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0. Introduction

Let M be a positive integer. If f is a normalized newform for I'j(M), then the
L-function with gamma factors attached has the form

A(s,f) = 2m) T (\M*2 L(s, f) .

It satisfies a functional equation A(s, f) = eA(k — s,f), where ¢ = + 1 is naturally
called the sign in the functional equation. Clearly the order of vanishing of L(s, f) at
s = k/2 is even if the sign in the functional equation is positive, and is odd if the sign
in the functional equation is negative.

If D is a fundamental discriminant, let y, be the Dirichlet character with

D
conductor |D| defined in terms of the Kronecker symbol by y,(n) = (;) This is

the quadratic character associated with the quadratic field Q(\/B). It is known
that y,( — 1) = sgn(D).
Let L(s, f, xp) = 3. xp(m)a(m)n~%, and let

A(s, £, 2p) = (D2 M)22m) * () L(s, f; xp) -

This has analytic continuation as a function of s, and, provided gcd(M, D) = 1,
satisfies the functional equation

A(s, f, xp) = exp( — M)Ak — s.f, 1p) -

Now suppose that every prime dividing M splits in Q(\/B). In terms of the
quadratic symbol, this implies that y,(M) = 1. Therefore the sign in the functional
equation for L(s, f; xp) is the same as the sign in the functional equation for L(s, f) if
D > 0, and opposite if D < 0.

Theorem. Let f be cuspidal newform of even weight k with trivial character for the
group I'q(M), and let S be a finite set of primes including all those dividing M. Let
¢ denote the sign in the functional equation of f.

* Supported in part by NSF Grants No. DMS87-02326, DMS88-21762 and DMS88-00645
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(i) There exists a quadratic field Q(\/B) with D a fundamental discriminant, and
eD < 0, such that every prime in S splits in Q(\/B), and L(s, f, xp) has a simple zero
at s = k/2.

(i) There exists a quadratic field Q(\/B) with D a fundamental discriminant, and
eD > 0, such that every prime in S splits in Q(\/l_)), and L(k/2,f, xp) * 0.

It is explained in [4] that (i), combined with work of Kolyvagin [13] and of
Gross and Zagier [7], implies that if E is a modular elliptic curve over Q such that
L(1, E) £ 0, then the group of rational points of E, and also the Tate-Shafarevich
group of E over Q, are finite. A result similar to (i) has been obtained by a different
method by M. R. Murty and V. K. Murty [15].

The second assertion was proved by a different technique by Waldspurger [19]
and [20]. See also Kohnen [12] and Jacquet [10].

In the proof of the Theorem we may assume that ¢ = + 1. For if the sign in the
functional equation of fis negative, we may twist f by an odd quadratic character
whose ramification is outside of S to obtain a form the sign in whose functional
equation is positive, and then apply the Theorem to the twisted form (cf. Atkin and
Li [1]). We will therefore assume that the sign in the functional equation of f is
positive.

The method of the proofis that introduced in [3]. We consider a Dirichlet series
in a new parameter u, whose D-th coefficient is L(s, f, xp), by applying a type of
integral transform introduced (in a different context) by Novodvorsky [15] to an
Eisenstein series of half-integral weight associated with f on the metaplectic group
(the double cover of GSp(4, R)). Actually there are two such Dirichlet series,
corresponding to positive and negative discriminants. We obtain our results by
studying the poles in u of these Dirichlet series.

An important technical difference between this work and [3] comes from the
decision to use Jacobi modular forms. This was an excellent suggestion made to us
by D. Zagier. Jacobi modular forms are automorphic forms on the Jacobi group,
which in our situation is the semidirect product of GSp(4, R) and a Heisenberg
group. The Eisenstein series of half-integral weight previously alluded to occur as
coefficients in Fourier-Jacobi expansions of these Jacobi Eisenstein series. In
practical terms, this means that the “theta multiplier”—the automorphy factor for
the Eisenstein series—is built into the framework of our work, and does not require
special attention. Secondly, it means that the method by which we compute the
Whittaker-Fourier coefficients of the Eisenstein series is rather different from that
used in [3]. Thirdly, the problem of sifting out just those quadratic characters x
such that the primes in S split in Q(\/I_)) is solved very felicitously if one uses
Jacobi forms. Naturally, it would have been possible to carry out our program
without using Jacobi modular forms, as we did in [3]. However, it seems clear that
the work would not have been as elegant.

As in [3], a technical problem is presented by the fact that two poles, corres-
ponding to two different cells in the Bruhat decomposition on GSp(4), coalesce
when s = k/2. The contribution to one pole is very explicitly computed. The other
pole comes with a factor which is a Dirichlet series with an Euler product. If p¢ S
the p-factor of this Euler product is explicitly computable. However, if pe S, the
p-factor of this Euler product is more complex. Fortunately, it is not necessary for
us to compute these “ramified” Euler factors explicitly, for it turns out that there is
enough extra structure in the situation that we are able to understand the interac-
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tion of the two poles. In other words, because of this extra structure we are able to
completely avoid dealing with problems of ramification.

Another technical problem which does not occur in [3] (where we chose to
work over the field Q(i) in order to achieve technical simplifications) arises from
the necessity of separating the contributions of the positive and negative dis-
criminants. Although we did not have to deal with this problem in [3], it did arise
in the work of Goldfeld and Hoffstein [6], where quadratic twists of Dirichlet
L-functions were considered. A similar strategy was used in that work to that of the
current paper. The role played by the Eisenstein series on the double cover of
GSp(4, R) in the current paper was played, in the work of Goldfeld and Hoffstein,
by the Eisenstein series on the double cover of SL(2, R). In both cases, the key to
separating the contributions to the two sign classes of discriminants involves
varying the K-type of the Eisenstein series, i.e. the representation of the maximal
compact subgroup K which is built into the definition of the Eisenstein series. In
[6], the maximal compact subgroup of SL(2, R) is the abelian group SO(2). The
K-type of the Eisenstein series is simply the weight. It was shown that the Mellin
transforms of the two Whittaker functions associated with positive and negative
discriminants had different asymptotics as the weight was varied. In the current
work, the maximal compact subgroup K of GSp(4, R) is U(2), which is a somewhat
richer group. The possibility of varying the K-type of the Eisenstein series is
manifested by the Peter-Weyl theorem, which says that any continuous function on
K may be uniformly approximated by a matrix coefficient of a representation. This
allows us to build into the Whittaker functions which occur a rather arbitrary
function on K, giving us considerable flexibility.

It is clear that the techniques of the present paper can be used to obtain mean
value estimates analogous to those of [6], for quadratic twists of automorphic
L-functions and their derivatives. (Cf. [4] for a precise statement.)

Although this work may seem technically imposing, we would like to stress that
there is an essential underlying simplicity. Most of the work involved consists in
laying the foundations for the theory of Eisenstein series and Whittaker functions
on the metaplectic group. Once the foundations are laid, the structure of the proof
is extremely simple.

Acknowledgements. 1t is a pleasure to thank D. Goldfeld for calling our attention to the work of
Kolyvagin, and its connection with ours. We are also very grateful to D. Zagier for suggesting the
framework of Jacobi modular forms. We would also like to thank J. Coates, D. Goldfeld, S. Lang,
M. Rosen, K. Rubin, P. Sarnak, N.-P. Skorrupa, J.-L. Waldspurger, L. Washington and D. Zagier
for discussions of the applications, and for helping us to understand the current state of
knowledge.

1. Jacobi modular forms

Basic references for Jacobi modular forms are the work of Eichler and Zagier [5],
and of Ziegler [22].

As in the Theorem, let f be a newform for I'y(M), the sign in whose functional
equation is positive. We will actually wish to work with a form of higher level. We
therefore regard f as an oldform for the group I'y(N) where N is a suitable multiple
of M. We require that N be divisible by 8, and by every prime in the set S of the
Theorem. We will also require an integer m, such that N|m and 4m|N 2, In the final
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section we will specify m more precisely. With these preliminaries, we will now set
out to define a Jacobi modular Eisenstein series which is built around the form f. In
the next section, we will consider Fourier-Jacobi expansions of Jacobi forms. For
the Eisenstein series in question, the coefficients in these expansions will involve
certain Eisenstein series of half-integral weight, which are the ultimate objects of
concern.

If z is a complex number, then e(z) will denote 2™, We will denote by e™(z) the
function e2"™m=,

If A is a matrix, then T4 will denote its transpose. If R is any ring, then M(n, R)
will denote the ring of n x n matrices with coefficients in R. If 4 is a symmetric
n x nmatrix, and vis an n x 1 column matrix, then A[v] = TvAvisa 1l x 1 matrix,
which we will identify with its scalar value.

We will use the following standard notations for matrices in GL(2, R): E will be

the identity matrix,
() - 2)
w= s = ,
1 -1

and if xeR, we will denote

1 x x 0 00
E(x)=< 1>, Uo(x)=<0 O)’ Ul(x):<0 x)-

0 E
Let E be the 2 x 2 identity matrix, and let J = (E 0 ) Then GSp(4, R) is

the group of matrices g in GL(4, R) satisfying 'gJg = uJ for some peR. It is known
that if r is even, then all elements of GSp(2r, R) have positive determinant. How-
ever, 1 may be positive or negative. The subgroup consisting of elements such that
u > 0 will be denoted GSp™* (4, R). The subgroup consisting of elements such that
u = 1 will be denoted Sp(4, R). Thus if ge Sp(4, R) then TgJg = J. We will regard
GL(2, R) and its subgroup SO(2, R) as subgroups of Sp(4, R) via the embedding

")
o~ )

Let s, be the Siegel upper half space of genus two. Thus J, consists of all
2 x 2 complex symmetric matrices Z = X + iY, such that X and Y are real
symmetric matrices with Y positive definite. The group GSp™* (4, R) acts on /¥, in
A
the usual way. Thus if g = (C g)eGSp+(4, R), where 4, B, C and D are 2 x 2
blocks, then by definition

9(Z) = (AZ + B)(CZ + D)™ !

Ifg = <g g>eGSp+(4, R), let Z, = g(iE) = (4i + B)(Ci + D)™ '. We denote,
for

A B ,
y'—<C D>GSP(4,R), A,,uEC ]
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and for any function ¢ on Sp(4, R) x C2,
(@19 (g, W) =e"(—((CZ,+ D) 'C)[W])o(yg, (CZ, + D)™ ' W), (L1)

<¢ I [2])(9, W)=e™Z,[A1+2"Who(g, W + Z, 4 + ). (1.2)

We have the relations

¢lyly =dl(), (L.3)
A v A+
= i h T .
ol [u] Il [P:I o [# N p] provided that 2mTpeZ , (1.4)

ol mw =611 (y[ﬂ) (1.5

Let I be the subgroup of matrices

4 B Sp4,Z
CDep(,)

By a Jacobi modular form of level N and index m, we mean a function @, which is
holomorphic in W, and which satisfies

C=0mod N, A215D12£0m0dN}.

Dyly =D, foryerl ; (1.6)
A 1
D, | I:”:I=¢0 for AeZ?, ueNZZ . (1.7)
We will also consider the function @, = @, |J. It follows that ¢, satisfies
&, |ly=®, foryeJ 'I'J; (1.8)
A 1
P, ||[ :|=<1>1 for le—Z2, peZ?. (1.9)
u N

We now describe the construction of particular Jacobi modular forms by means

b
of Eisenstein series. Recall that I'o(N) is the group of matrices (‘cl d>eSL(2, Z)

such that N | ¢, and that '°(N) is the group of(a Z)e SL(2, Z) such that N | b. As
C

in the introduction let f be a cuspidal modular form on I'y(N) of even weight k and
trivial character. Thus, we assume that

at+b a b
f<c1_ " d) =(ct + d)*f(x) for (c d)eFO(N) . (1.10)
Also let f (tr) =t *f(— 1/N7). Then f also satisfies the same automorphy condition
(1.10). It is more convenient to build the Eisenstein series around f than the original
form f. We will denote by a(n) the Fourier coefficients of f at the cusp at infinity, so
that

o)

f(T) = Z a(n)eZnim .

n=1

The L-function of f'is then the Dirichlet series ) a(n)n™".
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Let F be the function on GL* (2, R) given by

F(g) = f(g(i))(ci + d)~*det(g)** for g = (j Z)eGL*(Z, R).

It is easy to see that F satisfies

F(ygk) = F(g)pi(x) , (1.11)
for yeI'y(N) and ke SO(2, R), where

( cosf sin6 o
=e'
Pr —sinf cos6

Let K be the standard maximal compact subgroup GSp™* (4, R) » O(4). Thus
K is the stabilizer of iE in the action of GSp™* (4, R) on J,. Then K is isomorphic to
U(2)—the isomorphism may be described explicitly as follows. Let
k=A + iBeU(2), where A and B are real matrices. Then ATB = B"4 and
A

(%5 )

K —

—B 4

is an embedding of U(2) into Sp(4, R) which extends the previously mentioned
embedding Q — (Q 0 1) of SO(2).

B
TAA + "BB = E, so that the matrix ( A) is symplectic, and the homomor-

phism

Let V be a complex vector space, and let GL(V) denote the group of nonsingu-
lar linear transformations of V, acting on the right. Let : K — GL(V) be a finite

—E
dimensional complex representation of K which is trivial on ( E)’ such

that there exists a vector ve V with the property that
vo(x) = p,(k)-v for all ke SO(2,R) . (1.12)

It is well known that there are always an infinite number of representations
k having this property.
We will now define a function 1:GSp* (4, R) - V by prescribing that

Q XTQ—I .
I(( -1 )) = F(Q)'v for Qe GL* (2, R), symmetric Xe M(2,R), (1.13)
and

I(gzx) = I(g)o(x) (1.14)

if z is a scalar matrix and x€ K. One may check that there is a unique function
I having these properties. Observe that

U xu! .
I 0 Tyt g)=1(@) for all UeI'y(N), symmetric Xe M(2,R) (1.15)
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XT -1
1((” )(Q ‘e )) = F(nQn)-vo(n) (116)
n Q0

for Qe GL*(2, R), symmetric X e M(2, R).
Let s be a complex variable, and for ge GSp™* (4, R) let
I(g) = det(Y,)*1(g) . (1.17)
XTQ -1

TNn-1

and

Let P be the subgroup of >e GSp* (4, R) such that Qe GL* (2, R) and

X = "X eM(2, R). Note that Q is assumed to have positive determinant. Define

A
E= 3 Isn[o]w.
yePnI\I'
reZ?

Thus

E(g, W)= > I(yg)e™(y(2))[A]
reZ?

A B
y=<C D)ePn[‘\F
+2TW(CZ + D)"'A—((CZ + D)"'C)[W]),

convergent for re(s) sufficiently large. Then E is a Jacobi modular form of level N.
The group I',(N) has anw(l + p~') cusps. These are the points of the

o

the stabilizer of the cusp 0 in SL(2, Z). Then a complete set of representatives for
the set of cusps are the points y(0), where y runs through a set of coset represent-
atives for I'o(N)\SL(2, Z)/T',. We will denote by a,(n) the Fourier coefficients of

rational projective line modulo the action of I'y(N). Let I'y =

fat the cusp y(0). Thus if y = <j d w, let
_afat+b _
(ct +d)7*f <m> =Y a,me(nN~'1),

where the summation is over positive ne Z. In particular, if y = E, then a,(n) equals
a(n). We assume that f is normalized so that a(l) = 1. We have at each cusp
a Fourier expansion

Fowg)= Y amW,),

0<neZ

where W,(g) is the function on GL* (2, R) defined by
x
W..<<y 1)2K> = y"2e(N"n(x + i) py(x) , (1.18)
for scalar matrices z, and x € SO(2, R). Thus

Nt F(yw(l T)g)e(—N"nx)dx=ay(n)W,,(g). (1.19)

R/NZ
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We will express quadratic twists of the L series of fin terms of Fourier-Whittaker
coefficients of E;.

Since f is a newform for I'y(M), the L-function L(s,f) = Z" a(n)n™* has an
Euler product of the form

L f)= ] —app™) ' [T(1 —a(pp™ +p*~172)7 . (1.20)
pIM pIM
Furthermore, the hypothesis that f is a newform implies that
f(=1/N7)=e(— D2/ NoHf (@), (1.21)
where ¢ = + 1. Consequently, if
A(s,f) = N2 2m)~* I () L(s, f)
then
A(s, f) = eAlk —s,f) . (1.22)
We have
Proposition 1.1. If p is a prime divisor of M, then

£ i p?IM;
a(p) = .
0 otherwise.

See Ogg [17], Theorem 1. OJ

We will denote

Ly(s,f) = H (1 —a(p)p~*+ pk 1251
PIN

For each p not dividing M, let us factor
1—a(p)t + 1> =(1 —a,)(1 —apt),
so that

Ly, /)= [l (1 =0e,p™) (1 —app™)"". (1.23)

pIN
Let

Lys.fo v3) =TI (1 —a2p™*) (1 — p*~ 15 11 — g}2p~%)"?
pIN

denote the “symmetric square” L-function with p-part removed for all p| N.
Proposition 1.2. L(s,f, v?) is analytic and nonzero for real s 2 k.

Proof. This follows from the Rankin-Selberg method. Specifically,

np,NL(s,f V)25 — 2k +2)Y X a(n)?n~®
(s =k +1)

LN(s’fv v?

where

e it p|M ,
2y-1 _
Ly(s.f, v7) {(l —o2p )1 — p* (1 —a2p™)  if pIM
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and (,,(s) is the Riemann zeta function with p-part removed for p| N. The result
follows from the fact that both numerator and denominator have simple poles at
s = k, and are analytic and strictly positive for real s > k. The simple pole of the
numerator is proved by Ogg [17], Theorem 3, following Rankin and Selberg. O

Let L(s, f; xp) = Y. xp(ma(n)n~%, and let
A(s, f, xp) = (D*M)*?(2m)~*I'(s)L(s, f; xp) -

This has analytic continuation as a function of s, and, provided gcd(M, D) = 1
satisfies the functional equation

A, f, 1p) = exp( — M)Ak — s, £, xp) - (1.24)
This follows from Proposition 3.66 and Lemma 3.63 (2) of Shimura [18].

2. Theta expansions of Jacobi modular forms

In this section, let @, be a Jacobi modular form of level N, and let ¢, = @,|J. We
will obtain expansions of @, and @, in terms of theta functions.

The theta functions which we require are defined as follows. Let N, be
a positive integer, which will eventually be taken to be m/N. Let Z = X + iYe ¥,
and WeC?, where X and Y are the real and imaginary parts of Z. If ve Z2, then let

oz, wy= Y e(LZ[R]+TRW>. 2.1)

R = vmod 2N, 4N0

The summation is over vectors ReZ? congruent to v modulo 2N,. It may be
checked that if 4, pe Z2, then

0Z, W) = eM(Z[A] + 2TWAB(Z, W + ZA + p).
Consequently if u, ve Z2, then
9N(Z, W)ON(Z, W)exp( — 4nN, Y~ [im W])

is invariant under translations of W by the “period lattice” A, consisting of vectors
ZX + p such that 4, peZ2.

Proposition 2.1. We have
[ oYz, w)0N(Z, Wyexp(— 4nN,Y ™' [im W])dW
Cc?/A,
detY
={ 2N,
0 otherwise .

if u=vmod2N, ;

Here dW denotes Lebesgue measure. We omit the proof, which is similar to
Theorem 5.3 of Eichler and Zagier [5]. O

It follows from the periodicity properties implied by (1.6-9) that &, for j = 0 or
1, has a Fourier expansion

®,(g, W)= Y B;(g; T, Re(NItr(TZ,))e(N' "/ RW) , 22
T,R
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where the summation runs over 2 x 2 half-integral symmetric matrices 7, and
integer column vectors R, and where

Bi(g; T,R) =

. E X . )
N3 [ rbj(( )g, W) e(— Ntr(T(Z, + X)) — N' I TRW)dWdX .
(R/N'Z)* (R/Z)? E 23

X, X
We are identifying a symmetric matrix X = < ¢

of R3.

