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We investigate Mazur’s notion of visibility of elements of Shafarevich–Tate groups

of abelian varieties. We give a proof that every cohomology class is visible in a

suitable abelian variety, discuss the visibility dimension, and describe a construction

of visible elements of certain Shafarevich–Tate groups. This construction can be used

to give some of the first evidence for the Birch and Swinnerton–Dyer conjecture for

abelian varieties of large dimension. We then give examples of visible and invisible

Shafarevich–Tate groups. # 2002 Elsevier Science (USA)
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INTRODUCTION

If a genus 0 curve X over Q has a point in every local field Qp and in R;
then it has a global point over Q: For genus 1 curves, this ‘‘local-to-global
principle’’ frequently fails. For example, the nonsingular projective curve
defined by the equation 3x3 þ 4y3 þ 5z3 ¼ 0 has a point over each local field
and R; but has no Q-point. The Shafarevich–Tate group of an elliptic curve
E; denoted VðEÞ; is a group that measures the extent to which a local-to-
global principle fails for the genus one curves with Jacobian E: More
generally, if A is an abelian variety over a number field K ; then the elements
of the Shafarevich–Tate group VðAÞ of A correspond to the torsors for A

that have a point everywhere locally, but not globally. In this paper, we
study a geometric way of realizing (or ‘‘visualizing’’) torsors corresponding
to elements of VðAÞ:
171
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Let A be an abelian variety over a field K : If i : A+J is a closed
immersion of abelian varieties, then the subgroup of H1ðK ;AÞ visible in J

(with respect to i) is kerðH1ðK ;AÞ ! H1ðK; JÞÞ: We prove that every
element of H1ðK;AÞ is visible in some abelian variety, and give bounds on
the smallest size of an abelian variety in which an element of H1ðK ;AÞ is
visible. Next assume that K is a number field. We give a construction of
visible elements of VðAÞ; which we demonstrate by giving evidence for the
Birch and Swinnerton–Dyer conjecture for a certain 20-dimensional abelian
variety. We also give an example of an elliptic curve E over Q of conductor
N whose Shafarevich–Tate group is not visible in J0ðNÞ but is visible in
J0ðNpÞ for some prime p:

This paper is organized as follows. Section 1 contains the definition of
visibility for cohomology classes and elements of Shafarevich–Tate groups.
Then in Section 1.3, we use a restriction of scalars construction to prove that
every cohomology class is visible in some abelian variety. Next, in Section 2,
we investigate the visibility dimension of cohomology classes. Section 3
contains a theorem that can be used to construct visible elements of
Shafarevich–Tate groups. Finally, Section 4, contains examples and
applications of our visibility results in the context of modular abelian
varieties.

1. VISIBILITY

In Section 1.1 we introduce visible cohomology classes, then in Section 1.2
we discuss visible elements of Shafarevich–Tate groups. In Section 1.3, we
use restriction of scalars to deduce that every cohomology class is visible
somewhere.

For a field K and a smooth commutative K-group scheme G; we write
HiðK ;GÞ to denote the group cohomology HiðGalðKs=KÞ;GðKsÞÞ where Ks

is a fixed separable closure of K ; equivalently, HiðK ;GÞ denotes the ith étale
cohomology of G viewed as an étale sheaf on SpecðKÞ!eet:

1.1. Visible elements of H1ðK;AÞ. In [Maz99], Mazur introduced
the following definition. Let A be an abelian variety over an arbitrary
field K :

Definition 1.1. Let i : A+J be an embedding, of A into an abelian
variety J over K : Then the visible subgroup of H1ðK ;AÞ with respect to the

embedding i is

VisJðH1ðK ;AÞÞ ¼ KerðH1ðK ;AÞ ! H1ðK; JÞÞ:

The visible subgroup VisJðH1ðK ;AÞÞ depends on the choice of embedding
i; but we do not include i in the notation, as it is usually clear from context.
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The Galois cohomology group H1ðK ;AÞ has a geometric interpretation
as the group of classes of torsors X for A (see [LT58]). To a cohomology
class c 2 H1ðK ;AÞ; there is a corresponding variety X over K and a
map A � X ! X that satisfies axioms similar to those for a simply
transitive group action. The set of equivalence classes of such X forms a
group, the Weil–Chatelet group of A; which is canonically isomorphic to
H1ðK ;AÞ:

