
Naqi Jaffery
Math 168

December 9, 2005

The AKS algorithm for Polynomial-Time Primality Testing

Introduction

Given a number, can we distinguish if it is prime or composite, and if it is composite can
we find its prime factorization? The former question is known as the “primality
problem.” Prime numbers are defined as any integer greater than one whose only
positive divisors are 1 and itself. An integer that is not prime is said to be composite.

With the progression of computers, many cryptographic systems were created involving
primes and factorization of a number into primes, such as RSA. For decades there have
been many non-deterministic polynomial time algorithms that solve the primality
question, but there has never been an unconditionally deterministic polynomial-time
algorithm until 2002. What exactly makes an algorithm deterministic? Informally, it
means that the algorithm behaves predictably and will always give the same output on a
given input. Non-deterministic algorithms usually perform random experiments (via a
random variable) or can just imply the path that the algorithm takes is not predictable or
that the running time it takes is variable. For all practical (cryptographic) purposes these
algorithms are still used (as they tend to be faster).

On August 6, 2002, a paper, PRIMES is in P written by three computer scientists:
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena was posted on the website of the
Indian Institute of Technology in Kanpur, India (located in north India in the state of
Uttar Pradesh not too far from the city of Lucknow-the capital of Uttar Pradesh, for you
geography enthusiasts). This paper presented the AKS algorithm, the first deterministic
polynomial-time algorithm that determines whether a number is prime or composite.

The Algorithm

The central idea of the algorithm is a generalization of Fermat’s Little Theorem, which
states the following:

Theorem (Fermat) Suppose p is a prime. Then for all a in the integers ap = a (mod p).
If p does not divide a (i.e. the greatest common divisor of p and a, is one), then

ap-1=1(mod p).

(See [4] for a nice proof of the theorem.)

The converse of Fermat’s Little Theorem is not true, because there exists n that are not
prime such that an-1=1(mod n), for all a with gcd (a, n) = 1. In fact these n have a special
name, they are known as Carmichael numbers.

The following lemma is the generalization of Fermat’s little theorem (see [1], [2], or [3]
for proofs):

Lemma: Let n be an integer greater than or equal to 2. Let a be an integer less n,
furthermore a and n must be relatively prime (i.e., the greatest common divisor of a and n
is 1). Then n is a prime number if and only if

(X + a) n = X n + a (mod n)
over the ring of integers modulo n.

The above congruence is a simple test that determines whether a number n is prime. The
only disadvantage is, it takes a long time to compute n coefficients in the left hand side of
the identity. An easy way to reduce the number of coefficients on both sides of the
identity, which leads to a more efficient algorithm, is to take the identity modulo a
polynomial X r - 1 for an appropriately chosen r. So now the test becomes

 (X + a) n = X n + a (mod X r - 1)

over the ring of integers modulo n, for appropriately chosen a and r. The left hand side is
the same as (X+a)n mod (Xr-1). The right hand sides is the equivalent to (X n + a) mod (X
r-1) = X n mo dr + a (see [2] for further detail).

Here is a slightly varied algorithm from the original, as it tends to follow the algorithm
from [2] than [1]. Some notation is defined for the algorithm as follows. [X] represents
the ceiling function of X. Range is the list of integers between (x,y) including x, but not
including y.

Input: Integer n >1
1. If (n=ab for a, b in the integers > 1):
2. return “composite”
3. r = 2
4. while (r < n):
5. if (r divides n):
6. return “composite”
7. if (r is a prime number):
8. for i in range (1, 4*[log(n)]2):

9. if (ni mod r does not equal 1):
10. break
11. r = r + 1
12. if (r = n):
13. return “prime”
14. for a in range (1, 2(r)1/2*[log n]):
15. if (X+a)n mod (Xr1) does not equal Xn mod r + a in the

ring of integers modulo n
16. return “composite”
17. return “prime”

The proof of the algorithm and running time bounds are given in [1], [2], and [3].
We implemented the AKS algorithm SAGE (Software for Algebra and Geometry
Experimentation, [5]). We give a function AKS(n) below, where n is the input and the
ouput is given as either “prime” or “composite.” Here are some examples:

sage: load "projectAKS.sage"
sage: AKS(2)
 _2 = 'prime'
sage: AKS(3)
 _3 = 'prime'
sage: AKS(5)
 _5 = 'prime'
sage: AKS(4)
 _6 = 'composite'
sage: AKS(13)
 _7 = 'prime'
sage: AKS(1001)
 _8 = 'composite'
sage: AKS(561) 561 happens to be a Carmichael number
 _9 = 'composite'
sage: AKS(1105) 1105 is also a Carmichael number
 _2 = 'composite'
sage: AKS(1729) Oh look another Carmichael number
 _6 = 'composite'
sage: AKS(29341) Could it be? A Carmichael number.
 _7 = 'composite'
sage: AKS(999991)
 _8 = 'composite'
sage: AKS(34567)
_10 = 'composite'
sage: AKS(3451)
_11 = 'composite'
sage: AKS(3243)
_12 = 'composite'
sage: AKS(3543)
_13 = 'composite'
sage: AKS(78563)
_14 = 'composite'
sage: AKS(9721)
_15 = 'prime'

SAGE Implementation of AKS
def AKS(n):

for a in range(2,pari(sqrt(n)).floor()+1):
for b in range(2,pari(sqrt(n)).floor()+1):

if (n==a^b):
return 'composite'

r=2
m=pari(4*log(n,2))^2.floor()+1
while(r<n):

if(Mod(n,r)==0):
return 'composite'

if (is_prime(r)==True):
for i in range(1,m):

if(power_mod(n,i,r)!=1):
break

r=r+1
if(r==n):

return 'prime'
n=pari(2*sqrt(r)*log(n,2)+1).floor()
for a in range(1,n):

R=PolynomialRing(Integers(n))
x=R.gen()
S=R.quotient((x^r)-1)
c=S((x+a)^n)
e=Mod(n,r)
d=(x^e)+a
if (c!=d):

return 'composite'
return 'prime'

References

[1] Agrawal, Kayal, Saxena. “PRIMES is in P”. Annals of Mathematics, 160 (2004):
781-793.

[2] Dietzfelbinger, Martin. Primality Testing in Polynomial Time: From
Randomized Algorithms to “PRIMES is in P”. Berlin: Springer, 2004.

[3] Granville, Andrew. “It Is Easy To Detemine Whether A Given Integer Is Prime”.
Bulletin (New Series) of the American Mathematical Society, 42 (2004): 3-38.

[4] Stark, Harold M. An Introduction to Number Theory. Cambridge: The MIT
Press, 1987.

[5] Stein, William. SAGE: Software for Algebra and Geometry Experimentation.
http://modular.ucsd.edu. 0.9.17