Proposition 2.2. Let j = 0 or 1, and let ve Z2. Then there exist functions & i(g;v) of
g€, such that

> with the element (x,, x;, X,)
X3 Xy

g, W)=Y EigGvONN'THZ, NVTIW). (2.4)
vmod 2m/N
We have a Fourier expansion
1
5@N=2C,6 U, v)e< 4mN,.tr(UZ,)), @5)

where the summation is over integral symmetric matrices U, and

1 .
Bi(g;T,v) if T= m(U + N27iv") is half-integral ;

Ci(g; U,v) = ’ (2.6)
0 otherwise .
We have the transformation properties
 —detZ N
&1(g;v) = —5—-2 e( — 5= Tvu) EoJg; 27
2m pmod 2m/N 2m

and
W —detZ N
Eolgyv) = ——- e(— TV#)tf (g, 1) - (2.8)
° 2m umodZZM/N 2m !

Remark. Here, as in other places throughout this paper, the square root must be

taken in the obvious way—in this case, / — det Z, is chosen positive when Z, is
pure imaginary.
Proof. We will prove first that if 1e N /Z?2, then
N . .
B;(g; T,R) = B,.<g; T- —2-RTA — %ATR +mNiJTA, R — 2mN"‘A) . (29
Observe that by (1.7) and (1.9), we have

Di(g, W) =emZ,[1] +2m"IW)®;(g, W + Z,)  for AeNIZ?.

Substitute
E X
E g
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for g in this relation and substitute into the definition (2.3) of B;(g; T, R). We obtain
for B;(g; T, R) the expression

N E X
N3 [ | & 9 W+(Z,+ X)A) x
R/N'Z)* (R]Z)* E

e(m(Z, + X)[A] + 2m"AW — NI tr(T(Z, + X)) — N'/"RW)dWdX .

Replace Wby W — (Z, + X)4 in this integral. This becomes

N73 [} ¢j<<E X)g, W)e(——m(Zg+X)[l]+
(R/N'Z)° (R/Z)? E

N'TR(Z,+ X)A—Ntt(T(Z, + X)) — N' /("R = 2mN’"'T))W)dwdX .
(Note that we have used the fact that @; is holomorphic as a function of W to justify
moving the path of integration.) Now observing that

tr(A"A(Z, + X)) = (Z, + X)[4], tr(3RTA+3A"R)(Z, + X)) ="R(Z, + X)4,
we see that this expression for B;(g; T, R)is essentially the same as the definition, by
equation (2.3), of B; (g; T— -IZYRT/I — gﬂR +mNJATA,R — 2mNi~! l), whence
(2.9).

It is easy to see that given 7, T", R, R’ the two equations

N ;
T =T- *Z‘RT/l - %XTR +mNiATA,
R' =R —-2mNi™1)
may be solved (for A€ N 7Z?) if and only if
R’ = Rmod 2m/N ,
and
4mT’' — N2 'R'TR' =4mT — N?>7'R'R .
Thus we introduce the notation, for integral matrices U,
Bj(g; T,R) if there exist R = vmod 2m/N, half integral T
Ci(g;U,v) = such that U =4mT — N27JR"R ; (2.10)

0 otherwise .

The substance of (2.9) is that this is well-defined. Note that if there exists any
integral R = vmod 2m/N and half integral T such that U = 4mT — N2"/R"R, then

1 ;
m(U + N27JyTy) is necessarily half integral, so that we may take R = v and

1 ; .
T = 4—»rﬁ(U + N273yTy) in defining U. Thus the definition (2.6) of C;(g; U, v) is
equivalent to the definition (2.10).
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We now have

9. W)= Y YCigUv ¥

vmod2m/N U R = vmod 2m/N
1
(4 Gt (U + N2 RTR)Z ))e(N‘ IR, @2.11)

whence (2.4), where &;(g; v) is defined by (2.5). It remains for us to prove the
transformation properties (2.7) and (2.8). We will prove (2.7)}—the proof of (2.8) is
similar (or (2.8) may be deduced from (2.7)).

It follows from the Poisson summation formula that

tZ
ON(— 271, Z- W) = e(Ny 2~ [ W]) L=3®
2N,
1
el —=—=—Tvu |ON(Z, W), (2.12)
llmO%:ZNo < 2N )
or equivalently
1
ON(Z, W)=e(— N, Z" ' [W])
. 0 2No+/ — det Z ymod 2N,

1 N —1 -1
- o(— — wy. (21
e( N, vu)@ ( ,—Z ). (2.13)

On the other hand, we have by definition
Qg W)=e(—mZ;' [W])D,(Jg, — Z; ' W). (2.14)
Substituting (2.5) for @; on both sides of (2.14) and applying (2.12), we obtain

Y. EGVONNTIZ, W)
vmod 2m/N

= Y v~ detZ, Y e<—zﬁTvﬂ>é"o(Jg;u)0:"/"(N“Zg, w).
m

vmod 2m/N 2m pumod 2m/N

Now (2.7) follows from Proposition 2.1. This completes the proof of Proposition
22. O

Proposition 2.3. Suppose that ve Z2. Then if ne Z, N | n, we have

E
é’(( " TE(n)_l)g;v)=&(g:*E(n)vL @19

.
e'o(( B )g; u) = &0g: ) . (2.16)
E(m)~!
Proof. By (1.8),

E
2 W)=¢‘<< " TE(n)“>g’E(")W>'
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By (2.4), the left side of this equation equals

Y, EigvOVNINTIZ, W),
vmod 2m/N

The right side equals

E(n) i .
L (( TE(m)~! )g; v) 67N(NTIEMZ,TE(n), EMW) -

vmod 2m/N

Now
O7N(N~'E(n)Z,"E(n), E(mW) = BTéZ,,V(N‘ 'Z,W).
Now (2.15) follows from the linear independence of the theta functions 0™V for

v modulo 2m/N, which is a consequence of the orthogonality relation of Proposi-
tion 2.1.

The proof of (2.16) is similar. [J
Corollary 2.4. Suppose that v has the special form (0, v,). If neZ and N |n then

é’((E(n) ) =&,(g; 2.17
1 TE(n)_l g,V)-— l(gsv)’ ( )

NN, ((TED |
ymodZZM/Ne<_5n vu)én()(( E(n)_l)g, ‘u>

N
e( - E—Tvu)ﬁo(g; u . (2.18)
umod 2m/N m

Proof. This is an immediate consequence of Proposition 2.3. O

Proposition 2.5. Suppose that v, ne Z%, and suppose that v has the special form
TO,v,). If V = (V;;) is an integral symmetric matrix such that Vy, = V,, = 0mod N

and V,, = 0mod 4m, then
1 Vv
&, 0 1/)%" =&,(9;) (2.19)

If V' is an arbitrary integral symmetric matrix, then

1 v
6’0((0 { )g;u)=é”o(g;u)- (2.20)

Proof. By (2.6), given the special form of v, we have C,(g; U, v) = O unless the
integral symmetric matrix U = (U;) satisfies U;; = 2U;, = Omod4m, and
U, =0modN. This implies (2.19). On the other hand, since m|N?
Co(g; U, p) = O unless U,, = U,, = U,, = 0mod m. Since we have in fact 4m| N2,
this implies (2.20). O

Proposition 2.6. Suppose that ve Z? has the special form T(0, v,). Then if ne Z,

E
det(E + U, (nZ) &, <<U ) E)g; v) =8&,(9;v) . (2.21)
1
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Furthermore, if N |n then

N E
Vdet(E + U,mZ,) Y e(—%Tvu>&o<(Uo(n) E>g;v)

pumod 2m/N

N
e( - —Tvu> Eolg;v), (222
pumod 2m/N 2m

E
Proof. If g, = <U ) E)g, then Z,, = Z (E + Ul(x)Zg)_‘. Thus by (2.7),
1

E
det(E+ U,(x)Z,)& ;
ot + Uz ‘((Ul(x) E)g ”)
J=detz, N, E U(-x
=X 4 - — 8 Jgiu .
2m umo§:2m/Ne< 2m Vﬂ> 0<< E s
(2.21) follows from this expression and (2.20).

On the other hand, if g, = < >g, then Z, = Z (E + Uy(x)Z,)~ 1 and

Ug(x) E
so by (2.8)
N E
N e PN (A
det (E + UO(x)Zy)pmodZZm/Ne o VM 8, Uy) E g;v

J —detZ N E Us(-x)
- om ¢ am oY )g (( ' )J ; > .
S #’pmgzmm (2m (p =V )é, £ g;p
For fixed p, the sum over u vanishes unless p = vmod 2m/N, so this equals

2m./ — detZ‘,(g,l ((E Uo(— x)>Jg; v> .

N? E
Now (2.22) follows from this expression and (2.19). O
Proposition 2.7. If j =1 and ye '°(N), or if j = 0 and yeI'y(N), then

7
B,(( Ty_,);}; T, R) = B;(g; 'vTy, 7R) , 223

Y
C,-(( Ty_l)g; U, R) = C;(g; "YUy, ¥R) , (224
Proof. By (2.3), the left side of (2.23) equals

b0 )
(R/N'Z)* (R]Z)? E Y

e(— N7/tr(T(Z,™y + X)) — N'JTRW)dWdX .
In this formula we substitute yX Ty for X, and yW for W. Since

Y
(pjl( T,y—l)=¢]’
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this equals

. E X
e )
(R/N'Z)* (R/Z)? E

e(— N7t ("yTy(Z, + X)) — N' I T("yR)W)dW dX ,
whence (2.23). Equation (2.24) is a consequence of (2.23). [J
Corollary 2.8. Suppose that v has the special form (0, v,), and that n,DeZ, N |n.
Then

E
C1<( (n) T ~1)g; U[(ND), ")=C1(g; Ul(ND), v)’ (225)
E(n)

N TE(m)~! .
u modz‘im/N ¢ <§; v#) Co (( E (n)) ¢ UO(D), ﬂ)

N
= e (ﬂ T”") Lo(g; Uo(D), ) . (2.26)
pmod Zm,

Proof. This follows from Proposition 2.7 and the fact that TE(n)v = v, together
with TE(n)U,(ND)E(n) = U,(ND) and E(n)Uy(D)"E(n) = U,(D). O

3. Whittaker functions on the metaplectic group

Let us define two nondegenerate Whittaker functions W* and W~ which are
associated with Fisenstein series of half-integral weight on GSp(4, R). Let
a:K — GL(V) be a representation of K, and let ve V be a vector. Let s be a complex
number which is initially assumed to have real part greater than 2. Then, if
Y1, Y, > 0, we define

W, y2:9) = WE(y1, v 85V, 0) =

s V —det(X +iE) P ,
(r1y2)* y‘z‘“w et (X + )T e( £ y;x)e(yy(xs +iy2))(y2)?va(x)dX  (3.1)
provided that v satisfies (1.12). In this formula, the notation is as follows. We are

X4

X
identifying a real symmetric matrix X = < 3) with the point (x,, x5, x,) of
X

3 X

-1 )
R3, x5, v, and k = k(X) are described as follows. Let w = < ) ) and determine

Q' of the form Q' = /y} <y2 Xlz) and k a unitary similitude (which depends on

X) so that
E X X!
(DR

According to the Iwasawa decomposition, Q' and « are uniquely determined. Also,

the branch of ./ — det(X + iE) is chosen to be positive when X = 0, and extended
to all real symmetric matrices X by continuity. 6: K — GL(V) is a representation
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and veV is a vector satisfying (1.12). We will prove shortly that the integral (3.1) is
absolutely convergent if re(s) > 2.
We may compute k, x5 and y; as follows. Let us denote

A —B
k1= , (3.3)
B 4
so that A + Bi is unitary, "AB = "BA and "AA + "BB = E. Thus 4 + XB =0, so
that B must be nonsingular and X = — AB~!. These may be computed as follows.

We have, since X is symmetricc X? = "B~ 'TAAB™!' = "B~ (E -~ "BB)B"! =
TB !B~ ! — E. Therefore

B'™B=(X*+E)™'. (3.4)

Note that wB = Q'. Thus x5, y, may be computed by comparing coefficients in
(3.4). The most efficient way to do this is to introduce new variables as follows. It
follows from the principal axis theorem that we have a factorization:

X4 X3 c d\[a c —d
GO0 G ) e
X3 X, —d ¢ B/\d ¢

where ¢? + d? = 1. Then (3.4) implies that
cd(a® — p?) , A +a?)(1 + %) (3.6)
1+ +d2a2 2T 1+ Ep +d%? )

We have det(X + iE) = (« + i)(f + i). Furthermore, x is now a function of
X which may be described as follows. We have

Xy =

o

A=<c d) T ira (c —d)U,
—d ¢ B d
J1+p?

B=<c d> 1 + a2 (c _d>U,
—-d ¢ 1 d ¢
J1+ p?

where U is an orthogonal matrix of determinant one which is determined by the

requirement that the upper left hand corner entry of B is zero, and that the upper

right corner entry of B is positive (so that wB = Q' will have the required form).
We may translate (3.6) into the following more explicit formulas:

3.7

- X3(x; + x4) ;U x4 2x3 4+ x2 + (x,x, — x3)
p=E—a =

2
. (3.8
T+x2+x2 > 2 1+ x? + x3 (38)

Proposition 3.1. The integral

0§ 4+ xf+2x3 + x3 + (x, %, — x3)%)7°

— e —w —o©

A+ x2 +xH)7PA + x?)"7dx, dxydx, (3.9)
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is absolutely convergent provided that
a>%, 2a4+p>3, a+pf+y>1.

Proof. The integrals with respect to x,, x; and x; may be carried out (in that order)
by use of the formula

re-1)
rv)

valid if 44C — B? > 0 and re(v) > 1/2. The three successive integrations requires
a>%,20+pf>3,anda+pf+y>1. 0

[ (Ax*+Bx+C)dx=/n 22714AC — BTV (3.10)

Proposition 3.2. The integral (3.1) is absolutely convergent if re(s) > 2.
Proof. Since k = 2, we may estimate

e(y,(x2 + iy2)) (v2)"* < y3'1? .
Thus the integrand is dominated by

 —det(X +iE) |

[det(X +iE) > =(14x} +2x3 + x3 4 (x, X, —x3)) 721+ x§ +x3) 712

The result now follows from Proposition 3.1. [J

Although we have the convergence of the integral for re(s) > 2, we will be
particularly concerned with the behavior of the Whittaker function at s = 2, and so
we need to know that the Whittaker function has analytic continuation to the left.
Obtaining this analytic continuation will be our next objective. The proof of this is
influenced by the thesis of Jacquet [9].

Let us introduce a variation of this Whittaker function which contains a second
independent variable r. Let us define a function .#,(g) on GSp*(4, R) by

g, Etx) v oxtyH = |det Y|*y} 3.11
(( TE(—x:))( Ty )")" crivet. G

where k is a unitary similitude, and Y = in(yz l). (This depends on r and s,

but we suppress this dependence from the notation.) Define

VE(YGL Y281 = VE(Y,, yas 8,1, 0) =

_ E(x,) )(E X>>
_ 1 ki2 . 4—s.,5-r—s jv J
( YY1 y3 I{ﬁ[} < ( TE(—xz) E
x / —det(X +iE)e( + y,x,)e(y,x;)dX dx, . (3.12)
It may be checked that this integral is absolutely convergent if re(r) > 1/2 and

re(s — r) > 3/2. In this definition we do not necessarily require that v satisfies (1.12).
If it does, however, we denote

k
Wy, y2381) = WE(y, ys 8,15V, 0) = "_'F<r * 5) VE(y1, V23815V, 0) .
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Proposition 3.3. (i). The integral (3.12), initially defined for re(r)> 1/2 and
re(s — r) > 3/2, has analytic continuation to the region re(s +r)>5/2 and
re(s — r) > 3/2.

@ii). If v satisfies (1.12), we have the functional equation

WAy, yan =Wy, yss1—r1). (3.13)
If re(s) > (3 + k)/2, then
k
W*(Ju, V2 s,5> =W*(y;,¥2:9) . (3.14

Proof. For an arbitrary vector v, we may decompose v into a sum of vectors
satisfying (1.12) for various values of k. Thus in order to prove the analytic
continuation of (3.12), there is no harm in assuming (1.12). Also, since the Gamma
function has no zeros, the analytic continuation of V'* will follow if we prove the
analytic continuation of W<*.

Let Q', k be as in (3.2), and let Q' = E(x3)Y’, where Y' = /y} (yz 1). Note

()= )
TE(—x,)) w TE(—x,)/\ —w ’

Making the substitution x, - x, — x3, and using the independence of (3.11) on X,
we obtain

W= (y, y2i81) =

— 2t E) 4-s 5—r—s ((W >(E(Xz) )
(= D¥2g I"(r+2 yi7%y: |Imj3]' N TE(— %) x

Y(
( TY,_1>K> —det(X + iE)e( + y,x,)e(y,x2)e( — y,x,)dX dx, .

Let 6 = /x? + y5? and
—(¥267%  —x,67?
Q1 = /52y1< 2 2 .

1

, (xzé"1 —y’26“>
K = .
y367t  x,07!
As usual, we identify this matrix in SO(2) with its image in K under the embedding

K
x—»( T_1>.Now
K
Y N N A S )
W TE( _ xz) Ty -1 - TQl_l '

Let
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Furthermore, by (1.12) we have

Thus
WE(y1, ya58,1) =
(- l)"’zn"F<r +§>y1‘“y3""s“3 (y’ly’z)’é"'y’z'cz—;%z)m
X \/me( + y.x)e(y,x3)e( — y,x,)vo(k)dX dx, .

It follows from (3.4) that yy, = det(Q’) = det(B) = |det(X + iE)|~!. Moreover,
according to Gradshteyn and Ryzhik [8] (3.384.9), we have the identity

) i x_ir k/2 r—l_lk/2 7[’
o (Y e e, =2 (2 ittty
- ® 2 2
r —
<r + 2)

in terms of Whittaker’s solution to the confluent hypergeometric equation. There-
fore, we have proved that

Wi(YuYz;s’ r) = (Y1Y2)4_S X

/= det(X + iE)

L g s (P00 Wi s nyayava (9 dX . (3.19)

It may be checked that this integral is absolutely convergent to the region
re(s + r) > 5/2 and re(s — r) > 3/2. This depends on the asymptotics of the conflu-
ent hypergeometric function as y — 0, which are set forth in the remark below. The
details of the estimation are similar to Proposition 3.1 and will be omitted.

The functional equation (3.13) follows from the well-known property

Wi (¥) = Wi . (y) (3.16)

of the confluent hypergeometric function. Now, by Gradshteyn and Ryzhik [8]
(9.237.2) and (3.16), we have
Wiz, -i2(y) = yH2e ™2
Thus by (3.1), we obtain (3.14). O
Remark. It may seem paradoxical that the region of convergence for the integral
(3.15) predicted by the theorem when r = k/2 is re(s) > (3 + k)/2, whereas we have
proved in Proposition 3.1 that the integral (3.1), to which (3.15) specializes when
r = k/2, actually converges for re(s) > 2. The explanation for this is as follows. We
have, by Whittaker and Watson [21] that
Ir'(—2m) I'(2m)

=——— "7 Musm S o/ A—

ra-m—k2 Ot T =)

whenever m is not an integer, where asymptotically the confluent hypergeometric

function
Mk/z.m()’) ~ ym+ 12

Wk/z.m()’) Mk/Z.—m(y)
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as y — 0. The point is that when m = (1 — k), the second factor disappears, and
the asymptotics of the confluent hypergeometric function as y — 0 are then such
that the integral (3.15) converges far to the left of its usual region!