There is a close relationship between visibility and the geometric
interpretation of Galois cohomology. Suppose i : A ! J is an embedding
and c 2 VisJðH1ðK;AÞÞ: We have an exact sequence of abelian varieties
0 ! A ! J ! C ! 0; where C ¼ J=A: A piece of the associated long exact
sequence of Galois cohomology is

0 ! AðKÞ ! JðKÞ ! CðKÞ ! H1ðK ;AÞ ! H1ðK ; JÞ ! � � � ;

so there is an exact sequence

0 ! JðKÞ=AðKÞ ! CðKÞ ! VisJðH1ðK ;AÞÞ ! 0: ð1:1Þ

Thus there is a point x 2 CðKÞ that maps to c: The fiber X over x is a
subvariety of J; which, when equipped with its natural action of A; lies in
the class of torsors corresponding to c: This is the origin of the terminology
‘‘visible’’. Also, we remark that when K is a number field, VisJðH1ðK ;AÞÞ is
finite because it is torsion and is the surjective image of the finitely generated
group CðKÞ:

1.2. Visible Elements of VðAÞ. Let A be an abelian variety over a
number field K : The Shafarevich–Tate group of A; which is defined below,
measures the failure of the local-to-global principle for certain torsors. The
Shafarevich–Tate group of A is

VðAÞ :¼ Ker H1ðK ;AÞ !
Y

v

H1ðKv;AÞ
 !

;

where the product is over all places of K :

Definition 1.2. If i : A+J is an embedding then the visible subgroup of

VðAÞ with respect to i is

VisJðVðAÞÞ :¼ VðAÞ \ VisJðH1ðK ;AÞÞ ¼ KerðVðAÞ ! VðJÞÞ:

1.3. Every Element is Visible Somewhere.
Proposition 1.3. Every element of H1ðK ;AÞ is visible in some abelian

variety J:
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Proof. Fix c 2 H1ðK ;AÞ: There is a finite separable extension L of K

such that resLðcÞ ¼ 0 2 H1ðK ;AÞ: Let J ¼ ResL=KðALÞ be the Weil
restriction of scalars from L to K of the abelian variety AL (see [BLR90,
Sect. 7.6]). Thus J is an abelian variety over K of dimension ½L : K � � dimðAÞ;
and for any scheme S over K ; we have a natural (functorial) group
isomorphism ALðSLÞ ffi JðSÞ: The functorial injection AðSÞ+ALðSLÞ ffi
JðSÞ corresponds via Yoneda’s Lemma to a natural K-group scheme map
i : A ! J; and by construction i; is a monomorphism. But i is proper and
thus is a closed immersion (see [Gro66, Sect. 8.11.5]). Using the Shapiro
lemma one finds, after a tedious computation, that there is a canonical
isomorphism H1ðK ; JÞ ffi H1ðL;AÞ which identifies inðcÞ with
resLðcÞ ¼ 0: ]

Remark 1.4. 1. In [CM00], de Jong gave a totally different proof of the
above proposition in the case when A is an elliptic curve over a number field.
His argument actually displays A as visible inside the Jacobian of a curve.

2. L. Clozel has remarked that the method of proof above is a standard
technique in the theory of algebraic groups.

2. THE VISIBILITY DIMENSION

Let A be an abelian variety over a field K and fix c 2 H1ðK ;AÞ:

Definition 2.1. The visibility dimension of c is the minimum of the
dimensions of the abelian varieties J such that c is visible in J:

In Section 2.1 we prove an elementary lemma which, when combined with
the proof of Proposition 1.3, gives an upper bound on the visibility
dimension of c in terms of the order of c and the dimension of A: Then, in
Section 2.2, we consider the visibility dimension in the case when A ¼ E is
an elliptic curve. After summarizing the results of Mazur and Klenke on the
visibility dimension, we apply a theorem of Cassels to deduce that the
visibility dimension of c 2 VðEÞ is at most the order of c:

