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The AKS algorithm for Polynomial-Time Primality Testing

Introduction

Given a number, can we distinguish if it is prime or composite, and if it is composite can 
we  find  its  prime  factorization?   The  former  question  is  known  as  the  “primality 
problem.”   Prime  numbers  are  defined  as  any  integer  greater  than  one  whose  only 
positive divisors are 1 and itself.  An integer that is not prime is said to be composite.

With the progression of computers, many cryptographic systems were created involving 
primes and factorization of a number into primes, such as RSA.  For decades there have 
been  many  non-deterministic  polynomial  time  algorithms  that  solve  the  primality 
question,  but  there  has  never  been  an  unconditionally  deterministic  polynomial-time 
algorithm until 2002.  What exactly makes an algorithm deterministic?  Informally, it 
means that the algorithm behaves predictably and will always give the same output on a 
given input.  Non-deterministic algorithms usually perform random experiments (via a 
random variable) or can just imply the path that the algorithm takes is not predictable or 
that the running time it takes is variable.  For all practical (cryptographic) purposes these 
algorithms are still used (as they tend to be faster).

On  August  6,  2002,  a  paper,  PRIMES  is  in  P written  by  three  computer  scientists: 
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena was posted on the website of the 
Indian Institute of Technology in Kanpur, India (located in north India in the state of 
Uttar Pradesh not too far from the city of Lucknow-the capital of Uttar Pradesh, for you 
geography enthusiasts).  This paper presented the AKS algorithm, the first deterministic 
polynomial-time algorithm that determines whether a number is prime or composite. 



The Algorithm

The central idea of the algorithm is a generalization of Fermat’s Little Theorem, which 
states the following:

Theorem (Fermat) Suppose p is a prime.  Then for all a in the integers ap = a (mod p).
If p does not divide a (i.e. the greatest common divisor of p and a, is one), then 

ap-1=1(mod p).
 

(See [4] for a nice proof of the theorem.) 



The converse of Fermat’s Little Theorem is not true, because there exists n that are not 
prime such that an-1=1(mod n), for all a with gcd (a, n) = 1.  In fact these n have a special 
name, they are known as Carmichael numbers.

The following lemma is the generalization of Fermat’s little theorem (see [1], [2], or [3] 
for proofs):

Lemma: Let n be an integer greater than or equal to 2.  Let a be an integer less n,  
furthermore a and n must be relatively prime (i.e., the greatest common divisor of a and n 
is 1). Then n is a prime number if and only if 

(X + a) n = X n + a (mod n)
over the ring of integers modulo n.    

The above congruence is a simple test that determines whether a number n is prime.  The 
only disadvantage is, it takes a long time to compute n coefficients in the left hand side of 
the identity.  An easy way to reduce the number of coefficients on both sides of the 
identity, which leads to a more efficient algorithm, is to take the identity modulo a 
polynomial X r - 1 for an appropriately chosen r.  So now the test becomes   

           (X + a) n = X n + a (mod X r - 1) 

over the ring of integers modulo n, for appropriately chosen a and r.  The left hand side is 
the same as (X+a)n mod (Xr-1).  The right hand sides is the equivalent to (X n + a) mod (X 
r-1) = X n mo dr + a (see [2] for further detail).

Here is a slightly varied algorithm from the original, as it tends to follow the algorithm 
from [2] than [1].  Some notation is defined for the algorithm as follows.  [X] represents 
the ceiling function of X.  Range is the list of integers between (x,y) including x, but not 
including y. 

Input: Integer n >1
1. If (n=ab for a, b in the integers > 1):
2. return “composite”
3. r = 2
4. while (r < n):
5. if (r divides n):
6. return “composite”
7. if (r is a prime number):
8. for i in range (1, 4*[log(n)]2 ):          

9. if (ni mod r does not equal 1):
10. break
11. r = r + 1
12. if (r = n):
13. return “prime”
14. for a in range (1, 2(r)1/2*[log n]):
15. if (X+a)n mod (Xr1) does not equal Xn mod r + a in the 

ring of integers modulo n
16. return “composite”
17. return “prime”



The proof of the algorithm and running time bounds are given in [1], [2], and [3]. 
We implemented the AKS algorithm SAGE (Software for Algebra and Geometry 
Experimentation, [5]).  We give a function AKS(n) below, where n is the input and the 
ouput is given as either “prime” or “composite.”  Here are some examples:

sage: load "projectAKS.sage"
sage: AKS(2)
 _2 = 'prime'
sage: AKS(3)
 _3 = 'prime'
sage: AKS(5)
 _5 = 'prime'
sage: AKS(4)
 _6 = 'composite'
sage: AKS(13)
 _7 = 'prime'
sage: AKS(1001)
 _8 = 'composite'
sage: AKS(561) 561 happens to be a Carmichael number
 _9 = 'composite'
sage: AKS(1105) 1105 is also a Carmichael number
 _2 = 'composite'
sage: AKS(1729) Oh look another Carmichael number
 _6 = 'composite'
sage: AKS(29341)      Could it be? A Carmichael number.
 _7 = 'composite'
sage: AKS(999991)
 _8 = 'composite'
sage: AKS(34567)
_10 = 'composite'
sage: AKS(3451)
_11 = 'composite'
sage: AKS(3243)
_12 = 'composite'
sage: AKS(3543)
_13 = 'composite'
sage: AKS(78563)
_14 = 'composite'
sage: AKS(9721)
_15 = 'prime'



SAGE Implementation of AKS
def AKS(n):

for a in range(2,pari(sqrt(n)).floor()+1):
for b in range(2,pari(sqrt(n)).floor()+1):

if (n==a^b):
return 'composite'

r=2
m=pari(4*log(n,2))^2.floor()+1
while(r<n):

if(Mod(n,r)==0):
return 'composite'

if (is_prime(r)==True):
for i in range(1,m):

if(power_mod(n,i,r)!=1):
break

r=r+1
if(r==n):

return 'prime'
n=pari(2*sqrt(r)*log(n,2)+1).floor()
for a in range(1,n):

R=PolynomialRing(Integers(n))
x=R.gen()
S=R.quotient((x^r)-1)
c=S((x+a)^n)
e=Mod(n,r)
d=(x^e)+a
if (c!=d):

return 'composite'
return 'prime'
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