This phenomenon is related to the reducibility of the principal series repres-
entation discussed in the remark following Proposition 3.6 below.

Our objective is to obtain the analytic continuation of (3.1) further to the left.
Let us decompose the vector space V into eigenspaces for the characters of the
subgroup of all elements of K of the form

1
cos sin 0

! (3.17)
—sin6 cos 6
If 7, is the character which has value e( — n6) on the matrix (3.17), then
(xy + iy )"/2
Tulko) = —— =73 -
¢ (x; —iy1) 2
Thus we write V = P),V, where for ue V, we have
s 1 \n/2
o, = (‘——xl + l.y',l')‘_‘n/z u.
(xy —iy1)
Let v=Y v, where v,eV,. Then
VEYV LY 1%0) =Y VE(Y;, Y2587 ¥,, 0) . (3.18)

Also, let
VE(V15 Y25 875 Vs 0) =
275 T G(Fr+sFanF)LE(r+sFn)VE(y,, y,:87,,0) .
Proposition 3.4. W*(y,, y,; s, r) has analytic continuation to the region re(r) > 1/2,
re(s) > 2. We have the individual functional equations
VEV 1 Y285V, 0) = V21, s 7 + 32,5 = 32,00 . (319)

Proof. Since the gamma function has no zeros, it is sufficient to prove the analytic

continuation of V.
We have J = J,J, where

100 0 00 —10
000 -1 01 0 0
Jistoo1 o 25l10 o0 o
010 0 00 0 1

Let us substitute X — E( — x,) X TE( — x,) in (3.12), and then write X = X, + X,
X
where X, = < 0‘) and X, = U,(x,). Since

E X,\ (E X,
JZ = Jza
E E

X3

X3
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we obtain

Vi(yl’yZ;sar; Vn,O')‘:

E X E X E(x,)
_ 1\k/2,,4-5,5-r—s ! ° 2
(= Dy 7%z l{RL fvn<J1< E )"2( E )( TE(—:@)))

x / — det(X +iE(x;)"E(x,))e( + y, x,)e(y,x,)dX dx, .

Now let X', x5 and Y’ be determined so that

J (E X0><E(xz) )_
g E TE( _ xZ) -
E X' E(_x') Y’
( E)( 2 TE(—x&))( Tyr—l)KI ’ (320)

’ xl x!
where x, is a unitary similitude, Y' = /y} (y: ]), and X' = ( :‘ ,3> =
X3 Xy
. X3 Xy
Xo + X1, with X = ( C o ) and X = U,(x}). Note that y{, y3, x}, x5, x3 and
X3
x4 are independent of x,. Let us show how they may be calculated. Let R,, R,, R,
and R, be the four vectors in R* which are the rows of the left hand side of (3.20),
and let Ry, Rj, Rj and R} be the rows of the matrix which is the product of the first
three factors on the right hand side. Clearly R, and Rj have the same length, and

therefore we have
YOI =14 x3 4 x3 4 (xg = xpx5)7
Also, comparing the lengths of R, A R, and Rj A R, in A? R* = R, we obtain
YW=+ x3) + x3

Solving these equations, we have

L4 xd 4 xd 4 (e — x5x5)°

’

= s 3.21

n (1 + x3)? + x? (3.21)
VA +x3)? +x3

V= (A +x3)" + x5 (3.22)

1+ x2 + x5 4 (x4 — x,%3)

We also require a value for x}, which may be obtained as follows. Let {, ) denote
the Euclidean inner product on R*. We have

x1 = y1{Ry, R4> - (.V'1y,2)2<Rz, R3> {Rj3, Ry .

The inner products may be evaluated by substituting R; for R;, and we obtain

2 2 3

, XaXF — X4XF — 2x,X3 — 2X3 X3
= (1 + x2)* + x}
2 4

(3.23)
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Now substituting x; — x, — xj, we obtain
VE(D1, Y25 8,75 ¥, 0) = (= D2yt p3 7772 x

0 )0 R e ) o))
RR E E E(~x}) Y

X \/— det(X — U, (x}) + iE(x,) TE(x,))e( £ y,x,)e( F y,x1)e(y,x;)dX dx, .

Observe that, because of the independence of (3.11) on x, and X, we have

E E TE(— x5) Ty !
E TYf—l
We have

E X,\(Y Y’ E U(-x)
Jl _ = _ Ko 9
E TYI 1 TY" 1 E
where, denoting 4 = /x? + y?,

A ’

and
1
X A—-l _y/A-l
K0= 1 1 1

y 471 x, 47!
Thus
VE(Y1, Y25 8,15 Vo 0) = (= D2y 2p377" ‘l{ (4y2)'YE %

R

{I (x} + y2)2/ — det(X — U, (x}) + iE(x) TE(x,))e( + Y1x1)vna(xo)dx1}
V]

x a(k,)e( F y,x1)e(y,x,)dX dx, . (3.24)
It follows from (3.23) that

det(X — U,(x1) + iE(x,)"E(x,)) =

X (1 + x2)? + x3) +i(1 4+ x} + x3 + (x4 — x3%3)?)
xq —i(1 + x3)

= (x4 +i(1 + x3))(x, +iy1) -
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Thus (3.24) equals

(= D2yt y37r =i [ [ (yiya)'ys /xe + (L + x3) x
RR

2
{I (y,l _ ixl)(l’—s-?-n«i»1)/2(yl1 + ixl)(r—s—n)/le( + )’1x1)dx1}
0

vao(k)e( F yyxi)e(y,x;)dXodx, . (3.25)
This may be evaluated explicitly by Gradshteyn and Ryzhik [8] (3.384.9). The two
cases " and V'~ are handled separately. We have

e}

(—2r+2s—-1)/4
. - . - T
j i — ’xl)(' SEREDZ(y) 4 ix, )" ")/29()’1"1)‘13‘1 = _<y):1> X
o 1

yi'rG(—r+s+ n)~! Wian+ 1ya,2r - 25+ 3y 4y, V1) (3.26)
and

’

Y1

® Ty (—2r+2s—-1)/4
j‘ (yll _ ixl)(r—s+n+1)/2(y/1 + ixl)(r—s—n)/Ze( _ .lex)dx1 — ( 1) x

yi'rd(—r+s—n-— H~! W= 2n-1y4,2r-2s+ 3441y ¥1) . (3.27)
Therefore

V¥ (Vis Vas 185V, 0) = — (— D222 040 (4 4 s 4 n 4 1)) x
y—r/2 s/2+11/4y5 r—s nj‘ j‘ yl(2r+2s+1)/4ylr+s /X4+i(1 +X§) x

Wi 2n-1ya.2r- 25+ 37441y, Y1)V, 0(k  Je(y  x1 )e(y, x,) dX g dx,
and

V (Yp)’z, r, SV n 6) = ( - l)k/zﬂ(_z'_zs_“/“r(l(r + 5 — n)) X

i -r/2— s/2+11/4y5 r— snj‘ " yl(2r+23+1)/4 Ir+s\/x4+l(1 +x2) x

Wian+ 1y, 2r- 25+ 3441y, Y1)V, 0k Je( — vy x1)e(y,x,)dX g dx, .

These integrals may be shown to be absolutely convergent if re(r) > 1/2,
re(s) > 2, and thus give the analytic continuation of V*(y,, y,;7,s;V,, ) to this
region. The functional equation (3.19) now follows from (3.16). O

’n’

Proposition 3.5. The Whittaker function W*(y,, y,; s; v, 6) has analytic continua-
tion to all re(s) > 3/2.

Proof. The proof consists of pointing out that among the preceding integral
expressions for the Whittaker functions, we may assemble one which is valid for
3/2 < re(s) < 5/2. (Of course for larger s, the original integral (3.1) is convergent.)
First assume that 2 <re(s) < 5/2. We may use (3.14) and (3.19) to write
W*(y,,y,;5) as a linear combination of functions V*(y,,y,;4(k + 3),

v,, 6). The coefficients in this sum will be ratios of Gamma functions. Note
that for s in the range 3/2 < re(s) < 5/2, the Gamma functions in the numerators
may have poles if s = 2. However, whenever this occurs, there will be poles among
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in the Gamma functions in the denominators to balance out, so the coefficients in
this sum are holomorphic for the range in question.

Now we note that by Proposition 3.3 (i) the integral (3.12) for
VE(y1, Y58 1;v,, 0) is convergent when 3/2 < re(s) < 5/2. Thus we obtain an
expression for W*(y,, y,; s) which is valid in this region. (J

Proposition 3.6. Ifre(s) > 3/2, then there exists a Schwartz function £(y,, y,) on R,
and a constant C such that

Wy, 258 %,0) < (1,¥2) " E(yy, ¥2) -

Proof. The prototype for this result is Lemma 8.3.3 of Jacquet, Piatetski-Shapiro
and Shalika [11], which asserts a similar bound for Whittaker functions associated
with unitary generic representations of GL(n, R). The argument extends without
difficulty to the metaplectic group. However, it must be explained why it is not
necessary to assume that the representations of the metaplectic group with which
our Whittaker functions are associated are unitary.

We will explain below that the generic representation associated with the
Whittaker function W(y,, y,;s;V, o) is unitary when re(s) = 2. However, it is
actually not necessary to have a unitary representation, and the Proposition is true
even if re(s) + 2. Let us explain why this is the case. The assumption that = is
unitary is only used in [11] in their Lemma 8.3.1 to show that the Whittaker
function is bounded by a polynomial function of y, and y,. In our case, this is
known because of the absolutely convergent integral expressions (3.1) if re(s) > 2,
or that described in the proof of Proposition 3.5 if 3/2 < re(s) < 5/2. Once this is
known, the key point in the Proof of Lemma 8.3.3 of [11] is the formula (8.3.4)
which expresses the Whittaker function as an integral of itself times the Fourier
transform of a compactly supported smooth function. This of course works in our
context also. [J

Remark. It may not be superfluous to remark that when re(s) = 2, our Whittaker
functions actually are associated with unitary representations of the metaplectic
group. Let us pause to explain why this is true.

Let G = GSp(4, R), and let G be the metaplectic group, which is the double
cover of G. It is well-known that the inclusion map from the Borel subgroup B of

elements of the form
E(x,) Yy X'y!
b= TR( _ Ty-1
E(—x,) Y

in G lifts to an inclusion i:B — G. If r and s are given, we define a representation
n, of G acting by right translation on the space of complex-valued functions
# satisfying the following generalization of (3.11):

E(x,) Y X7yt N
A )5
2

This is a principal series representation of G. A Whittaker functional is defined on
this space by an obvious generalization of the integral (3.12) if re(s) > 2,
re(s — r) > 5/2, and extends to all r and s by analytic continuation. Each compon-
ent of the vector-valued function .#, is an element of the space of n, ;. Letting s = 2
and r = k/2 and applying this functional to these components as above gives the
Whittaker function in question, according to (3.14).
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When r = k/2, the representation =g, is reducible. This may be seen as follows.
The Borel subgroup B is contained in the standard maximal parabolic subgroup
P of G, which has a decomposition P = MAN with N unipotent, M ~ SL(2, R),
and

Y1

A= N V1,¥2>0
Yo
Yo

We regard the representation =, , as obtained by parabolic induction in stages, and
consider the intermediate representation of P. This representation nf, of P ob-
tained by induction will be a principal series representation of M twisted by
a character y,6'/? of A, where & is the ratio between right and left Haar measures on
the group P. If r = k/2, the representation of M will be reducible, and its generic
composition factor is a subrepresentation which is the holomorphic discrete series
representation associated with the weight k. Consequently, the induced representa-
tion m, ¢ of G is reducible when r = k/2, and has a unique generic irreducible
composition factor. The Whittaker function W(y,, y,; s) arises from a Whittaker
functional on this generic representation.

The reducibility of the representation =n;, when r = k/2 is related to the
phenomenon observed in the remark following the proof of Proposition 3.3.

If re(s) = 2, then the character y, will be unitary, and so the generic composition
factor representation nf, is unitary. Consequently, the generic composition factor
of m,, is unitary.

Let us recall some basic facts about matrix coefficients on a compact Lie group,
which in our case will be the maximal compact subgroup K = U(2). By definition,
a matrix coefficient is a function of the form

¢ (k) = T(va(x)), (3.28)
where o: K — GL(V) is a finite-dimensional representation, ve V and T is a linear
functional on V. Matrix coefficients form a ring, since the class of finite-dimen-
sional representations is closed under direct sum and tensor product. We will
denote this ring by £. Also, let #, and #, be the additive subgroups consisting of
functions ¢ € # which satisfy, respectively, ¢p(xok) = ¢(x) and (koK) = p,(Ko) P (k)
for k,€SO(2). Then %, is a subring of %, and #, is an #,-module. Specifically, #,
is the set of all functions of the form x — T'(va(k)) where the vector v satisfies (1.12).

As usual, we will say that one element ¢ of the ring & divides another ¢’ if there
is an element ¢” such that ¢’ = ¢¢".

Proposition 3.7. Any continuous function ¢, on K may be uniformly approximated
arbitrarily well by an element of #. Moreover, if ¢, satisfies (koK) = py(Ko) PolK),
then it may be approximated by an element of R,.

Proof. This is an immediate consequence of the Peter-Weyl Theorem. [
Proposition 3.8. Let x be as in (3.3) and A, B as in (3.7). Then the functions
1 (@*p? = 1)(c2B + d*a)
¢1=\/(a2+1)(ﬁ2+1)’ ¢, = (a2+l)2(ﬂ2+1)2 ’

g,  cdlB= 0 — o)
T A DD

(3.29)

of k are in R,.
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Proof. Every entry in the matrices A or B is an element of the ring %, and so det(B)
is an element of . It is clearly independent of U in (3.7), and so this function
actually is in #,. This is the first function ¢,. Also, every matrix entry in A"B is
a matrix coefficient of K and is obviously independent of U, and so these are
elements of #,. These four functions include

c’a N d*p d*a N c*p
al+ 1 B2+1°  w?4+1 BE4+1°
Finally,
2 — det(4B)

@+ D(B*+1)
is in &, and so, therefore, is
c2a d?p ,[ 4%« cip
de[(AB)I:m + 'ﬁm:l — det(B) 21l + [32 1l

This equals the second function ¢,. The third function ¢, is minus the upper right
hand entry in A"B. O

Proposition 39. Let ¢ e R, and for k e K let @, be the function of real symmetric
matrices defined by @, (X) = ¢(kk,), where K is the element of K such that (in the
notation (3.7)) X = — AB™!, the upper left hand entry of B is zero, and the upper
right entry is positive. Then @, is an analytic function of X, and can be extended to
the region x5, x, € R, im(x,) < ¢, where ¢ is any positive constant less than one, and
@, is bounded (uniformly in k) in this region.

Proof. 1t is well-known that every finite-dimensional representation of a compact
Lie group extends to the complexified Lie group, and that the matrix coefficients
are analytic. In this case, the complexified Lie group of U(2) is GL(2, C). Specifi-
cally, we have associated with a matrix x~'eK as in (3.3) the unitary matrix
A + Bi. The complexification of K may then be identified with GL(2, C) because if
C is a nonsingular invertible matrix, there exists a unique pair of complex matrices
A and B such that TAB = "BA, TAA + "BB = E, and C™! = A + Bi. Specifically,

1
we may construct A and B by the formulas A = $(C™! + 7C), B = E(C'l - TC).

The matrix C will be unitary if and only if 4 and B are real. We have defined
a mapping X — k = k(X) from real symmetric matrices to U(2) by requiring that
X = — AB™!, that the upper left hand entry of B is zero, and that the upper right
hand entry of B is positive.

Lemma. Let Q be a simply connected neighborhood of the set of real symmetric
matrices in the set of complex symmetric matrices such that det(X? + E) # 0 for

X, X
X e€Q, and such that 1 + x? + x3 +0for X =< 4 3)69. Then X — k(X) may
X3 X

1
be extended to a holomorphic mapping Q — GL(2,C) such that if XeQ, then
k(X)™' = A + Bi, then X = — AB™", and the upper left entry of B is zero.

Proof. It is easy to check that if det(X2 + E) % 0 and 1 + x? + x} # 0, then there
are exactly four matrices B such that the upper left entry of B is zero, and
TBB = (X? + E)”!. We thendefine 4 = — XB, and k(X) = (4 + Bi)~'. The prob-
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lem may therefore be solved locally. It may be solved globally by the principle of
monodromy, because Q is assumed to be simply connected. [

It may be checked that a neighborhood Q of the region described in the
Proposition satisfies the hypotheses of the Lemma. Therefore the definition
D, (X) = ¢(x(X)) gives the required extension. This function is bounded (uni-
formly in k,) because the closure of k() is a compact subset of GL(2, C), and
because k,, is restricted to the compact space K. O

If zeR, let 4, = /1 + z2, and

K, = ) (3.30)
A7z a7

Throughout the following discussion, ¢(k) = T (vo(k)) will denote a matrix coeffic-
ient of K. If X and « are related as in (3.2), we will denote @(X) = ¢(x), and in
particular, for the three specific matrix coefficients defined by (3.29), we will denote
D(X) = ¢;(x), (j = 1,2, 3). Now for fixed z, if x; + — 1/z and

Xy X,
X = s
X3 X

X(@) = <x4(z) xa(z))

x3(2)  x,(2)

let us denote

where ,
_ X1~z _ 4., _ . Zx3
xl(z) - 1 + le ’ x3(z) - 1 + zx‘ ’ x4(z) - x4 1 + le .
It may be checked that
P(X(z) f14+x,z%0;
= 3.31
Plickz) {0 otherwise . (331
Also, note that
& (X) = |det(X + iE)|" !, (3.32)
(@22 —1) det(X)? — 1
= ¢ / = = . (333
P:(X) = #:(X)x,, - 92X) @2+ )32+ 1)*  |det(X +iE)|* (333
The function @} is clearly bounded. We have
x3(1 — det(X))
= 3.34
?5(X) |det(X + iE)|? (3:34)
It follows that
1 +x,z
D, (X(2)) = (X)), 3.35
1( ( \/1—“‘2 1 ( )
X, —z
®,(X(2)) = P3(X (2) (3.36)

1+zx,
and

D3(X(2) = A7 ' x3(1 + z2x; + 2x, — det (X)) P, (X)? . (3.37)
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Suppose that v satisfies (1.12), so that ¢(x) = T'(vo(x)) is in r,. Then
T{Wi(y“J’z, s)a(x,)} = (y,¥2)* °y5? x

[ /— det(X + iE) o (3.38)

L i £ im0l + )08 bl )X

provided this integral is absolutely convergent. By Proposition 3.2, this will be the
case if re(s) > 2. However, it is useful to know that if the matrix coefficient ¢ is
divisible by ¢,, then we have absolute convergence farther left. Also, it is useful to
have some more precise information on the “polynomial part” of the estimate in
Proposition 3.6.