2.1. A Simple Bound. The following elementary lemma, which the second
author learned from Hendrik Lenstra, will be used to give a bound on the
visibility dimension in terms of the order of c and the dimension of A:

Lemma 2.2. Let G be a group, M be a finite (discrete) G-module, and

c 2 H1ðG;MÞ: Then there is a subgroup H of G such that resHðcÞ ¼ 0 and

#ðG=HÞ4#M:
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Proof. Let f : G ! M be a cocycle corresponding to c; so f ðtsÞ ¼
f ðtÞ þ tf ðsÞ for all t; s 2 G: Let H ¼ kerðf Þ ¼ fs 2 G : f ðsÞ ¼ 0g: The map
tH/f ðtÞ is a well-defined injection from the coset space G=H to M: ]

The following is a general bound on the visibility dimension.

Proposition 2.3. The visibility dimension of any c 2 H1ðK ;AÞ is at most

d � n2d where n is the order of c and d is the dimension of A:

Proof. The map H1ðK ;A½n�Þ ! H1ðK ;AÞ½n� is surjective and A½n� has
order n2d ; so Lemma 2.2 implies that there is an extension L of K of degree
at most n2d such that resLðcÞ ¼ 0: The proof of Proposition 1.3 implies that c

is visible in an abelian variety of dimension ½L : K � � dim A4dn2d : ]

2.2. The Visibility Dimension for Elliptic Curves. We now consider the
case when A ¼ E is an elliptic curve over a number field K : Mazur proved in
[Maz99] that every nonzero c 2 VðEÞ½3� has visibility dimension 2 (note
that Proposition 2.3 only implies that the visibility dimension is 43).
Mazur’s result is particularly nice because it shows that c is visible in an
abelian variety that is isogenous to the product of two elliptic curves. Using
similar techniques, Klenke proved in [Kle0l] that every nonzero c 2 H1ðK ;
EÞ½2� has visibility dimension 2 (note that Proposition 2.3 only implies that
the visibility dimension of any c 2 H1ðK ;EÞ½2� is 44). It is unknown
whether the visibility dimension of every nonzero element of H1ðK ;EÞ½3� is
2, and it is not known whether elements of VðEÞ½5� must have visibility
dimension 2.

When c lies in VðEÞ we use a classical result of Cassels to strengthen the
conclusion of Proposition 2.3.

Proposition 2.4. Let E be an elliptic curve over a number field K and let

c 2 VðEÞ: Then the visibility dimension of c is at most the order of c:

Proof. Let n be the order of c: In view of the restriction of scalars
construction in the proof of Proposition 1.3, it suffices to show that there is
an extension L of K of degree n such that resLðcÞ ¼ 0: Without the
hypothesis that c lies in VðEÞ; such an extension L might not exist, as
Cassels observed in [Cas63]. However, in that same paper, Cassels proved
that such an L exists when c 2 VðEÞ (see also [O’N0l] for another proof). ]

Remark 2.5. In contrast to the case of dimension 1, it seems to be an
open problem to determine whether or not elements of VðAÞ½n� split over
an extension of degree n:
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3. CONSTRUCTION OF VISIBLE ELEMENTS

The goal of this section is to state and prove the main result of this paper,
which we use to construct visible elements of Shafarevich–Tate groups and
sometimes give a nontrivial lower bound for the order of the Shafarevich–
Tate group of an abelian variety thus providing new evidence for the
conjecture of Birch and Swinnerton–Dyer (see Section 4.1 and [AS02]). The
Tamagawa numbers cA;v and cB;v will be defined in Section 3.1.

Theorem 3.1. Let A and B be abelian subvarieties of an abelian variety J

over a number field K such that A \ B is finite. Let N be an integer divisible by

the residue characteristics of primes of bad reduction for B: Suppose n is an

integer such that for each prime pjn; we have epop � 1 where ep is the largest

ramification of any prime of K lying over p; and that

gcd n;N �#ðJ=BÞðKÞtor �#BðKÞtor �
Y

all places v

ðcA;v � cB;vÞ
 !

