross-Zagier formula:

hK(yK) = α · L′(E/K, 1) =

{

α · L′(ED/Q, 1) · L(E/Q, 1) if E has rank 0

α · L(ED/Q, 1) · L′(E/Q, 1) if E has rank 1,

where α =
u2
√

|D|

‖ωE‖2 . Here u is half the number of units in the ring of integers of

K and ‖ωE‖2 is the volume of E(C), which is the volume of the period lattice
Zω1+Zω2 associated to E and ωE . The differential ωE is the c ·ω, where c is the
Manin constant for E and ω is a Néron differential on E (we are assuming E is
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modular here, which is OK.) [[say something about computing cω... cite Section
2.14 of Cremona’s book.]] If π : X0(N) → E is the modular parametrization,
then π∗(ω) = c ·ωE , where ωE = f(q)dq

q
∈ H0(X0(N), ΩX0(N)) is the normalized

cuspidal eigenform corresponding to E.

6. [Index of Heegner point] Compute

IK =
√

hK(yK)/hK(z) = [E(K) : ZyK ],

up to primes that divide the B from step 2. Note that hK(z) = 2 · hQ(z), and
that we do not compute E(K) or ZyK directly, but instead compute the index
using properties of heights.

7. [Annihilate X] Then X(E/Q)[p] = 0 for all primes p - B · IK .

8. [p-descent] For each prime p | B · IK , do a p-descent and compute X(E/Q)[p].
(Note that this is likely not too difficult because there is a p-torsion point over
K on a curve F that is Q-isogenous to E. Ideas: If an isogeny from E to F
has degree divisible by p, then E has a rational p-isogeny, which makes p-descent
eiser. If an isogeny from E to F has degree coprime to p, then X(F/Q)[p] ∼=
X(E/Q)[p], and F has a K-rational p-torsion point, so p-descent on F should
be relatively easy.) To reduce the number of p for which one must do a p-descent,
use several K.

[K exists by Murty-Murty or Bump-Friedberg-Hoffstein.... ]

Remark 6.2. Possible different approach, which might be especially useful when
E(Q) has rank 0: Use half integral weight forms to compute the index [E(K) : ZyK ]
as the coefficient of a modular form. This could be, in some sense (?), more efficient
than directly computing ED(Q).

Example 6.3. We run through the algorithm for the “first” elliptic curve E =
X0(11):

y2 + y = x3 − x2 − 10x − 20.

1. By Cremona’s table, there is only a 5-isogeny, t = 10.

2. The Heegner hypothesis is that 11 splits completely in K, and the discriminant
of K should be coprime to 11. Try K = Q(

√
−1). Nope. Try K = Q(

√
−2);

yes, this works.

3. From the table, the sign is +1.
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4. The twist of E by D = −8 has minimal model

y2 = x3 − x2 − 41x + 199.

This is 704K2 in Cremona’s tables. The Mordell-Weil group is generated by
(2, 11). (Should the following MAGMA code be believed? No.)

> G, f:=MordellWeilGroup(F);

> G;

Abelian Group isomorphic to Z

Defined on 1 generator (free)

> f(G.1);

(2 : 11 : 1)

5. Using BG.gp, we find that

L(E, 1) ∼ 0.2538418805947805478584144442

and
L′(ED, 1) ∼ 1.887913559019476476731614099

? \r BG

? e=ellinit([ 0, -1, 1, -10, -20 ]);

? ellanalyticrank(e)

Summing 7 a_n terms

Rank is even

L^(0)=0.2538418805947805478584144442

[0, 0.2538418805947805478584144442, 1.000000077760499379277370890]

? e=ellinit([ 0, -1, 0, -41, 199 ]);

? ellanalyticrank(e)

Summing 53 a_n terms

Rank is odd

L^(1)=1.887913559019476476731614099

[1, 1.887913559019476476731614099, 0.1830190942955215687124786121]

Also

? e=ellinit([ 0, -1, 1, -10, -20 ])

? e.omega

[1.269209304279553421688794617, \

0.6346046521397767108443973084 + 1.458816616938495229330889613*I]
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? e.omega[1]*imag(e.omega[2])

1.851543623455959317708006712

? sqrt(8)/%

1.527604907016368150928945837

So We have u = 1, D = −8, and ‖ωE‖ ∼ 1.8515436234, so

α =
u2

√

|D|
‖ωE‖

∼ 1.527604907016368150928945837

Finally,
h(yK) ∼ 0.7320764341087109483011606701

? 1.887913559019476476731614099 * \

0.2538418805947805478584144442 * \

1.527604907016368150928945837

0.7320764341087109483011606701

6. ? e=ellinit([ 0, -1, 0, -41, 199 ]);

? 2*ellheight(e,[2,11])

0.1830190931500931069448448415

We have

? 0.7320764341087109483011606701 / 0.1830190931500931069448448415

4.000000336076075243576248085

Thus IK = 2.

7. We conclude that X(E/Q)[p] = 0 for p 6= 2, 5.

8. Leave this to Stoll...
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