Proposition 3.10. If ¢ € R, is divisible by ¢,, then the integral (3.31) is absolutely
convergent for re(s) > 3/2. Assuming re(s) > 3/2, if C is any positive constant, there
exists a constant C' depending on C such that if y, > C and y, is arbitrary, then

T{W*(y1,y2;9)0(k,)} < C'y17°.
Proof. Estimate

e(y, (x5 + iy2)(ya)* < ys
P(rr,) < D, (X(2)) < (1 + x3)"/?|det(X +iE)| ™",

- . s 1 1
and apply Proposition 3.1 with a = 27 f=1,y=— 7
To prove the second part, observe that as long as y, is bounded away from zero,
these estimates are uniform in y; and y,. Thus if y, > C, there exists an absolute

constant C” such that

T{W?*(y1, v 9)a(k,)} < C"yi~sy5 s M2,
However by Proposition 3.6, as y, — oo, this decays very rapidly, and so we may
ignore the factor y3~***2 in this estimate. O]

We will be concerned with the following Novodvorsky transforms of the non-
degenerate Whittaker functions, which play a role in this theory similar to that of
the Mellin transform. We define

Fru,8,y,)=F*(u,s,y,;V,0)=

xylz -3/2 1 . dyl
— +izdz—,
1 +22))"{ Y1

(3.37)

O 8

ojc {(WE((1 + 25"y, 1+zzy2;s;v,a)a(xz)}e<

provided the integral is absolutely convergent. Consequently by (3.31)

TF *(u,s, yz)—j' I [ (7ry2)* W52(1 + 22)2° s/2+k/2@
0 -

|det(X + iE)|*

o R
(ST Py + tyz))e< );13_ 1 h ))(yZ)k/zq)(X(z))y“ 32 /1 + idedszyll ,
V (3.38)

again provided the integral is convergent.
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Proposition 3.11. The integral (3.37) is absolutely convergent for sufficiently large u,
and if it is convergent for some particular u, then it is convergent for all larger u. If the
matrix coefficient ¢ associated with v and T is divisible by ¢, then the integral (3.38)
is convergent when re(u — s + 5/2) > 0.

Proof. The first assertion follows from Proposition 3.6. The second assertion
follows from Proposition 3.10. O

Remark. 1t is important to understand what is being asserted here. We are not
claiming that the integral (3.38) is absolutely convergent. In fact, the inner integral
with respect to X is absolutely convergent, and after this integral is carried out, the
outer integrations with respect to z and y, become absolutely convergent. How-
ever, the integrand is not a positive function, and it is not legitimate to interchange
the inner integral with respect to X with the outer integrals.

We will also be concerned with the integral

s,y v,0) = [ A7HM2em 224 /1 +izva(qw ™ 'k, wl)dz . (3.39)

It is clear that this integral is convergent for all s and y,.

Proposition 3.12. There exists a representation o : K — GL(V), a vector ve V satisfy-
ing (1.12), and a linear functional T on V such that both TF *(u, s, y,) have analytic
continuation to all u and s such that re(s) > 3/2,re(u — s + 5/2) > 0. Moreover, given
s and u in this region, V, v, T and y, may be chosen so that T * (u, s, y,) + 0. It may
furthermore be arranged so that the function T(s, y,; v, ) vanishes identically for all
sand y,.

Proof. We have already shown in Proposition 3.11 that if ¢, divides the matrix
coefficient ¢ associated with v and 7, then the integrals (3.38) are convergent for
s and u in the indicated region. Let us point out that if ¢, divides ¢, then
Tz(s, y,; v, 06) = 0 for all s and y,. Since

Ti(s, y,; v, 0) = [ A7*M2e™ 224 /1 +izdp(mw™ 'k, wJ)dz (3.40)

it is sufficient to show that ¢,(nw ™~ 'x,wJ) = O for all z. Let k = wnw ™'k, wJ. Then
-1
— 47z 47!
K= 1 R
a7t -4

so k! has the form (3.3) with

0 —4;1'z 0 — 471!
=0 75) m=(5 )

dw 'k, wJ) = (k) = D(— AB™ ') = qb(((z) g)) . (3.41)

Now

Since ¢,|@, this vanishes by (3.33).
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Thus all we have to do is to show that there exists a matrix coefficient
¢ divisible by ¢, and ¢, such that T# * (u, s, y,) # 0. The difficulty in proving this
comes from the lack of absolute convergence which was pointed out in the remark
following Proposition 3.11. We will argue by contradiction. Assume, therefore that
TF *(u,s,y,) =0 for all matrix coefficients divisible by ¢, ¢,.

Let v be a fixed, very large real number.

It follows from Proposition 3.6 that the following integral is absolutely conver-
gent:

f TF * (4,5, y,; ¥, 0) Y% —2 y2
Y2

Oty 8
Ot 8§

| TWH (1 + 257y, /1 + 22 y,;s v, 0)a(x,)}

TNZ) a3 o g W19Y2
X e(l +22>y1 1 +izy4dz v (3.42)

and with our hypotheses, this represents 0. Of course when we assert that the
integral is absolutely convergent, we do not wish to imply that it has been
established that if the integral (3.38) is substituted for T# * that the resulting
integral is absolutely convergent, and that it is legitimate to interchange the order
of integration of X with the other variables. However, it is legitimate to integrate
with respect to y, before integrating z and y,, and we will now show that under
certain circumstances, it is then legitimate to interchange the X and y, integrals.
Consider

TT{W*((I + 27y S+ 2y, s v, 0)a(k,)) Yy —— y2
0 V2

— det(X + iE)
4-=sk/2 2\2-s/2+k/a NV C¥A TR
Ra(ylyz) i+ 27 |det(X + iE)|*
dy,
e(y/1+ 22y, (xy + tyz))e( )(yz)"“tb()((z))y2 dX“ =
Y2
J — det(X + iE)
r(4 —say v) [yt (1 4 gy gt X +IE)
RS

2 [det(X + iE)*

o8

(xa + iyp) Tk <1y Tis >(y }2 (X () dX (343)

provided that 4 — s + g

convergent. We will show that this is the case if ¢ is divisible by ¢}'¢3 where
n,>3%—s+kand ny 24 =s+ v+ k/2. Indeed, it is readily established that for
fixed z, the function @,(X (z))/(x5 + iy3) is a bounded function of X. It follows that
if (v being fixed) ¢ is divisible by ¢7%*, with n, as above, we may estimate the integral

by Proposition 3.1 with a = % - % — § + %, B =k/2and y = — n,/2. Since k = 2,

we have convergence provided that n, >3 — s + k.

+ v > 0, and provided that the last integral is absolutely
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When (3.43) is valid, we may substitute this into (3.42) to obtain

d
j TF *(u,5,y5: v, 0)y5 yyz
2

w J—det(X + iE)
r(a-s+5+ (1 4 72~ Y — 2 + 18
( -+ ”)“ L v mr
(x5 + iy3) "4+ -w2 e (y‘l("; : ’)(y'z)*%(X(z))yr*”” [+ izdx d: 2
1

We have proved, with our assumption, that this converges and represents 0 when-
ever ¢ is sufficiently divisible by ¢, and ¢,. (Also, since we want Tt (s, y,; v, g) = 0,
we are assuming that ¢ is divisible once by ¢,.) We have also proved that after the
X integral is carried out, the integral with respect to y, and z is absolutely
convergent, and it is legitimate to interchange the integration and do the y, integral
before the z integral. Now, by Proposition 3.9 it is legitimate to shift the line of
integration with respect to x, from the real line upwards a small distance ¢. As soon
as this is done, due to the exponential decay of the factor e( ly;_xz’z> and y, — o, it
becomes legitimate to interchange the order of integration with respect to y, and
X. Another Gamma function I'(u — s + 5/2) appears from the integration with
respect to y,. Then we would like to move the path of integration with respect to x,
back to the real axis. This is legitimate if ¢ is divisible by ¢%* withn, > u — s + 5/2,
because the vanishing of ¢,(X (z)) when x; = z (cf. (3.36)) covers the blowup of the
factor (x; — z)”%2**™* which comes from the y, integral. Dropping the two
gamma functions and a factor of ( — 2mi)~3/27***, we therefore obtain the vanish-
ing for all ¢ sufficiently divisible by ¢,, ¢, and ¢, of

© _ — det(X + iE)

1 2\wu—-s+5/2-v/2
J L+ det(X + iE)F

(x; — 2) 5254y 2 B(X (2)) /1 + izdX dz . (3.44)

Let us point out that this integral is absolutely conuergent To see this, note that we
have already assumed that ¢ is divisible by ¢%*¢3*, where n, and n, are sufficiently
large that (x, —z)”%2**7“®,(X(z))** and (xz ¥ iyy)"4teTHITv g (X (2))* are
bounded. Estimating these factors by 1, the integral splits into two. The integral
with respect to z is convergent if v is large, while the integral with respect to X is
convergent since ¢, divides ¢, by Proposition 3.10. Hence integral (3.44) is
absolutely convergent.

At this point, we have yet by Proposition 3.7 considerable flexibility in the
choice of ¢. Let us choose a and b to be any constants such that ®,(i = 1, 2, 3) do

not vanish on X = (2 b). We choose ¢ so that @ approximates a unit mass
a

concentrated at this particular X. Then the integral equals

C j‘ (1 +22)u—s+5/2-v/2\/ _det(X+lE)( /2+ iyfz)—4+s—k/2-v X

3 ldet(X + iEE)°
(x, —2)732* s (yy 2 /1 + ll +zx2‘)|3 , (3.45)

(xrz + iy/2)~4+s—k/2—v X
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where, for fixed z, X denotes the unique solution of X(z) = <2 Z) The factor
11 +2x, 13 . . ) .
T2y here is the reciprocal of the Jacobian of the transformation (for fixed z)

X — X(z). Now we will obtain a contradiction from our conclusion that this
integral vanishes for all v.

We have more precisely
a+z b4, zb?

X, = Xy = X, =
"1 —-az 3T 1 —az’ 4

1—az’

—b(a+ z + zb?)

’

T v+ b))
.1 —az|/a* + (1 + b¥)?
y2 =

4,(1 +a*>+by)
so that
Iy + iysl /1 + 22 = /b*a + z(1 + b?)? + (1 — az)*(@® + (1 + b2)>?).

This quadratic expression has a minimum, as a function of z at the value
z = af(a* + b? + b*). Consequently if v is very large, the integral (3.45) will be
approximated by a constant times the value of the integrand at this value of z. It is
clear that this does not vanish for all v. This contradiction concludes the proof of
Proposition 3.12. O

Proposition 3.13. Given s such that re(s) > 3/2, we may choose V, v, T and y, so that
both TF *(u, s, y,) have analytic continuation to the region of Proposition 3.12, and
so that Tx(s, y,;v,0) % 0.

Proof. We take ¢ divisible by ¢,. Then Proposition 3.11 guarantees the analytic
. . 01\ . T
continuation of T# *. The function &, (z) o)) not identically zero, and by

Proposition 3.7 we may choose an element ¢’ of &, so that if ¢ = ¢, ¢’, then the
corresponding matrix function @ does not vanish identically on matrices of the

0 .
form ((Z) 0). Then by (3.41), ¢(nw ™' k,wJ)is not identically zero as a function of z.

Thus by (3.40), as a function of y,, Tt(s, y,;V, 0) is the Laplace transform of
a function which is not identically zero, and hence by the invertibility of the
Laplace transform, Tz(s, y,; v, ) * O for some y,. O

This completes the theory of the nondegenerate Whittaker functions which
occur. There are also certain degenerate Whittaker functions, which we now define.

We will also need to discuss the following degenerate Whittaker functions. Let
WO (yy, 25 8) = Wo(y,, 28 V,0) =

det(X + iE) P
o | S s + DDA WX . (349

It follows from Proposition 1.1 that this integral is convergent if re(s) > 2.

y1y2
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Proposition 3.14. The degenerate Whittaker function W° (y,, y,;s) has analytic

continuation to re(s) > 3/2. For fixed y,, it decays faster than any polynomial as
Y2 = ©.

Proof. Let us start with s in the range 2 < re(s) < 5/2. Imitating the proof of
Proposition 3.3, we have

k k
WOy, y258) = n"F<r + 5) V°<y1, Y23, 5)
where, by analogy with (3.12),

0 - = ( — -s —r—s E(xz) E X
VO yas = (= Dy s 7 [ ] f(J( T x2)>< E))
x / —det(X + iE)e(y,x,)dX dx, . 3.47)

Proceeding as in the proof of Proposition 3.4, we have the following analog of
(3.25):

(_l)k/l 4-s 5 r—s:n

"
RR 2

F iyafyi/xe +i(l + x3
{5 (vi = ix )T () xS dxy }an(Kl)e(yzxz)dxodxz ,
V]

where y} and y} are given by (3.21) and (3.22). Now the expression in braces equals
y¥ 7532 times a beta integral which can never vanish unless r + s is a half-integer,
which of course it will not be if r = k/2 and s is in the range 3/2 < re(s) < 5/2. Thus
we must consider the integral

VI T AT x4 (L4 x3)Y,0(6, ey X, )dX o dx, .
R R?

We may now continue to imitate the proof of Proposition 3.4, to do the integrals
with respect to x5, x, and x, in that order. Each step is similar to the one just
carried out, for the integration with respect to x,. At each step, it is necessary to
break the vector up into a sum of vectors which transform according to a character
of the root group of K associated with the variable (x,, x, or x,) at hand. This gives
us a decomposition analogous to (3.18), and each summand is to be treated
separately. The x; and x, integrals give beta functions times powers of (progress-
ively simpler) quadratic forms in the remaining variables. The final x, integral gives
a confluent hypergeometric integral. At this point, we have an expression which
gives the analytic continuation of the degenerate Whittaker function, and the
exponential decay in y, comes from the exponential decay of the confluent
hypergeometric function.

We omit the details, but compare the proof of (5.23) in our previous paper [3]
through a succession of integrals (5.13), (5.14), (5.15) and (5.16) in which the
variables x,, x5, x, and x, are successwely eliminated, the final integral yielding
a K-Bessel function, which is a special case of the confluent hypergeometric
function.

Remark. Tt is also possible to get the decay of the degenerate Whittaker function by
imitating the proof of Lemma 8.3.3 of [11]. It is still possible to show that the
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degenerate Whittaker function may be represented as the convolution of itself with
a compactly supported smooth function (essentially since the function .# from
which it is constructed may be so represented). The analog of formula (8.3.4)
remains valid, but the character of the unipotent subgroup is only nondegenerate in
x, (not x,). Thus one obtains an expression for the Whittaker function as an
integral of itself times a function of the form f(0, y,), where f is the Fourier
transform of a smooth compactly supported function. Hence their argument gives
rapid decay in y,, but not y,.

We will encounter the following transforms of the degenerate Whittaker func-
tions. Let

M(s,yyv,0) = [ AZTEWOL, 4,y,; s)a(k,) /1 + izdz (3.48)

and
M5, yy;v,0) = [ ABTEWOL, 4,y,; s)a(wk,J)/1 + izdz . (3.49)

It follows from Proposition 3.14 that these integrals converge if re(s) > 3/2.
The Whittaker functions actually arise as slight variants of the integral (3.1). We
will now prove

WE(y1, 9258 = WE(yy, a8 v,0) =

—det(X +iY"Y
(yaypy [ Y deUX + ¥ )

ldet(X + iYTY)[*

Here the notation is slightly changed. As in (3.1), we are identifying a real

e( + x,)e(xs + iys)(y2)?va(k)dX . (3.50)

X4

symmetric matrix X = < with the point (x,, x5, x,) of R3. Y, x5, y5 and

X3 Xy
. Y2 :
K are described as follows. As before Y = ./, ( 1), but in place of (3.2) we are

writing
Y XTY—l ’ XIT r=1
(-w W>< Ty-t )=<Q TQ?—I )" (3.51)

’

with Q' = /y} (yz xlz) and k a unitary similitude (which depends on X and Y).

Indeed, the equivalence between (3.50) and (3.1) follows immediately on substi-
tuting YX Y for X in (3.50).

If n, + 0 and n, is positive, the change of variables in (3.50)
(15 X3, x4) = (Iny[xy, Iny|nyx5, |0y In3x,)
shows that
J —det(X +iYTY)
|det(X + YY)

{(|n1|"2)AY n *PW*(Inylyy, nyy,58) if ny >0
(Inynyy~ nyk2wo (Inglyysnyy,58) if ny <0

(y19,) gj e(ny x,)e(ny(x; + iy2))(y2)"*vo(x)dX

(3.52)
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We have similarly
J —det(X +iYTY)
WO . —
(yla.Vbs) (Jﬁyz)sj |det(X+iYTY)|s
The same change of variables as before shows that if n, is positive, then

J —det(X +iY'Y)

|det(X + iYTY)

e(xs + iy3)(y2)*vo (k) dX .

(r1y,) 1!3 e(ny(x; + iy3))(y2)**vo (k) dX

= (|"1|n2)s—4n2-k/2 W°("1|y1, n,y,;s) (3.53)

Note that the left hand side in this equation is independent of n, . Thus we have the
homogeneity property

Wo(y1,y2;8) =y WL, y359) - (3.54)

Finally, let us state a result which will not be used in the proof of part (i) of the
Theorem, but only in the new proof of part (ii)—Waldspurger’s Theorem. We will
omit the proof, which may be supplied along the lines of Proposition 3.12.

Proposition 3.15. There exists a representation o : K - GL(V), a vector veV satisfy-
ing (1.12), and a linear functional T on V such that both TF *(u, s, y,) have analytic
continuation to all u and s such that re(s) > 3/2, re(u — s + 5/2) > 0, and such that
M2, y,;v,0) %0, but Tt(s, y,; v, 6) vanishes identically for all s and y,. O

4. Mobius inversion for symmetric pairs

Let C and D be the bottom 2 x 2 blocks of a matrix in Sp(4, Z). Then C and D form
a symmetric pair: C'D is symmetric. Moreover C and D are relatively prime: if GC
and GD are both integral matrices then so is G. Conversely, every relatively prime
integral symmetric pair may be realized as the bottom row of an integral symplectic
matrix (cf. Maass [14], section 11). The goal of this section is to develop a Mobius
inversion formula to pick out these relatively prime pairs from among all the
integral symmetric pairs. We also give a formula to do this when the C and D are
required to satisfy certain congruence conditions.

If H and C are nonsingular integral matrices, we say that H divides Cif H™'C is
integral. Note that if H divides C then so does HU for any U in GL(2, Z). We write

Y f(H)
H|C

for the sum over integral matrices H dividing C modulo the right multiplication of
H by matrices U in GL(2,Z). Of course this notation makes sense only if
f(HU) =f(H) for Ue GL(2, Z).

Let u be the usual Mobius function. Define a function on nonsingular integral

matrices, also denoted g, as follows: If Hisin I l(a )I’ 1»where I'y = GL(2,Z)

b
and a, b are positive integers, then
u(H) = ged(a, b)u(a)u(b) .

It follows from elementary divisor theory that this is a valid definition, since every
integral matrix is contained in such a double coset, and if
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’

a a
rl( b>r1=r1< b

ged(a by, a,b,)=1 and a=a,a,, b=>bb,, a =a,;b, and b' = b a,, so that
necessarily gcd(a, b)u(a)u(b) = ged(a', b')u(a’)u(b).

)Fl then there exist a,,a,,b,,b, such that

Proposition 4.1. Let C be a nonsingular integral matrix. Then

{l if Cely;

4.1
0 otherwise. (1)

> WH) =
H|C
Proof. Neither side of (4.1) is altered if C is multiplied on either the left or the right
by an integral unimodular matrix. Therefore we may assume that C is diagonal.
Furthermore once C is chosen, we must sum the representatives H modulo the

right action of I';. So without loss of generality, we may take C = (a b)’

H= ((r) i) with a, b, r and ¢t > 0, and s is taken modulo r. Then H|C if and only if
rla, t|b and rt|sb. Thus

Y uH) =S(ab),
H|C
where

S b =Y Y ulged(r,s, )ulrt/ged(r, s, t)ged(r, s, t, rt/ged(r, s, 1)) .

rlasmodr
t|b rt|sb

It is easy to see that if a = a,a,, b = b, b, with gcd(a,b,, a,b,) =1, then
S(a, b) = S(a17 bl)S(GZ’ b2) )

and consequently it is sufficient to prove the Proposition when a and b are both
powers of a prime p. Nonzero contributions to the sum arise only when r = 1, or
when r = p (and p|a); computing these directly, the result follows. O

Proposition 4.2. Let C and D be an integral symmetric pair. Then there exists
a nonsingular integral matrix H such that H|C and H|D, and such that H ™ 'C and
H™'D are relatively prime. H is in I, if and only if C and D are relatively prime.
Furthermore, a nonsingular integral matrix H, divides both C and D if and only if
H,|H.