¼ 1;

where cA;v ¼ #FA;vðF‘Þ (resp., cB;‘) is the Tamagawa number of A (resp., B)
at v (see Section 3.1 for the definition of FA;v). Suppose furthermore that

B½n� � A as subgroup schemes of J: Then there is a natural map

j : BðKÞ=nBðKÞ ! VisJðVðAÞÞ;

such that kerðjÞ � JðKÞ=ðBðKÞ þ AðKÞÞ: If AðKÞ has rank 0, then kerðjÞ ¼
0 (more generally, kerðjÞ has order at most nr where r is the rank of AðKÞ).

Remark 3.2. Mazur has proved similar results for elliptic curves using
flat cohomology (unpublished), and discussions with him motivated this
theorem.

In Section 3.1 we recall a definition of the Tamagawa numbers of an
abelian variety. In Section 3.2 we prove a lemma, which gives a condition
under which there is an unramified nth root of an unramified point. In
Section 3.3, we use the snake lemma to produce a map

BðKÞ=nBðKÞ+VisJðH1ðK ;AÞÞ

with bounded kernel. Finally, in Section 3.4, we use a local analysis at each
place of K to show that the image of the above map lies in VðAÞ:

3.1. Tamagawa Numbers. Let A be an abelian variety over a local field K

with residue class field k; and let A be the Néron model of A over the ring of
integers of K : The closed fiber Ak of A need not be connected. Let A0

k

denote the geometric component of A that contains the identity. The group
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FA ¼ Ak=A
0
k of connected components is a finite group scheme over k:

This group scheme is called the component group of A; and the Tamagawa

number of A is cA ¼ #FAðkÞ:
Now suppose that A is an abelian variety over a global field K :

For every place v of K ; the Tamagawa number of A at v; denoted cA;v

or just cv; is the Tamagawa number of AKv
; where Kv is the completion

of K at v:

3.2. Smoothness and Surjectivity. In this section, we recall some well-
known lemmas that we will use in Section 3.4 to produce unramified
cohomology classes. The authors are grateful to B. Conrad for explaining
the proofs of these lemmas.

Lemma 3.3. If G is a finite-type smooth commutative group scheme over a

strictly henselian local ring R and the fibers of G over R are (geometrically)
connected, then the multiplication map

nG : GðRÞ ! GðRÞ

is surjective when n 2 R�:

Proof. Pick an element g 2 GðRÞ and form the cartesian diagram

We want to prove that c has a section. Since R is strictly
henselian, by [Gro67, 18.8.1] it suffices to show that Yg is étale over
R with nonempty closed fiber, or more generally that nG is étale and
surjective.

By Lemma 2(b) of [BLR90, Sect. 7.3], nG is étale. The image of the étale
nG must be an open subgroup scheme, and on fibers over SpecðRÞ we get
surjectivity since an open subgroup scheme of a smooth connected (hence
irreducible) group scheme over a field must fill up the whole space [Gro70,
VIA; 0.5]. ]

Lemma 3.4. Let A be an abelian variety over the fraction field K of a

strictly henselian dvr (e.g., K could be the maximal unramified extension a

local field). Let n be an integer not divisible by the residue characteristic of K :
Suppose that x is a point of AðKÞ whose reduction lands in the identity
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component of the closed fiber of the Néron model of A: Then there exists

z 2 AðKÞ such that nz ¼ x:

Proof. Let A denote the Néron model of A over the valuation ring R of
K ; and let A0 denote the ‘‘identity component’’ (i.e., the open subgroup
scheme obtained by removing the nonidentity components of the closed
fiber of A). The hypothesis on the reduction of x 2 AðKÞ ¼ A0ðRÞ says
exactly that x 2 A0ðRÞ: Since connected schemes over a field are
geometrically connected when there is a rational point [Gro65, Proposition
4.5.13], the fibers of A0 over SpecðRÞ are geometrically connected. The
lemma now follows from Lemma 3.3 with G ¼ A0: ]

Remark 3.5. M. Baker noted that this argument can also be formulated
in terms of formal groups when R is the strict henselization of a complete dvr.

Lemma 3.6. Let J!f C be a smooth surjective morphism of schemes over

a strictly Henselian local ring R: Then the induced map JðRÞ ! CðRÞ is

surjective.