Proof. By elementary divisor theory there exist U, e GL(2,Z) and U,e GL(4,Z)
such that

(C,D)=U,(C,,D))U,,
where C, is diagonal and D, = 0. Choosing H = U, C,, the first assertion follows.
The last two are immediate from this, using the definition of relative primality. O

Given a symmetric pair (C, D), we say that D = D' modC if D' = D + CS for
some integral symmetric matrix S. Note that (C, D’) is again a symmetric pair;,
moreover, C and D are relatively prime if and only if C and D’ are. We write

Y h(C, D) and Y h(C, D)

Dmod C Dmod C
ged(D,0)=1
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to denote, respectively, the summation over integral D such that C and D form
a symmetric pair modulo the equivalence relation = mod C, and the subsumma-
tion over such D restricted to relatively prime pairs.
Let h be a complex valued function on (Z\Q)>. We will identify the space of
2 x 2 symmetric rational matrices with Q® so that the symmetric matrix
X, X . .
X = ( 4 73 ) corresponds to the element (x,, x5, x,) of Q3. Thus h is a function
X3 X4
on the space of rational symmetric matrices. For a nonsingular integral C, let

S¥O= Y  h(C'D), S(C)= Y h(C'D).
DmodC DmodC
ged(D,C)=1
These make sense since if C, D are a symmetric pair, then C ~! D is symmetric. It is
also easy to see that for any Ue GL(2, Z), S,(UC) = S,(C) and S¥(UC) = S¥(C).
Now arguing from Propositions 4.1 and 4.2 just as in the proof of the classical
Mobius inversion formula, we have

Proposition 4.3. S¥(C) = ch u(H)S,(H™'C). O

In the sequel, we need as well a version of Proposition 4.3 which incorporates
certain congruence conditions. Let N be a positive integer, let h be as above, and let
C be a nonsingular integral matrix with entries divisible by N. Define

SENC)= Y hCT'D),  S,NO)= Y  h(CT'D).
Dmod C Dmod C
ged(D,C)=1 gcd(detD,N)=1
D2 =0mod N Dy2 =0mod N

Then
Proposition 4.4. We have

Sin(C) = > H(H)S, n(H'C) .
ged (dellifllt.:N) =1
Proof. Observe that in the sum S¥ y(C), one always has gcd(detD, N) = 1 since
C = 0 mod N while ged(C, D) = 1. Then arguing as in the classical M6bius inver-
sion formula, the Proposition follows. [

5. The Fourier coefficients of the Eisenstein series

In this section we study the Fourier coefficients of the Eisenstein series E (g, W).
We will follow the notation of section 2 with &;= E|J J, where coefficients
B;(g; T, R) are defined. The results of this section are in fact valid for the Eisenstein
series formed with any function I satisfying (1.15).

Let us evaluate B,(g; T, R). By definition,

Bi(g; T,R) =

NTY [ «pj((E ’bf)g W)e(——N'jtl‘(T(Z,'l*X))
(R/N‘Z)* (R/Z)*

— N'ITRW)dwdX . 5.1
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Given a nonsingular integral matrix C, half integral symmetric T, and Re Z?, let
S{(GT,R) =
e(—TRC™'DA+m(C 'D)[A] + N 'tr(TC~'D)). (5.2

Dmod NC AeZ?/7CZ?
C'D=D'C

ged(D,C)=1

D =0modN

Here the notation ged(D, C) = 1 is explained in Section 4. Also, if Y =Q7Q is
a positive definite real symmetric matrix, define

H(Q,s,C, T,R) =
det(Y) 0 —TC'\/Q0 XTQ!
2mN3 [/~ ae2) <|d tZ)V) ((c 0 ><0 Q- ))
1 _
e(I'—V;Z[R] -~ N 1tr(TZ)>dX ,

X4 X3
X3 X
(x;,x3,x,) of R3, and Z = X + iY. Note that H(Q, s; C, T, R) takes values in V.

1 )
Also, if T=-—(U + N27iRTR), then
4m

where we are identifying a symmetric matrix X = with the element

; . Nt
H(Q,s; C,Nl_’T,Nl_’R)=H<Q,S; C,4_mU,0>.

Proposition 5.1. For re(s) sufficiently large and
QX!
9= 0!

Bi(g; T, R) =} $,(G; T, R)|det(C)| *H(Q, 5;C, T, R) (5.3
C

we have

where the summation is over nonsingular integral C such that C,, = 0mod N, modulo
the left action of T°(N).

Proof. We may rewrite the sum giving &, = E,|J as

(pl(g’ VV) =
) L(yg)e™(y(Z)[4] + 2"W(CZ + D) '4—((CZ + D) 'C)[W]),

A B
'y=<c D)ePnl’\l’J

where Z = g(iE) = X, + iY,. Here since D = OmodN, and N > 1, C must be
nonsingular. Now

PnF={(TU—1 U)(E S)‘U I'°(N), S = "Se M(2, Z)}
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Hence two integral symplectic matrices
(A B) (A’ B’)
Cc D) C D
are P n I'-equivalent if and only if
C=UC, D=UD, Uel°(N).

{(E ;)‘S =TSeM(2,Z),S = O0mod N}

Moreover,

acts properly on the right on P n I'\ I'J; this action takes the bottom row (C, D) to
bottom row (C, D + CS). Using this to unravel the integral in X, and translating by
X,, we have

B(gT.RI=N" ¥ ros 1 0u((® )

Cel°(N)\M(2,Z) DmodNC AieZ?R® (R/Z) TQ !
C nonsingular c'D=D"C
Ci2=0modN ged(D,C)=1
D =0modN
e"(Y(2)[A] +2"W(CZ + D) 'A— ((CZ + D) ' O)[W]) x
e( — N~4r(TZ) — "TRW)dWdX ,

with

A B . T
y—(c D)EFJ, Z=X+1iY, Y=0QQ.

Since y is symplectic and C is nonsingular, we may express the integrand as

XT -1
Yl® )
X e"(—(Z + C™ID)"{[W — C~12] + (AC~Y)[1])e( = N~ 'tr(TZ) — "RW) .

From this expression it follows that translating A by an element CA, (4, € Z?) has
the same effect as translating W by — 4,. We use this to unravel the integral in
W to obtain

B,(g;T,R) =

N-3 y y Y e(—TRC'A+m(AC Y)[A]) x
Cel"(N\M(2,Z) DmodNC AeZ*/CZ?
Cnonsingular c'p=D"C
Ci2=0modN gecd(D,C)=1
D=0modN

Q x7o™! -1p)-1 -1 T
§ Iy To-1 e(—m(Z+ C 'D)y"'[W] - N"'tr(TZ) - 'RW)dwdXx .
RS

Next we change variables in X, sending X to X — C~'D. Evaluating the
integral in W by means of the formula

[ (= Z'[W] —"RW)dW = \/—_dét(7)e<2[k]> |

R? 2m 4m
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we have
B,(g;T,R) =

1 _
— Y e(—TRC™'A+ m(AC1)[4]
2mN” ccroNyM2.2) DmodNC icZiCZ?

C nonsingular Cc'p=D"C
Ci2=0modN gcd(D,C)=1
D =0modN

+ N~'te(TC'D)) | g((A TC-I)(Q XTTQ_;I))J —det(Z)e<@>
R? C Q 4m
e( — N~'tr(TZ))dX .

Given A, X' € Z?, there exist A,, 11 € Z? such that A = Di,, A = DA} mod CZ?,
since DYTA — C™B = E.If A = 2’mod CZ?, then 1, = A; mod 'CZ?, and conversely.
Thus we may replace A by DA in the sum and Z2/CZ? by Z?/TCZ?. If we do so, the
exponential terms which pull out of the integrand sum to S, (C; 7, R). Since from
(1.15) and (1.17) it follows that

A -\ [ det(Y) \? TC-1
"((C >g>_'d°‘(c)' (ldet(2)|2> ’((C )g>

the Proposition follows. [J

Next we turn to the evaluation of By(g; T, R). Given a nonsingular integral
matrix C = 0 mod N, half integral symmetric 7, and ReZ?, let

So(C; T, R) =

e(— NTRC™'DJ + m(C~'D)[A] + tr(TC~'D)) .
DmodNC AeZ?CZ?
c'D=D"C
ged(D,C)=1
Dy2=0mod N

The evaluation of B,(g; T, R) is more complicated than that of B,(g; T, R), due to
the contribution to B, from singular C. For our purposes, the following result is
sufficient.

XTQ—I

Proposition 5.2. For re(s) sufficiently large, and g = <Q 91

) with Y, = Q"Q,

we have

Bo(g; T, R) = ) S,(C; T, R)|det(C)| *N>H(Q, s; C, NT, NR)
(o
n N?
+ p(det ¥,)*? } [I(g) + I(( )g)]e(—Z[R] - tl‘(TZ))dX + S«tank one” »

where the summation is over nonsingular integral C such that C = 0 mod N, modulo
the left action of F°(N); where

N
1 if —ReZ?,
8 = { i sze
0 otherwise ;
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and where S«ank one” iS the contribution from the rank one matrices C:

A
Srank one® = j Z (15|||: ]"}’)(g, Wye(—tr(TZ) — NTRW)deX'
RZQ 0
(4
7=\cp)eFnn
rank(C)=1
AeZ?

In these integrals, Z denotes X + iY,.

Proof. Substituting the expression for E (g, W) into the integral (5.1), we see that
the integral breaks up into three pieces, according to the rank of C, which may be 0,
1 or 2. The rank (C) = 0 term is immediately seen to be

I Z [Is(g) + I,<<q >g>]e’"(Z[l] +2"WA)e(— tr(TZ) — NTRW)dWdX .
(R/Z) A€ Z? n

N
Since the W integral is 1 when 1 = 2—';R and 0 otherwise, we obtain the second

term in Proposition 5.2. The rank(C) = 1 term is of course S-ruk one”- Finally, when
C is nonsingular, the computation is similar to that in Proposition 5.1. Note that in

E §
this case {(0 E>‘S =TSeM(2, Z)} acts properly on P A I'\I', and we sum over

A B). . .
y = (C D> in P I\T rather than in P~ I'\I'"J; these account for the differ-

ences between S, and S,. We omit the details. O

6. The Whittaker coefficients of the Eisenstein series

We continue to analyze the coefficients of @; = E,|J”, this time with special choices
of R and T. The integrals which we consider in this section will later be reinter-
preted as Whittaker coefficients of the Eisenstein series &; of half integral weight.

Suppose that v = 7(0,r), with reZ, AeZ and 0 < n,e N "' Z. It follows from
Corollary 2.8 that the following integral is well-defined.

Ci(s; 4,5, 1591, ,) = N~! 5 C,

R/NZ
1 x, yi?y,
1 »n?
| prizys ; Ui(— N4), v |e(— nyx,)dx, .
—Xx, 1 yi'?

. . N . .
According to (2.6), this expression vanishes unless n; = Z’;(r2 — 4) is an integer,

and we assume this. Given such r, 4 and n,, let us define a Dirichlet series

K2 (Nn,é
Z(s, 4,n,y) = a,ﬁ,z;el Sx<<a f;), U,(ny), V)(a(S)_s(%) a( :‘2 )e(%) ,
a,d>0
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where S,(C; T, R) is defined in Section 5. If n,=N~!, we will denote
PL(s, )= L(s, 4, N~ 1),

Proposition 6.1. We have
(gl(S; A’ nl’ r ylsyl) =

n A4 iy, 4 4] _
<——Zm ) nzk/2e< 41 F(s, A, n) W+ 4_';yl,nzyz;s if 4>0,

m

n A1\ iy, 4 _(14] .
(im) nﬂ"%(ﬁ L(s, A, n,) W a0 223 S if 4<0;

ny 4K P(s, A, ny)WO(y,, nyy,; ) if4=0.

Proof. In the notation of section 4, we must evaluate

1

— H(Q, s; C9LU1(_NA)70>e(_n2x2)dx2 6.1
IN Rjinz

4m

with Q = \/y—l <y 2 TZ ), where [ is chosen sufficiently large that the integral is well
defined. Observe that

_Tc-t 0 XTQ—I _TC—lw w QXTQ_I
(e ~)C )0 e M) e
_(TC'w E(x,) > w(Y X'y !
'( Cw>< TE(x,)"! <—w ) Ty-r )

_1 _
where Y= /y Y2 , W= and X denotes E( — x,) X "E(— x,).
! 1 1

Change X to E(x,)X "E(x,) in the integral. Note that the quantity e((4m)~!
tr(U,(4)Z)) is unchanged by this substitution, while det(Z) becomes

det (E(x,)X "E(x,) + iE(x,) YTY"E(x,)) = det (X + iY"Y),

which is independent of x,. Then using (1.14), (1.16) and (3.51), the integral (6.1)
becomes

1 _ Sy Ty /2 _A_ .
2m1N4R/lj;VZIi’.’[ det(X +iYTY)]%e 4m(x1+zy,)

x [&F}%}f—w—n] F(C'WE(x,)Q ec)e( — nyx,)-vo(eck)dX dx,  (6.2)

where

X4 X, 1 0
X = 5 = ,
(x3 X, ) fc (O sgn(det C))
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and Q' = /y} <y 2 3162) is as in (3.51). Let us evaluate the integral

1
IN g/inz
Now C is to be taken modulo I'°(N ). Hence we must evaluate the integral for C of

F(Tc_le(xz)Q'sC>e( —n,x,)dx, .

g where a, B, 6 € Z, with a, 6 > 0, where f is taken modulo
8, and @ ranges over a set of coset representatives for I'°(N)\SL(2, Z). These
representatives correspond to positive integers a, b such that a|N, gcd(a, b) = 1,
and b is taken modulo a”!NZ; the corresponding representative is given by

the form C = e, (a

b
(z d) with ¢ and d chosen so that ad — bc = 1. However, we are only concerned

with C such that C{, = 0 mod N and S, (C; U,(n,), v) #+ 0. Since then there exists
a D = 0mod N such that gcd(C, D) = 1, we must have gcd(C,,, N) = 1, and hence

1 b
a = 1. This means that g is of the form ( l>’ beZ/NZ; we conclude that we

must evaluate the integral when

C:£C<a §>’ a,0>0, fmod NS, f=0modN .

Then
-1 -15-1
TC"w=st((s pa"0 )

a—l

Since n, > 0, we get for the x, integral,

1 571 pais!
w, F(scw< ﬁ“a_l )E(xZ)Q'aC)e(—nzxz)dx2

INZ

k/2
(%) e<3;—ﬁ)a(N22‘s)e(n2(x;+iy;))(y'2)"/2 if Non,jaeZ, detC > 0;

0 otherwise .

Substituting this expression into (6.2), using (3.52) and (3.53), and summing over
C as above, we obtain the formula of Proposition 6.1. [

We continue to assume that v = 7(0, r) with r e Z. It follows from Corollary 2.8
that the following integral is well-defined.

N
€o(s;4,ny,159,,9,)=N"! j Z e(—E—TVﬂ>
R/NZ umod 2m/N m

1/2
1 yi/
1/2

—x; 1 yi'ty
C, 2 g 12 s Ug(— 4), 1 |e(— nyx,)dx, .
1 x, N1

1 y1—1/2 -1

y2
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Again by (2.6), this vanishes unless 4 = 0 mod 4m, and we now assume this. Given
such r, 4 and 0 < n,e N ~'Z, define the Dirichlet series

y(s’ A’ n2’ r) =
N a f
Z e(—“z—TVﬂ Z Z SO NT'Y ! 5 w, T’“ X
4 mod 2m/N m yeTg(NNSL(2,Z) o, B, 0€Z
2,0>0
pmodd
a|Nn,d

()

where T = ﬁ(UO( — A) + N*u"p), and S,(C; T, p) is defined in Section 5. As with
%, we abbreviate Z(s, 4, N1, r) as L(s, 4, ).

Proposition 6.2. We have

Eols; 4,np, 1591, ¥,) =

414 iy, 4\ - Y|
fN3<n—2'—|> nz‘k/ze(l}:‘;)f(s,A,nz,r)W*<|-—|y1, nzyz;s>a(w) if 4>0;

4m m 4m
A s—4 iy, A4 - A
N3<n—;ln ') nz_k/28<———'—u4}.1m )g(& 4,n,, r)W_<‘l‘_m",V1a n2y2;s>0(w) if 4<0;

N3ng 274 2 (s, 4, ny, NWO(yy, 1,95 5)a(W)

\ + 192) V¥ a(Nny)e(nyiy,)va(n) if 4=0.

Proof. The evaluation of the integral breaks up into the three pieces of Proposition
5.2. The contribution from the rank two term is treated by a method similar to that

1
of Proposition 6.1. One first shows that if Q" = \/y_, ( X,y ), then
— 202

(IN)™* [ H(@Q",s C,(4m)"*NUy( — 4),0)e( — n,x,)dx, =
R/INZ

1 - 4 . V1) i
- — det(X Y'Y = 2
a3 Y T detX i e<4m(x‘+'y‘))[dct(x+iYTY) X

{(IN)‘1 [ F(C™'E(x,)Q’¢c)e( — nzxz)dxz}vo(acxw)dX ,
R/INZ

where [ is chosen sufficiently large that the integral is well defined. The integral in
x, is evaluated by means of (1.19); the integral in X gives rise to the Whittaker
function W. As for the rank zero term, it follows from Proposition 4.2 that only the
summand with u = 0 contributes. Using (1.14), (1.16) and (1.19), one arrives at

(0 Yz)’y’i”a(an)e("ziyz)(R/Iz)s e((4m)~ 1 tr(Uy(4)Z))dX vo(n) .

This equals 0 unless 4 = 0, in which case it equals

(y1y2)yi*a(Nny)e(n,iy,)va(n) .

k/2
2/
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Hence to complete the proof, we must show that

N~! j Serank one”€( — nzxz)dxz =0.
R/NZ

In fact, we will show that the contribution of each individual y to this integral is
zero. This is accomplished as follows.
Since C is of rank one, it follows from Maass [14], page 160 that we may write

_ TVI-I A1 B1 TV2—1
’= Vl Cl Dl V2

with V; and V, integral, det(V,) = |det(V,)| = 1, and

Lo 00 00 10
O L ]

. b . . .
with <‘CI d)eSL(2, Z), and c #+ 0. It is sufficient to show that the contributions

with V, = E give zero, since the general case may be reduced to this by the variable
changes X - "V, XV, and W — "V; ! W. Then

e"(y(2)[A]+2"W(CZ + D)"'A—((CZ + D)~ *C)[W])

wcarorefo (0 I
¢ Cc 2
e A X
+2TW(CZ + D) ’<O‘> e v(@[(&)] + 2“10”(2)(/12)) ’

A .. .
where A = <jl> and V' = V{'A= (A’l ) As in the proof of Proposition 5.1, it

2 2

I

0 0
follows that translating A by Vl( c)(t)’ for teZ, has the same effect as
0 . . .
translating W by — (t) We use this to unravel the integral in w,, where

0 .
W= <w1>‘ Then, by changing variables W — W + < c_,)l’, we obtain

w,

Fer (@) )

ND™ [ ] | L

R/NIZ R R/Z)*
X e"'< —((CyZ +Dy)"'C)[W]+2"W(CZ + D)_l(,};> + y(Z)I:()g):D

x e( —tr(TZ) — NTuW — n,x,)dX dw, dw, dx, .
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Now we may evaluate the w, and w, integrals to obtain

0 0 0 dN?
A _NT g G2
gez;cv e(m 1( c“)[(l’:)] ”( c“)l1 * me ”2>

Ay =pu,N/2m
_ X, +iy,lz,|* + d/e
x (N Lyg) = : x
R/£IIZ m/j‘zr’ 2im
e((4/4m)(x, + iy,) — nyx,)dXdx,, (6.3)
with X = (i“ i3>, z, = X, + iy,. The essential feature is that in this integral,
3 1

only I (yg) depends on x,. We have the following Bruhat decomposition for y:

_ TVl—l
Y= v,

1 a/c l/c -1 1 d/c
1 1 1 1
1 c 1 1
Since
1 1 X5 1 —x, 1
1] 1 x 1 -1
1 1] 1 1 ’
1 1 x, 17\ 1

and since F is cuspidal, we conclude that the integral (6.3) vanishes. This completes
the proof of Proposition 6.2. [J

7. Evaluation of the Dirichlet series

The purpose of this section is to evaluate the Dirichlet series
Z(s, D) = L(s, D, N~ !) defined in Section 6.
Proposition 7.1. If D = D,D?, where Dy, is a fundamental discriminant, then
(1 = xpo(P)o,p (1= xpo(P) 03P
ZL(s, D) = d(s, D,) = PR S T e
( ( 1p*I]_VID‘(1_a’2,p4k2)1(1_6p2p4k2)1(1_p3 2)1

where d(s, D) is a polynomial in p~* for p|D,, given by (7.35) below, and d(s, 1) = 1.
In particular

2—k/2—S)- 2—k/2—s)—-l

LN(s+k/2- z’f;XDo)
Ly@Rs+k—4,f v’

ZL(s,Dy) =

When D = 0,
Lys+k—35,f v?)

260 = i k—4 V)
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Ifsz2isreal then) 5 _ L(s, DoyD})D1 " converges for re(u) > 3. F urthermore, if
L(2,Dy) =0, then y | _ | &'(2, D,D})D1 " converges for all re(u) > 3.

Remark. In fact it can be shown that Z(s, D,D?) = Z(s, D,)b(s, D,), where
b(s, D,) is a finite Dirichlet polynomial, and that the b(s, D) satisfy a recursive
relation similar to that given in Theorem 8.1 of [3]. We will not elaborate on this
here because it is not necessary for our main result, and because we will present an
easier method of doing the necessary calculations in a later paper, based on
a representation theoretic technique due to Casselman and Shalika.

Of the coefficients & (s, D, r), all that we require is that they are of at most
polynomial growth in D. This is of course well-known for the Whittaker coefficients
of any automorphic form, so we do not have to compute them in this section. (It
may be shown that £ (s, D, r) equals £ (s, D) times a finite Dirichlet polynomial.)
We also need to know that £ (s, 0, r) has analytic continuation to a neighborhood
of s =2. In fact, a nearly identical calculation to that given here shows that
=.?(s 0, r) is equal to #(s, 0) times a rational function in p~* where p runs through
the primes dividing N and D. We omit this calculation, which uses the second
version, Proposition 4.4 of the Mdebius inversion formula. Actually, given the
Theorem of Section 8 it is possible to see directly that #(s, 0, r) is analytic at s = 2
since (for large u) all other terms in the formula are analytic.

Proof. Recall that

a B [\ (6 B
-] g 5 s (I

a,d>0
Bmod NS
B =0modN
o|d

N L .
where n, = I—(r2 — D) and v = (0, r). Our first objective is to show that the inner
m

sum S, is a multiplicative function of §, and to write it as a product of simpler
p-factors.

Let us consider the definition (5.2) of S,(C;U,(n,),v). The condition
ged(D,C) =1 in the definition (5.2) implies that S,(C, U,(n,),v) =0 unless
ged(det C, N) = 1. Now if ged(det C, N) = 1, then summing over D modulo NC
such that D = 0 mod N is equivalent to summing over D modulo C. Therefore

$(C Uy (ny),v) =
e(— "vC DA+ m(C 'D)[A] + N~ 'tr(U,(n,)C~'D)), (1.2
DmodC AeZ?/7CZ?

C'™D=D'C
ged(D,C) =1

if gcd(det C, N) = 1, and zero otherwise.

Note that because gcd(d, N) = 1, it follows that in (7.1) B is taken modulo 6,
satisfying = 0 mod N. By the Mdébius inversion formula Proposition 4.3,

S(C,Uy(ny), v)= Y, S(H™'C,U,(ny),v), (7.3)

HIC
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where
S(G Uy(ny),v) =

e(— "vC™ DA+ m(C 'D)[A] + N_ltr(Ul(nl)C_lD)) (7.4)
CPDm:dD(;C AeZ?/7CZ?

is the sum S, with the restriction ged(C, D) =1 removed. We will focus our
attention now on the sum S. Write § = u’f’ where gcd(u', ad) = 1 and p|f’ implies
that p|ad. Factoring a, §, § into primes we may write & = [[pf", f' =[]pl,
a =[]p*, with a;, b;, d; 2 0. Let

2, ={pla;=d;, a; £ b},
2, ={pla;>d; a; < b},
Zy={pla;>b;},
and for k = 1, 2, 3 define
(3,‘: n p‘l,jl’ ﬂk= l—l p?l’, ak= n pl:n

p€Z, P.EZy p.eZ,

Thus § = 6,6,0;, B’ = B,B,B5 and o = «,a,0,. Note that after left multiplication
by an element of I'°(N) if necessary, which does not change the value of
S(C; U,(n,), v), we may assume that f,|J,. We use this factorization of «, f, 6 in the
following

Lemma 7.2. We may write

[ B _ a0, By
C’( 6)‘“( 6a3/ﬁ3>“

where y,, y,€SL(2, Z) and
V= (”“31/53 Ulﬂlﬁz‘;(“laz))
with
voy/fy = 1mod é,0,a,a,, v'B,B,/(a ;) = — 1 mod 305,
v=—utoya,/(B,B)mod by, v =ufya;'modd,d,,
I=1modda,, q = 0mod d;a,,

I=0modé,d,a,a,, qg=1modé,é,a,x, .
Proof. The easy verification is left to the reader. O
We now wish to parametrize the residue classes D modulo C. Write
D =y,D'Ty; !, with D' = (; ::) We require that DTC be symmetric, so as

D'C = )’1( Uy &, X5a3/ﬂ3)7 .
yo By woay/By
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we must write X = Xya,/5,, y = x0;8;03/(B3«,). For S a symmetric matrix, write

S=y;'8Ty; !, with §’' = (sl 52) Then
Sz S3

o0, B
D CS = DrT -1 14213 )S,T -1
+ "y + V1< S0y/B, Y2

oo, f s, S
Dr +( 1Y2/M3 )( 1 2>j|T,y—1
)’1[ N doy/B3/\s; 3 2

and so it is easily seen that the different residue classes are parametrized by taking
all w modulo éay/f4, u modulo «,a,f, and x, modulo §,8;a, in D=y, D' Ty;*,

with
D = ( u x0a2/52>
Xo0,03a;3(B30,) 7" w '

In terms of C and D as described above, we now have

u X
oo, 8 o fy0
“1p _ o-1] ©1%2P3 %1P30; |4
C™ ' D=vy; X w Y2 -
0

a B30, Oas/Bs

l/
Let X' = <,1’1> =Ty;14 50 TAy;' = T4 Then
2

u X
a0,y B30, l’:m[ Alu 24125, At w ]

m(C~'D)[A]=m"¥ +
( 4] Xo w w0, By 2 B30,  Sas/B,

ayB36, day/B,

(7.5)
Also,
Airlu  xqo(Ayrl — Ayrvas/By) B wiyrv

—"wC™'Di=
oo,y @, 839, 1

(7.6)
and

N~'tr(U,(n,)C™'D) =

n[ Pu 2x,lva wola
ﬁl[“lazﬂa N o(:1ﬁ3:§/2l33 * 53/ﬂ3:| . 07
Collecting (7.5), (7.6) and (7.7) we have
m(C~'D)[4] — "vC DA+ N~ 'tr(U,(n,)C~*D) =

wQ, () (0@, B3) ™" + XgQu(Ah, 45)(@ B362)™F + WO, (1) 65/ )"
where

Q.(A) =mA? + rld; + n,N 1%,
Q.(A, A3) = 2mAy 25 + rldy — ro(ay/B3) A — 2o(os/By)ny N1
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and
0,(A) = mA2 — rv(o3/B3)As + v*(23/B3)*ny N 1.

Thus substituting into (7.4) and summing over u, x, and w we have

S(C, Uy(ny), v) = (26, )(2,03) (@383 65)N(, B, 8; D) , (7.8)
where
N(a, B, 3; D) = Z 1.
rez?]'cz?

Q,(4) =0moda,a,f,
Q.(4, 43) = Omod a, B,6,
0,(43) = 0mod day/ B,

The classes of A in Z2/TCZ? correspond to classes of 4} modulo a;a,8; and
Ay  modulo day/B;. If we then write A} =A3a,a, + 438, and
Ay = 246,90, + A,0504/B,, taking 4, modulo o, a,, A3 modulo f;, 4, modulo é, 4,
and Ay modulo é,a5/f;, then using the congruence relations on [ and v given in
Lemma 7.2, we have the factorization

N(a, B, 6; D)
= 1 1
Aymoda,a,, A, modd,d,, Aymod By, Aymod ;04 /84
mi%=0moda,a, mA'3 + rdy+ n, N ' = 0mod g,
2mAyd, —riy = Omoda,é, 2mAyA, + ray — r(ay/By) Ay — 2(ay/B3)n, N~' = Omod B,
Lm;li ~rig +n,N"" =0mods, s, mAg2 — r(ay/By)As + (a3/B3)*n N ~' = O0mod 6;a,/B,

These two pieces now easily factor into primes by the Chinese remainder theorem,
and substituting into (7.8) we obtain

a b
S(C, Uy, =[] S<(” Z,) Ul(nl),v)

pldet C
where

- P INL (% P Y D) i peZy,
S(( I;a>’ U,(ny), V> ={ p"tHN,(p% p% ph D) if peZ,,  (19)
pa+b+dN3(pa, pb’ pd; D) lf pezm

and fori=1,2

Ni(pav pba Pd§ D) = Z L
4, mod p*, A, mod p* (7.10)
mi} = Omod p°
2mA, A, — ri; = 0mod p™int@®
mi3 —rd, + n,N ! = Omod p*
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while for i = 3,

Ns(p" p', p% D) = > L.
A,mod p®, 1, mod p°*4~* (7.11)
mi} +ri, + n,N~!' =0mod p*
2mAy Ay + rdy —rp* A, = 2p*"'n N ! = Omod p*
mA2 —rp° b4, + p*@ Yn N "' =0modp**e-t

Notice that by the above S(C, U,(n,), v) is almost independent of the choice of
f mod é. Specifically we have, for ged(u, p) = 1,

a d
P oup? s((” ;’d>,ul(n1),v> if a <b,
A 7youn)-L10 7
p S((p p>,Ul(n1),v> ifa>b.

It follows from this minimal dependence on f that if C=C'C” with
ged(det C’, det C”) = 1, then

S(C,C”, Ul(nl), V) = S(C” Ul(nl)» V)S(C”’ Ul(nl), V) = S(C”C,’ Ul(nl)» V) .

Combining this multiplicativity with the M6bius inversion formula (7.3) we obtain

o
S, (( f;) Uy(n,), v) =11 % u(H)S< (” If) Uy(n,), v) ,(1.13)
p a b
PP
H’( p")
where the product is over p|d because of the condition in (7.1) that a|d.
The possible candidates for H are, for a given p,

C G ) )

where u’ varies modulo p. Then by (7.12) and (7.13) and the definition of u(H) from
Section 4, we may write

R B G DR

where if d 2 1 and if a = 0 or b = 0 then

a b N b
Sp((p ;)d >, D> = S((p Il:d >, Ui(ny), V>—ps<< 4 pdp—l>’ U,(ny), v) ,

(7.15)

(1.12)

=

whileifd >21and g, b 2> 1

r a-1 b1
(7 o) =5((" ) D-es((7 L) vy
a-—1 b—1
_pS<< ) 1(n)v)+pss((l’ zd—1>’U1("‘)*v>' (7.16)
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Before turning back to the evaluation of the inner sums
a b
§ <<p ;:) Ui(ny), v), we note that the Dirichlet series (s, D) is now clearly
seen to be an Euler product. In addition, if we write 8 = u'p® with ged(«/, p) = 1,
a ’.b
p up

then the independence of S,(( : ) Ui(ny), v )ofw,and of b if a < b means

that we may consider, in the p-part of (7.1), the inner sum

N—l
) e( aﬁ)=p"'", (7.17)
ﬂniodg" p

= up
p=0modN

corresponding to all b = a and a fixed b < a

-1 S Lo — 1
5 e(Naﬂ>={ prt a=bd, (1.18)
frmodpt p 0 ifa>b+1.
= (lm(o(z N
ged /=1
Recall that as |6 we have a < 6 for every p. Combining (7.17) and (7.18) and (7.14)
and the independence described above, the series in (7.1) factors as

Zs.D) =[] %(s, D) (7.19)
PYN
where
© a d a a—1
R R (@ DR (@D
d=10<as<d p 14
p—(a+d)s—(d~a)k/2a(pd—a) . (720)

The second S, term is only present in the above if a = 1.
a b
It remains now to complete the evaluation of the S <<p :d ), U,(n,), v) sums,

a b
and hence of the §, P ;),, ), D) sums. Note that we are reduced to the two cases
b=d and b = a — 1. Recall that we are assuming that 4|N and N|m. We will
assume  henceforth that pjtfm, so in particular, p=#+2.  Write
D =r*—4mn,N~' = D'p** with p? y D'. Then for some r,, n, we may write
D’ =r} — 4mnyN ! and as the Dirichlet series depends only on D we may, if
necessary, change r and n, so that r = r,p*', n, = nyp***. Because of (7.9) we may
concentrate on the N,(p® p, p?; D), which we evaluate in the following Lemma.
Notice that in evaluating N, we may restrict ourselves to the cases a = b + 1 with
a <d,asifa >d,a = b + 1, then the only relevant case in our future computations

isa =d + 1,b = d, which can be included in the discussion of N, after multiplying

a b
the corresponding (p :‘,) on the left by an element of I'°(N). We will use the

notation, for neZ,

e(n) = 1 if nis odd ,
“ 10 if nis even .
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Lemma 7.3. For p ¥ m let N,(p° p°, p%; D) be as defined by (7.10) and (7.11), and
D =D'p* with p> yD'. Thenifi=10or2anda<d + 1,

Ni(p®, ", p; D'p™) =

( pld—e@+a=cay2 if d <2k,
2ptrtmint@=e@yzk) if v (p)=1,d=2k, + 1 and i =1,
2pet if xo(p)=1,d22k +1,i=2

< phiramsan if io(P)=0,d=2k, +1,i=1
pHatt if xo(p)=0,d=2k +1,i=2

\ 0 otherwise |

whileifi=3and b<d—1,d =1
N, (p** L, pb, % D'p*t) =

p pld+e@+b—cb)2 if d <2k, +1, b <2k,
P IO ®N2 e (g =1, d 2 2k, + 2, b < 2k,;
prit 1t b-eoni2 if 10(p)=0, d=2k, +2, b<2k;
< 4p2hatt if wp(p)=1,d=2k, +2, b=2k, +1;
2ptkit if xap(p)=1,d22k, +2, b2k +2
szk,n if xp(p)=0, d=2k, +2, b=2k, +1;

0 otherwise .

Proof. The proof of the Lemma is intricate but not difficult. We will give details for
the case i = 1 and for part of the case i = 3. Recall from (7.10) that when i = 1 the
relations which must be simultaneously satisfied are

mA? = Omod p, (7.21)
2mi, Ay — rop*' A, = 0mod p?, (7.22)
mi3 —rop*ti, + ngN~1p* = 0mod p?, (7.23)

for A, modulo p* and A, modulo p% If d <2k,, then (7.23) reduces to
Ay(mi, — rop*') = 0 mod p?, whose solutions are of the form 4, = A, p“*=@/2 for
all A5 modulo p“~*“Y2 Then (7.21) has solutions of the form A, = 1 p®**@Y2 for 1’
modulo p©®~¢@2 and we observe that for such 4,, 4, equation (7.22) is always
satisfied. Thus the total number of solutions to (7.21-23) in the case i = 1,d < 2k, is
pl—e@)z pla=e@)2 45 indicated above. If d = 2k, + 1 writed = 2k, + nwithn 2 1.
For (7.23) to hold we must have 4, = 4;p* for A5 modulo p*'*", and (7.23) then
reduces to

miz —rohy + ngN ™' = Omodp". (724)

The number of solutions to (7.24) modulo p” is then 2 if yp(p) = 1, 1 if xp(p) = 0
and n = 1, and 0 otherwise, and as A} is taken modulo p*' *" there is a multiplicity
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of p*' and we have

2pf if pp(p) =1,
The number of solutions to (7.24) = ( p** if xp(p) =0, n=1, (7.25)

0 otherwise .

The case i = 1, d = 2k, + 1 is now complete if a = 0, so suppose henceforth that
a = 1. As in the case d < 2k, the solutions to (7.21) are given by 4, = A} p®*=@2
A1 modulo p“~#@/2 and hence (7.22) becomes

Ay pfit@re @ 2y — ) = Omod p? . (7.26)

Suppose now that y,.(p) = 1. Then pt2mi; —r, and in order that (7.26) be
satisfied we require either that k, + (a + &(a))/2 = a, in which case the number of
possible A} is p©@ ¢@)V2 or else k, < (a — &(a))/2, in which case we must have
Ay = A{pl@~#@V2-ki and there are p*' possible 1;. Multiplying the above by (7.25)
gives the case xp(p)=1,d =2k, + 1 when i =1. If xp(p) =0 and n=1 then
d =2k, + 1 is odd. We have a < d so if a is even then a < 2k,, while if a is odd
a <2k, + 1,50 k; = (a — ¢(a))/2. Then

ki+(a+¢e@)2=@—¢e@))2+@+¢e@))2=a.

Thus (7.26) will be always satisfied when yp-(p) = 0 and multiplying the p~ @2
solutions of (7.21) by p*! from (7.25) gives the number of solutions to (7.21-23) when
xp-(p) = 0. This completes the proof of the Lemma in the first case i = 1. The case
i = 2 is virtually identical, and we omit the details.

When i = 3 we have from (7.11) the relations

mi? +rop* A, + ngN " 'p* =0modp’, (7.27)
2mA Ay + rop* A, —rop A, — 2p* g N TP =0mod p®,  (7.28)
mi3 —ropt 1A, + p?t2ny N™ =0mod p?* !, (7.29)

with 4, modulo p?, i, modulo p**!.

Equation (7.29) forces 4, = A3p with
45 modulo p? and so (7.29) becomes

mAZ — rop¥1 iy + p?*ngN ! = Omod p?~ !, (7.30)
while (7.28) reduces to
2mA Ay + rop*t Ay — rop* Ay — 2p**ingN ™! = Omod p* ! (7.31)

if b 2 1, and is trivially satisfied if b = 0. If b < 2k, , then the analysis of the first and
third equations (7.27) and (7.30) proceeds exactly as before, and the middle
equation (7.31) will be satisfied whenever the first and third are. The only new
element enters if b = 2k, + n’andd — 1 = 2k, + nwith n 2 n’ =2 1. Then we must
have 15 = A5p*, A, = A\ p** with A5 modulo p***"*!, 4] modulo p*'*", and the
three equations become

mi? + roAy + ngN~' = 0mod p" ,
2mAL Ay + rgAs — rgdy — 2ngN "' =0mod p" ™!, (1.32)
mis2 —rods + ngN~!' = Omod p" .

If yp(p) = O then n = n’ = 1 is forced so (7.32) is trivially satisfied and the number
of solutions is p*'*'-p* = p2 *1 If y,.(p) =1 and n’' =1 then again (7.32) is
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trivially satisfied and there are (2p*** )(2p**) = 4p?** *! solutions. If x,(p) = 1 and
n' 2 2 then 15 and A} have the form

, 1
AL E;n(—r0+8lt)modp R

" 1
A= 2—rﬁ(r° + g,t)modp,

where ¢ is a solution to the congruence t> = D' mod p, and ¢,, &, = + 1. Substitu-
ting into (7.32) we see that the equation will be satisfied if and only if ¢,¢, = — 1.
Thus there are two possible pairs of solutions modulo p, and counting multiplicities
the total number of solutions is 2p?** * !, This completes the proof of Lemma 7.3. O

Lemma 74. Ifd = 1 then
pY*(1 —p™Y) if 2<d <2k, deven,

s ((1 p.,) D,pzk,> — i x 1o (P)P*: if d =2k, +1;
» pe _ph ifd=2k,+2 xp(p)=0;
0 otherwise .

If 1<a<d—1then

P '\ .
S"(( p ) Dp%) B

pet(1 — p1y? if d <2k,, aeven,d even;
patd xp (PP 21— p~Y) if d =2k, + 1, a even;
— pk1+a/2(l — p‘l) !f d = 2k1 + 2’ a even, XD‘(p) — 0,

0 otherwise .

PN —p7Y) if d <2k, — 1, dodd;

g ((p" p? D’pz"‘) T pll—p™hH if d <2k,, d even,
\\ ) p(—p7h) i d=2k +1

0 otherwise.

petV2(l —p~Yy if d <2k, + 1, d odd;

S < p1 Dp?i | = pi+! x 1o (PPt if d=2k, +2;
P o) p p —phtt if d =2k +3, 1p(p) = 0;
0 otherwise .
b+1 b
If1<b<d~—2thens, ((p £d>’ D/p2k1)=p2b+d+l
puttTIR(l — pThy? if bis even, d odd, d <2k, + 1;

Ao (PP AL —pThy if b ois even, d =2k, +2;
— pk1+1+b/2(l _ p-l) lf b is even, d - Zkl + 3’ b é 2kl, XD«(p) - 0’

0 otherwise .
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If d = 2 then
P’ -p~Y? if d<2k, + 1, d odd;
s((p!"’) Dr,,zk,> _pamiy P Fap(p) =1 d =2k +2
p pHit! if xp(p)=0, d=2k; +3;
0 otherwise .

Proof. We may use Lemma 7.3, together with (7.9), (7.15) and (7.16) to compute the
a..b

values of S p((p z d), D). This is a long but routine calculation and so we omit the

details. O

We will now use this Lemma to compute the p-factor & (s, D) of (7.20) in the
case k, = 0. We are assuming now that D = D,D?} where D0 is a fundamental
dlscrlmlnant that p ¥ D,, and that p 4 m. Note that if D’ is as in Lemma 7.3, then

xp(P) = XDO(P)
First suppose that x, (p) # 0. Then by Lemma 7.4 we see that the following is

p p pb+1 pb
a complete list of all nonzero Sp<< P ) ) and S (( p")’ D) withd = 1:

1Lp pp
S , D)= , , — p3 _ p2 ,
”(( p) ) Too(P)P S"(( p) D) o
1 1
S,,<<p p), D) =p-p? S,,<<p pz), D) = 1oo(P)P* ,
2
(7 7:)2)=r

Therefore, by (7.20), for x5 (p) # 0, i.e. for p ¥ D,, we have

Zy(s, D) =1+ xp,(P)P>**~a(p) — xp,(P)P* " **~*a(p) —

= (1 + 1py(P)o, > T2 7)1 + xpy(P)opp* ¥ 72)(1 — p>7%) . (7.33)

Similarly if xp,(p) = 0 we have

pp p1
s,(( p), D)=p3—p2, Sp<< p), D>=p3—p2,
1 p? p1
s(()2)= - (") )=
3 2
p*p
(7 7)o)-+-

and thus when p|D, we have
gp(s’ D) =1 p4—k~2sa(p2) + p7—k—4sa(p2) _ 9—6:
— (1 _ a. 4 k— 23)(1 /2 4 k- 25)(1 3 2s) . (734)
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Equations (7.33-34), when substituted into (7.19) give the description of Z(s, D)
and Z(s, D,) mentioned in Proposition 7.1. The Dirichlet polynomials d(s, D,) of
Proposition 7.1 are given by

d(s, D)= ] Z,(s, D) (7.35)
pID1

where by Lemma 7.4 each Z,(s, D) is a finite sum given by (7.20).
The final case of interest to us is when D = 0. We may read this off from Lemma
7.4 by taking k, = oco. Doing this we obtain, for d > 1.

1 d
S,,(( Pd>’ 0> P31 —p Y if d =2, d even,

o
gl

,O) pRaTSaZ( _ pm1y2 ifd=4,2<a<d-2,a,deven,

("7
(7))
("3

+1 b
s,,((” Z,,),o) pRaTS 2| _ p=1y2  ifbiseven,dodd, 2 <b<d—1.

pr i1 —p7Y if d is odd,
p*1 —p™Y if d is even,

, 0> p3a+IN( _ p1) if dis odd ,

Substituting into (7.20) we then have
L, 0)=1+ ) pP 2-da(p)(1—p~ )+ ) p* (1 —-p7)

a2 a2
deven deven

+ Z pti-2-2ds( _ p-1y

dz3
dodd

y plSdt1-@=DR2-W+Dsg(pd=1y | _ p=1)
az3
dodd

p(5d+30—~(d‘a)k)/2— 1 —(d+a)sa(pd—a)(1 _ p~ 1)2

|
2 A
IAIN
i ]

a

-3

-3

a |
[¥)

w
SIA

p(5d+3a—(d—a)k)/2—(d+a)sa(pd—n)(l - p— 1)2.

+
v

dz4
2<asd-2
a,d even

A long but routine calculation now shows that
(1 _ 02 4—k—2s)(1 . o.fp2p4—k—23)(1 - p3—23)
(1 2 5 —k- 23)(1 _ o.;,zps—k—zs)(l _p4—-23)
which, substituted into (7.19) gives the evaluation of .Z(s, 0).
It only remains to demonstrate that if s>2 is real, then the series
Yo =1 Z(s, DoD}) D 2 converges for re(u) > 3/4. This can be done most elegantly

by using the recursion relations mentioned in the Remark following the statement
of Proposition 7.1 to express the latter summation as an Euler product equal to

s, 0) =
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a ratio of L-functions. This gives the convergence back to re(u) > 1/2, and the
asserted nonvanishing property. However, since we will not prove these recursion
relations in this paper, we will use instead the upper bounds provided by the
evaluations in Lemma 7.4 and the bound

p k=12 g(pdy < pll4te (7.36)

on the Fourier coefficients, the implied constant depending only on ¢ (The

Ramanujan conjecture, which is known for holomorphic forms, would also imply

convergence back to re(u) > 1/2, but as this is not essential for our purpose we

prefer to use the weaker bound which is known to be true also for Maass forms.)
Referring to Lemma 7.4 we see that

PP\ ook
o 5y

and substituting these upper bounds into (7.20) we have, for D = D,D'? p** with
ged(p, NDY) =1,

pse+3a/2 if d<2,,

plsat32 if 4 =2k +1,
per3N2=1 if g = 2k, 42,
pseIN2=2 i 4= 2k 43,

<

| Z,(s, DeD?p™) <2 3, ¥ p 42 2 a(p?™Y)

d<2k asd

+2 Z p—((2k1+1—n)(k—l)—1)/2|a(p2k1+l—a)|
as2k +1

+2 Z p’(2k1+2—a)(k—l)/2—1(a(p2k1+2—a)|
as 2k +2

+2 Z p—(2k1+3-—a)(k—l)/2—2la(p2k1+3-—a)| .

a<2k +3
The first of these sums is the largest. Using the coefficient bound (7.36) we obtain
|gp(s’ DOD/lZplkl)I < pk1/2+z ,
with the implied constant depending only on &. Thus
[11%,(s, DoD)| < Di**. (7.37)

o
Now, for p/ND,
(L= a2p*~ ") (1 — o2 p*~*"2)(1 - p**)
(1 — xpo(P)o, P> T2 7*) (1 — spo () o2 2 7%)

Z,(5,DoD}) = Z,(s, Do) =

and so

Ly(s+k/2 =2, f, xo)) 17 Hy6 + k/2 =2, f, 1)
3=~ o 1 =2 o, (138
AL DD =T a4, £ V) HHari—asv Y

p|Dy
PAN
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where the factors are finite Dirichlet polynomials equal to the inverses of the
corresponding p-factors for Ly (s + k/2 — 2, f, xp,) and Ly(2s + k — 4, f, v?). We
note that Ly(2s + k — 4, f, v?)is nonzero and analytic for real s = 2 by Proposi-
tion 1.2. Moreover, the estimate |o),| < p¥/>~'/4, which is a slight strengthening of
(7.36) is well known and therefore we have

H,(s +k/2—=2, f, xp,)
H,2s+k—4f, v?)

< D5 . (1.39)

pIDy

PN
Combining (7.37), (7.38) and (7.39) gives
Ly(s+k/2 -2, f, xpo)
Ly(2s+ k—4, f, v?)
with the implied constant depending only on &. Finally, by (7.40), for real s = 2
Ly(s + k/j2 =2, f, xp,)
Ly(2s+k—4, f, v?)

which converges for re(u) = 3/4 + ¢/2.

If (2, D,)=0, then Ly(%, f, xp,) =0 and so #(2, D,D?) =0 for all D,.
Differentiating and using the product rule for derivatives, we obtain an upper
bound for ) 5 _,|.#'(s, DoD}) Dy **| identical to (7.41) with Ly(s + % — 2, £, xp,)
replaced by Ly(%, f, xp,)- This completes the proof of Proposition 7.1. O

| (s, DoD1)| <

Djl?*e (7.40)

Y Dietiza o (7.41)

D=1

Y | Z(s, DoD}) DT | <

D=1

8. The Novodvorsky transform

Novodvorsky [16] considered the problem of representing the Langlands L-
function of degree four associated with an automorphic form on GSp(4). Provided
that the form is generic in the sense of having a Whittaker model, he found an
integral with analytic continuation and functional equation representing the L-
function. See also Bump [2], Section 3.3 for details concerning Novodvorsky’s
integral.

We will assume given a representation o: K — GL(V), a vector ve V satisfying
(1.12), a linear functional T on V, and a fixed positive value y,. We will assume that
the matrix coefficient ¢(x) = T(ve(k) is divisible by ¢, (defined by (3.29)), so that
Proposition 3.11 is applicable. (This hypothesis is certainly not necessary, but very
convenient.)

Let®, = E(|J J be the Jacobi modular Eisenstein series introduced in Section 1,
and let &;(g, u, s) = & (g, p) be the functions associated with @; by Proposition 2.1.
&, (g, u, s) may be regarded as an automorphic form on the metaplectic group—the
double cover of GSp(4). It is generic in the sense of having a Whittaker model. We
may therefore apply Novodvorsky’s construction to &,(g, u, s). The resulting
Dirichlet series (in a new variable u) has analytic continuation and functional
equation. Naturally, it does not have an Euler product.

Let us first assume that re(s) > 3/2, and that u has large real part. Let v = T(0, ),
where r is an integer. We will define two Dirichlet series Z * (u, s) by

Ztws)= Y ZLD)DpTT?,
Ds;go:?‘mN
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where Z (s, D) was defined in Section 6, and evaluated in Section 7. With notation
otherwise as in (3.39), (3.48) and (3.49), we will prove

Proposition 8.1. If re(s) > 3/2, the function
(dm)~sturS2 NTSHEYRZ [ 7Y, ) TF T, 5, y,) + Z (4, 5) TF (4, 5, y,)]
(8.1)

has meromorphic continuation to the region re(u) > 0, re(u) > re(s) — 5/2 and differs
from

—(u—s+5/2) " NsT4H2 L(s,0) TH(s, N 'y, v, 0)
+U+s—52) N K2 P(s,0,7) y2 5 TM(s, N 'y,; v, 6)
+{r—5+3/2 L N Sy3=stH2 (s, N"y,; v, 0). 8.2)

by a function of s and u which is holomorphic in a neighborhood of (u, s) = (1/2, 2).

Proof. First we assume that re(u) is large. We will obtain an integral expression for
the left hand side of (8.2) which is valid for all s and u in the region described in the
Proposition. This expression will represent the left hand side of (8.2) as the three
factors on the right, plus two other terms (denoted I, and I ;) which are very rapidly
convergent series. At a key step in the calculation (equation (8.9) below) we will use
the transformation property of the Eisenstein series. Thus the analytic continuation
uses strongly the Selberg-Langlands theory of Eisensteins series, which guarantees
that the Eisenstein series itself has analytic continuation, and poles only where the
constant terms themselves have poles. The poles of the Eisenstein series are at the
poles of Z(s, 0) and #(s, 0), which by Proposition 7.1 are at the zeros of the
symmetric square L-function L(2s + k — 4,f, v?2). By Proposition 1.2, these are to
the left of s = 2.

First we will prove that
(Am)=sturS2 NS4k 72y ) TF *(u, s, y,) =

1 x? Y1Y2
o o N 1 yl
L wi Ll ! I Al

—x, 1 z 1
e _—iDy, y'{—m\/l+ize(—N_1xz)dx2dzd_y‘l’ (83)
am(1 + iz) i

where the coefficients C, are as in Proposition 2.2, and # * (y, s, y,) is defined in
Section 3. Let 4, denote /z* + 1. Since

Y1Y2 Y1Y2
N 47y, 47 'y,z

-1 -1 Kz

Y2
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where k, is defined by (3.30), and since C 1<<E )E(

symmetric matrices X, the right hand side of (8.3) equals

)g; U, v) = C,(g; U, v) for real

1 x, Y1)y2
AR 1 A7,
T¢{ —| C :
D?z0 £ —Iw N(j)‘ ! 1 }’2—1
b —x, 1 4,

_ —iD _ - d

(8.4)

Observe that by (2.6), this is equal to zero unless D = r?> mod 4m/N. Now by
Proposition 6.1, and the invariance of C, under scalar matrices, we have

1 x, Y1)Y2
1 Ifc 1 4: 'y, U,(— ND)
— 5 - , V
Ny ! 1 yi! '
—-x, 1 4,
- D] \*~* iy,D IDly, . - _
e(-N ‘xz)dx2=<m N¥2e 4_":73 y(&D) W= 4mAz;’N 1A2y27s ’

where the sign + is + if D > 0, — if D < 0. Substituting this expression into the
right hand side of (8.4), replacing y, by 4my,/| D | and applying the definition of
F *(u, s, y,), we obtain the left hand side of (8.3). Thus we have proved formula
(8.3).

Next we prove that

1 x, Y12
1 © N 1 Y
— C - ; Ui(= ND), v
znlic 1 I
D+0
—x, 1 z 1
—iD - - -
e(mﬁ)hldl*‘we(—[‘] 'x,)dx,dz =
1 x, Xa 1Y2
1 1NN 1 yl
— & _ ;v
wiffall "
z  —x; 1 1

x /1 +iy,ze(— N7 'x,)dx, dx, dz
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1 x, 28 2)
1 © N 1 Y1
—N—Ico£C1 l yz-l >V
—x, 1 z 1
xyrt/l+ize(— N~'x,)dx,dz. (8.5)
Let
1 X4 X3 1 x,
1N 1 x 1
H(x,) _2.““51 } g;v
20 1 1

1 —x, 1

x e( — N7 'x,)dx, dx, .

By (2.19), we have H,(x; — n) = H,(x,) if ne NZ, so by Fourier inversion,
1 N
H, (0= Y N | Hi(x3) e(N~ ! nx;)dx, .
neN 0

Substituting the definition of H,, replacing x, by x, + nx; and applying a matrix
identity, this becomes

X3
1 NNN
— é
N3n62£££ !
1
1
X g;v |e(— N 'x,)dx, dx, dx, .
— X,
Now if
X4 X3 |
, 1
g = 1 g,
-x, 1 n 1
and if

zZ =<Zu(9) Zl:(Q))
¢ Z,(9) Z,,(9) ’

then it may be checked that
det(E + Uy (—mZ,) =(1+nZy(g)",
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independent of the values of x,, x5 and x,. Thus by (2.21), we have

1 x, X4
NN
1 1 .
vllé | g v |e( — N7'x,) dx, dx, = H,(0)
00
-x, 1
=2 V1 +nZy,(g) x
neZ
1 X4 X3 1 x, 1
1 NNN 1 X3 1 1
— & :
N3£££ ! 1 1 1 gV
1 —Xx, 1 n 1

x e(— N7'x,)dx, dx, dx, .

We will now apply this with

1 Y1¥2
1 iy, y3
g= { 4 _ , so that Z,= Vi) iy,
Y2 -
1+4iy,z
z 1 1 !
Thus
_I+iy(n+2)
1 +nZ,,(g) = [+iyz
and
1 x, X4 Y1Y2
1 NN 1 Y1
Vitiyz—=||& _ 3V
Y1 NZM 1 1 vyt
z —x, 1 1
xe(—N7'x,)dx,dx, =Y /1 +iy,(n+z)x
nelZ
1 X4 Xj 1 x,
] NNN 1 x, 1
— &
wiifell 3 1
1 -x, 1
\ Y1Y2
: b - “1x,)dx, dx; d
X - ; v]e(— N"'x,)dx, dx, dx, .
1 Y2
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Now integrating z from O to 1, and collapsing the sum over n, we obtain

1 x, X4 Y1y
1 1NN 1 Vi
NZM!) ' 1 it |7
z —x, 1 1
x /1 +iyze(— N"1x,)dx,dx,dz =
1 X4 X3 1 x,
1 ® NNN 1 x, 1
— &
EREEAE ! !
1 —x, 1
1 Y1y
1 Y1 .
Y
1 vt
z 1 1
x /1 +iy,ze(— N~ 1x,)dx, dx;dx, dz . (8.6)
Replacing z by y; ! z shows that (8.6) equals H,(0), where for fixed y,, y, we have
1 X4 X3 1 x,
1] = NNN 1 x, x 1
Hytx) =535 § [[]é, C |
- 000
V1)2 1 —x, 1
Y1

it Y yi'J/1 +ize(— N 'x,)dx,dxydx, dz .

By (2.19), we have H,(x, + n) = H,(x,) if ne4mZ, and so by Fourier inversion, we
have .
| B -
H,0= Y y | Hy(x,)e(@m)™* Dx,) dx, .
pez 4M o

By (2.5), this equals

1 X4 X3 1 x,
1 w NNN4m 1 X3 X, 1
&
L S LIS i 1
1 —x, 1
Y1YZ—1
» Y1 y
it |’
z 1

yi'/1 +ize(@m) ! Dx, — N~ ' x,)dx, dx, dx, dx, dz
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1 x, Y12
1 © N 1 Y1
=Yy — C - ; Ui (—ND), v
Dgz N —Iao E() ! 1 7% '
—x, 1 z 1
— iDy - . -
e<m>y1“/l+lze(—N 'x,)dx, dz .
This completes the proof of (8.5).
Similarly, we will prove
1 yiyz !
1 =N <N . ) —x, 1 Vi
— el —'vu ) C
ggzo N~y gumod SN \2M ’ 1 x, Zy,; Y2
+

1 1

_iD
x J; Ug(—4mD), u | yi'y3 /1 +ize<———l——y—l>e(—N"x2)dx2dz=

v + iz)
1 ,V1,V2_1
P NLN N —x, 1
Vs e T O
N 500 pmodamn \2M z 1 x, Y2

1 yoat
© N —x, 1
A C N 4
N 25 0 umod 2mN 2m 1 x, Zy, Y2
1 1
xJ;0, 0| yrtyd 1 +ize(— N 'x,)dx,dz. 8.7)
Let
H,y(x,) =
J(x3 1 o

LN N, 1 x;3 x4 —x, 1

— —Tyulé& g, U

N(-‘;E‘.)un'lodZZrn/N e<2m “> 0 1 l x2

1 1

e(— N~ 'x,)dx,dx, .

Note that in this definition, the integrand is periodic as a function of x,, with
period N, by (2.18). By (2.20), we have H,(x5 + n) = H,(x;) if ne Z. Consequently,

1
H;(0)= Y [ Hy(x3) e( — nx;)dx; .

neZ 0
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Substituting the definition of H,, replacing x, by x, — Nnx;, and applying
a matrix identity, this becomes

Tl T g

#mod 2m/N
1 1 Xy 1
&, 1 1 x; x4 —x, 1
— Nn 1 1 1 x,
1 1 1
1
1

Nn 1 g, 1 e(_N-lxz)dxde3dX4.

Now by (2.22), this equals

11N
VST I > e(%YVﬂ)x
000;1

nel mod 2m/N
1 X3 1 1
p 1 x;3 x4 —x, 1 1 )
o 1 L x| (N0 1 | %F
1 1 1

e( — N~ 1x,)dx, dxydx, .
We now apply this with

1 yiy3! o
1y1Y2

J sothatZ, = 1 +iy,y3%z
z 1 V2 iy

1 +iy,ys 2(z + Nn)

1+ NnZ, (9) = I tiyyiiz
1

Therefore, we have proved that

VTR DR Cat)

u mod 2m/N
1 yiyr!
—-x, 1 X
& z 4 n Jiple(—N"1'x;)dx,dx, =
z 1 x, V2



Nonvanishing theorems for L-functions

Y \/1+iy1y2‘2(z+Nn)

nelZ
1 X3
1 x, x
&, 13 4
1
yiyzt
Y1
Y2

1

Integrating z from 0 to N, and collapsing the sum over n, we thus obtain

1N
I

lllN
SR8

1
—x, 1
Jiple(—

00 0 umod 2m/N

1
8, —x, 1 X4
z 1 x,

1

X yy/1+iyyzize(—

e(zﬂm Ty y) x

v

-

i

umod 2m/N

1 X3
1 x; x
1

yiyat
Y1

Y2
1
Replacing z by yi!
1 @ 11N
{11
000

H,(x)) = N

)ﬁy;l
Y1

1

Jip |y Sl + iy, ysize(— N~ 'x,) dx, dx, dx, dz .

A

u mod 2m/N

1 X, Xg
1
‘5)0( )1‘3 Xa
1

x yry3 /1 +ize(—

2 dn )
el — vu
nmod 2m/N 2m

1

X, z+ Nn

N7 'x,) dx, dx;dx, .

Jiu
Y2

1

N~'x,)dx,dx, dz =

1

y3z shows that (8.8) equals H,(0), where

—21—V—Tv,u> X

yiy2!

1 x,)dx, dxydx, dz .

609

8.8)
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It follows from (2.20) that H,(x, + n) = H,(x,) for ne Z. Therefore

1
H,0) = Y | H,(x,)e(Dx,)dx, .

DeZ 0

By (2.5), this equals

1 uo 11Nl (NT )
- —— vu | X
DEZN ao E‘)‘({gumod 2m/N 2m

Xy X3 1 nyz!
1 x —x, 1
3 X4 2 Y1 Ji
1 x, A7) Y2
1 1
yi! 1 +ize(Dx; — N~ 'x,)dx, dx, dx; dx, dz =
1 Y1¥z
128 N —x, 1 Vi
VT s o pme| 1
D 2N “% 0 4 mod 2m/N 2m 1 x, zy, Y2
1 1

iDy
x J; Ug(—4mD), u yf1y3\/1+zze<—(llTl)>(~N' X,)dx,dz .
z

Thus by (8.8), we have proved (8.7).

Next we have

1 x, X4 Y1y2
| LNN 1 Y,
— & ;v
wiilell '
z —x, 1 1

J1+iyze(— N~ x,)dx, dx, dz =

1
N1N
N, —x, 1 X4
_ & X
szzggi‘;umo:‘;m/N e( 2m V“) 0 z 1 x2
1
yityz!
-1
Y Ji w| yyaS1+iyitysze( — N7 'x,) dx, dx, dz
Y2

8.9)
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Indeed, to prove this one applies to the left side of (8.9) the identity (2.7), the
invariance of &, by scalar matrices, and interchanges the roles of x, and — z.

Now (8.1) equals I, + I,, where I, and I, are the respective contributions to (8.3)
from 1 <y, < oo and from 0 < y, < 1, respectively. Thus

I x, Y1¥2
1@ @ N 1 yl
I, = — TC ;
' gzs:zoN '[ —Ioo£ ! 1 ya !
* —x, 1 z 1
— iDy, _ - - dy,
U,(— ND), — =3z N1 —N7! dx,dz—, (8.10
x Uy( ) v e<4m(l +l.z)>Y1 + iz e( X;) dx,dz " (8.10)
while
L x, Y1)2
1 1 o N 1 Vi
I,=Y Nj [ fT1C, | . ;U (= ND),v
gizo 0-w0 Y2
-x, 1 z 1
x e ——=PY Vw32 Tz e(— N1 x,) de,dz P | @.11)
am(1 + iz) PRy

Now I, is analytic for all u and s under consideration. To see this, use Proposition
6.1 to express the integral (8.10) in terms of the Whittaker functions and the
Dirichlet series £ (s, D). Then because of the at most polynomial growth of the
coefficients (cf. the Remark following the statement of Proposition 7.1) and the
rapid decay of the Whittaker functions (Proposition 3.6), the sum (8.10) is very
rapidly convergent.

The meromorphic continuation of I, requires some work. By (8.5),
1,=1,—1,, where

b x, X4 Y1)2
| LLNN 1 v
I, = & _ 3V
} Nzgogg ! 1 y2!
z —x; 1 1
d
x yi=Y2 /1 +iy,ze(— N~ x,)dx, dx4dz—y&
1
while
1 x, Y1y2
1 1 ©o N 1 y
I, =— TC ! ;0, v
¢ Ng—joog ! 1 y{l
-x, 1 z 1

d
x yi32 /1 +ize(— N~} xz)dxzdz%.
1
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Proceeding as in the proof of (8.3), I, equals

1 x,
1 o lN 1
Ij T _Icl 1
0-wo 0
—-x, 1
Y1)2
A1 d
Yoo Loy e(= N xg) dxg o) b pim3 ST+ izdz 0
Y2 Y1

4

Thus by Proposition 6.1, this equals

1 o d
NT 4 25, 0)f | T (452 3y, N7 A,y o) oli) vt ™32 1+ izdz 2

0 - Y1
Thus by (3.54), we have
I,=(u—s+ 52 I N"s+4+kK2 @(5 0)

[ 4B T(W°(I, N1 4,y,;5)0(k,)\/1 + izdz. 8.12)
On the other hand, consider I,. By (8.9), this equals
l INILIN < N . )
el ——Tvu
2mN2 (.‘; £ i[ !) In modZZrn/N 2m

1 yityr!

— 1 -1

x T&, X2 X4 Y1 Jin
z 1 x, Y2
1 1

d
x yiT12y, 1 +iyr ysPze(— N7'x,) dx, dx, dz%,
1

and substituting y;! for y,, this equals

v 11, B 5)

u mod 2m/N

1 yiyz!
-x, 1 X4 Y1
1 x, Y2
1 1

d
X yr 2y, Sl +iyyi2ze(— N7 'x,) dx, dx, dz% :
1

x Té&, Jiu



Nonvanishing theorems for L-functions 613
By (8.7), this equals I + I, where I equals

SRR

DeZ 1 —o 0 ymod 2m/N

D#0
1 Yy
-x, 1
x TC, T N J; Uy — 4mD), u

X2 z Y2
1 1

Cum3/2 2 —iDy,y;! dy1

X yr*32y2 1+ iyt —1"= Je(— N~ 'x,)dx,dz—
V2 +iz o

while I equals

1 ©® © N (N )
Ty
jl. Ico{umo d 2m/N 2m
1 yiyz!
- 1
x TC, || ~ ™ i J; 0, p
1 x, r2 %) Y2
1 1
d

Xy y3 Sl +ize(— N"xz)dxzdzL

Y1

Now I, is convergent for all values of s and u under consideration. (The reason is
the same as that for I,, except that one uses Proposition 6.2.) However, I has
poles, which we must consider. This equals

1
o N 1 N — X 1
T dd—"wul-(cC 2
g—joo pmo?im/N <2m “>N£ 0 1 x2
1
yiyz7tac!
Y1 4 ;0,u] e(— N~ x,)dx,a(w™ 1 k,wa(J))
z.VZ
1
x yrvT3y 1+tzdz
Y1

The expression in braces equals T%,(s; 0, N, r; y,y5 24; 2, y,4,), in the notation
of Section 6, and so by Proposition 6.2, I = I, + I, where

I, =N""**}22(5,0,r) | [ T(W°(y,y324;% N 'y,4,;5) o(wk,J))

1 —o

dy,
yre32y3 1 +izdz——2
'
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and (since a((1) = 1), I equals

® L d
N—sj‘ -" T(vo.(nw—lxsz))e—ZnN 47y, Az—s+k/2 yi—u-3/2 yg—-s-f-k/Z 1 +iz dx_ﬁ

1 -w Y1

Let us consider I,. Using (3.54), this equals

NT75742 2(5,0,r) [ [ T(WO(L, Ny, 4,;5) a(wk,J))
1 —o

d -
y3s=5 A28 1+izdz%=(u+s~5/2)“1N7‘S"‘/2 ZL(s,0,r)y3s~53
1

5/2—-s—u
1

y

_f TWO(1, N~ y,A,;5) a(wk,J) 4278 /1 + iz dz .

bl o

On the other hand, I, equals

N—sj‘ j’ ys u—3/2 3 s+k/2A s+k/2 —2nN"'y, 4, T(VO’(’]W KZWJ))
1

—

d
JI+ izdz% =(U—s+ 32 LNy
1

[ A7stH2 o= 2N A Tva(qw ™ k,wd )\ /1 + izdz .

-

We have proved that (8.1) equals I, — I, + I5 + I, + Ig. Here I, and I are
holomorphic, while — I,, I; and I4 are the three terms in (8.2). This completes the
proof of Proposition 8.1. O

9. Proof of the theorem

In this section, we will prove the Theorem which was stated in the introduction. As
noted there, we may assume that the sign in the functional equation of fis + 1.

Thus far, all we have required of m and N are that 8) N, N |m and that 4m|N2.
Now let us further specify that m = NN, where N, is the product of all primes
dividing N. Moreover, the integer r which appeared in Sections 6 and 8 we will take
to equal 1.

We will analyze the poles of the Dirichlet series Z* (u,s) near s = 2. By
Proposition 8.1, the poles corresponding to the three terms in (8.2) are at
u=s5-—5/2,5/2 —sands — 3/2. When s = 2, the first pole is farther to the left, and
will not play any role in our considerations. The second two poles must be looked
at very closely because when s = 2 they coalesce—it must be shown that their
contributions do not cancel.

Moreover, we have the problem of separating the contributions of the positive
and negative discriminants. To accomplish this, we use two different representa-
tionsg,: K - GL(V,)and o,: K - GL(V,), with vectors v;€ V, satisfying (1.12) and
linear functionals T; on V,. There are also to be chosen two different values of y,,
which we will denote 4" and y$». We are assuming that Proposition 3.11 is valid
for the particular choices of v, and T;, so that Proposition 8.1 is applicable.
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We will denote

(4m)=sTutSI2 N TSR T F 2 (4,5, 8 0) = Fit (u, 5) 9.1
N7T=s=M2 p2=S T (s, N" 'y, 6,) = M (s) 9.2)

and
N7 5y3=s*M2 Ta(s, N1 y9; 6,) = 1,(5) . 9.3)

By Proposition 3.12, we may assume that & {(1/2,2) # 0, and that # ~(u, s)
has analytic continuation to a neighborhood of (u s) = (1/2, 2), but that t,(2) =
Furthermore, by Proposition 3.13, we may assume that 7,(2) # 0, but make no
assumption on % j (u,s) except analytic continuation to a neighborhood of
u = 1/2, s = 2. We will make the following notation: If f; and f, are functions of
u and s, we will use the notation f; ~ f, to indicate that f; — f, is a holomorphic
function of u and s in a neighborhood of the point (u, s) = (1/2, 2).

Thus we have

Fius)Z (u,s)+ Fiu,s)Z (u,s)~u+s—>572)" ,Q’(s, 0,1).#,(s) 94)
and
F 3 (ws)Z* (u,s) + F ;5 u,s)Z (u, s)

~UAs—5/2)7 L5, 0, )M (s) + (u— s+ 3/2) P 1y(s) . 9.5)
Now multiplying (9.4) by # 5 (u,s), and (9.5) by # { (u,s) and subtracting, we obtain
Fu,5)Z (u,s) ~u+s—52)"'pu,s) — (u—s+3/2)" qu, s), (9.6)
where we denote
Fus)=F; us)Fi us)— F{us)F;us),
Pl s) = [F 3 (ws)M () — F 1 (ws) M1 L(,0,1)
qu, s) = F { (u,5)1,(s) .

Let us point out that if D occurs with a nonzero coefficient in Z * (u, s), then
since D =1 mod 4m/N, we have D = D,DZ, where D, is a fundamental dis-
criminant, and D, is congruent to a square modulo 4N,,. It follows that yp,(p) = 1
for every prime dividing N. Thus every prime dividing N splits completely in
Q(\/B). Moreover, since x,(N) =1, it follows from (1.24) that the sign in the
functional equation of L (s, f, xp)is + 1if D>0,and —1if D <O.

Lemma. If D = D,D?, where D, is a fundamental discriminant, and if L(k/2, f,
xp,) = 0, then 3’(2 D) = 0. If furthermore L'(k/2, f, xp,) = 0, then ¥'(2, D) =

Proof. The point is to show that £(s, D) = b(s) L(s + k/2 — 2,f, xD,), where b(s) is
holomorphic. If this is known, the first assertion is obvious, and the second follows
from the first after using the product rule for derivatives.

Indeed, each factor Z(s, D) is Ly(2s + k — 4, f, v?)™' L(s + k/2 = 2, f, xp,)
times a finite Dirichlet polynomial and some factors of the form

(l a.2p4 k- 25) 1(1 /2 4 k- 2:) 1(1_p3—ZS)—1

where p runs through the primes dividing D, but not dividing N. The holomorphy
of b(s) then follows from Proposition 1.2, and the trivial estimate | ¢,| < p*2. O
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Now, we will show that the left side of (9.6) vanishes when s = 2. It is sufficient,
by analytic continuation, to check this if re(u) is sufficiently large, so that the
Dirichlet series is convergent. The point is that each individual term #(2, D) in the
Dirichlet series Z~(u, s), vanishes. Here L(k/2, f, xp,) vanishes because there is
a minus sign in the functional equation, since D, < 0. The vanishing of #(s, D)
then follows by Lemma 9.1. Therefore

Z u,2)=0. 9.7
Now if we take s = 2 in (9.6) and let u — 1/2, (9.7) implies that
p(1/2,2) = ¢4(1/2,2) . 9.8)

Now differentiating (9.6) with respect to s, we obtain

oF . A ~10p
g(u, Z (u,s) + F (u, S)F(u, )~ (u+s—15/72) ’5;(u, 5) —

u+s—52)"2pu,s)—(u—s+3/2)" l—(u s)—(u—s+3/2)"2qu,s) .
Setting s = 2, and using (9.7), we obtain

ZF (u, 2) (u ) ~u—1/2)""1

[%e(,,, 2~ %, 2)] —@=- 127w )+ qw 2] 69
S S

(The meaning of ~ in this equation is that the difference between the left and right
hand sides is a holomorphic function of u near u=1/2) Now
q(1/2,2) = F{ (1/2,2) 1,(2). Since we have used Propositions 3.12 and 3.13 to
guarantee that & (1/2 2) # 0 and 7,(2) + 0, we see that g(1/2, 2) + 0, and so by
9.8, the coefﬁment in (9.9) of (u—1/2)"2 does not vanish. It follows that

F (u, 2) (u 2) has a double pole at u = 1/2.

Now since

Z (ws)= Y  ZLsD)|D|THr,
D<0
D = r*mod 4m/N

and since we have shown that #(2, D) = 0 for each term in this sum, it follows from
the product rule for derivatives that

0z~
—{“ )= Y L£@D|D|I™.
DEerfogm/N

We have established that this Dirichlet series has a double pole at u = 1/2. Hence
&Z'(s, D) # 0 for infinitely many D < 0.

We now observe that if D = D,D?, with D, a fundamental discriminant, and if
£'(2, D) £ 0, then L'(k/2, f, xp,) * 0. Indeed, this follows from Lemma 9.1. There is
one slight subtlety, however: we have proved that infinitely many .#'(2, D) + 0. We
must further show that these infinitely many nonvanishing #'(2, D) do not all
correspond to some finite set of fundamental discriminants. Suppose that this were
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the case. Then there would be some D, < 0, congruent to a square modulo 4m/N,
such that the Dirichlet subseries

Y. Z'(2,DoD?) | DoDF |7 1/2
D

had a double pole at u = 1/2. However, Proposition 7.1 asserts that this is not the
case. We have therefore proved part (i) of our Theorem.

Now let us turn to the proof of part (ii)—Waldspurger’s Theorem. We choose
a representation o5: K - GL(V,), a vector v, € V5, another linear functional T, on
V,, and another value y$. Again, we assume that Proposition 3.11 is applicable.
We make the definitions (9.1-3) again. This time, we use Proposition 3.15 to assume
that .#;(2) % 0, but 7,(2) = 0. We have

Fiws)Z (U s)+ F3ws)Z (U, s) ~ (U +s— 52 1 L(s,0, DA 5(s). (9.10)

Now multiplying (9.2) by .#(2), and multiplying (9.3) by .#,(2) and subtracting,
we obtain

(M) F 5 (u,s) — M )F 3 W,)]Z(u, 5) +
(AMQF 2 (us) — M 2F 3 (u,)]Z 7 (u,5) ~
U+ s—5/2)7 [ M52) My(s) — M) M) + (u— 5+ 3/2) 71 My(5)T,(5) -
Now substituting s = 2 and recalling that Z ~(u, 2) = 0, we obtain
[M3QF 53 W2) — M) F 3 WIZT(u,2) ~ (u — 1/2)71 M;(2)7,(2) .

Since #4(2)t,(2) + 0, we see that Z*(u,2) has a pole. Hence infinitely many
(s, D) do not vanish with D > 0. The remainder of the proof is the same as the
proof of part (i). This completes the proof of the Theorem.
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