Proof. The argument is similar to that of the proof of Lemma 3.3. Pick
an element g 2 CðRÞ and form the cartesian diagram

We want to prove that c has a section. Since f is smooth, c is also smooth.
By Grothendieck [Gro67, 18.5.17], to show that c has a section, we just need
to show that the closed fiber of c has a section (i.e., a rational point). But this
closed fiber is smooth and nonempty (since f is surjective); also its base field
is separably closed since R is strictly Henselian. Hence by Bosma et al.

[BLR90, Corollary 2.2.13], the closed fiber has an R-rational point. ]

3.3. Visible Elements of H1ðK ;AÞ. In this section, we produce a map
BðKÞ=nBðKÞ ! VisJðH1ðK ;AÞÞ with bounded kernel.

Lemma 3.7. Let A and B be abelian subvarieties of an abelian variety J

over a number field K such that A \ B is finite. Suppose n is a natural number

such that

gcdðn;#ðJ=BÞðKÞtor �#BðKÞtorÞ ¼ 1
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and B½n� � A as subgroup schemes of J: Then there is a natural map

j : BðKÞ=nBðKÞ ! VisJðH1ðK ;AÞÞ

such that kerðjÞ � JðKÞ=ðBðKÞ þ AðKÞÞ: If AðKÞ has rank 0, then kerðjÞ ¼
0 (more generally, kerðjÞ has order at most nr where r is the rank of AðKÞ).

Proof. First we produce a map j : BðKÞ=nBðKÞ ! VisðH1ðK ;AÞÞ by
using that B½n� � A hence a certain map factors through multiplication
by n: Then we use the snake lemma and our hypothesis that n does not
divide the orders of certain torsion groups to bound the dimension of the
kernel of j:

The quotient J=A is an abelian variety C over K : The long exact sequence
of Galois cohomology associated to the short exact sequence

0 ! A ! J ! C ! 0

begins

0 ! AðKÞ ! JðKÞ ! CðKÞ!d H1ðK;AÞ ! � � � : ð3:1Þ

Let c be map B ! C obtained by composing the inclusion B+J with the
quotient map J ! C: Since B½n� � A; we see that c factors through
multiplication by n; so the following diagram commutes:

Using that B½n�ðKÞ ¼ f0g; we obtain the following commutative diagram,
all of whose rows and columns are exact:

ð3:2Þ
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where K0; K1 and K2 are the indicated kernels and K3 is the indicated
cokernel. Exactness of the top row expresses the fact that B½n�ðKÞ ¼ f0g;
and the bottom exact row arises from the exact sequence (3.1) above. The
first vertical map BðKÞ ! JðKÞ=AðKÞ is induced by the inclusion BðKÞ+
JðKÞ composed with the quotient map JðKÞ ! JðKÞ=AðKÞ: The second
vertical map BðKÞ ! CðKÞ exists because the composition B+J ! C has
kernel B \ A; which contains B½n�; by assumption. The third vertical map
exists because p contains nBðKÞ in its kernel, so that p factors through
BðKÞ=nBðKÞ:

Sequence (1.1) implies that the image of j is contained in VisJðH1ðK ;AÞÞ:
The snake lemma gives an exact sequence

K0 ! K1 ! K2 ! K3:

Because B ! C has finite kernel, K1 � BðKÞtor: Since B½n�ðKÞ ¼ f0g and K2

is an n-torsion group, the map K1 ! K2 is the 0 map. Thus, K2 ¼ kerðjÞ is
isomorphic to a subgroup of K3 ¼ JðKÞ=ðAðKÞ þ BðKÞÞ; as claimed.

Any torsion in the quotient JðKÞ=BðKÞ is of order coprime to n because
JðKÞ=BðKÞ is a subgroup of ðJ=BÞðKÞ; and gcdðn;#ðJ=BÞðKÞtorÞ ¼ 1; by
assumption. Thus if AðKÞ is a torsion group, K3 ¼ ðJðKÞ=BðKÞÞ=AðKÞ has
no nontrivial torsion of order dividing n; so when AðKÞ has rank zero,
kerðjÞ ¼ 0:

Consider the map c : AðKÞ ! JðKÞ=BðKÞ: To show that kerðfÞ has order
at most nr; where r is the rank of AðKÞ; it suffices to show that cokerðcÞ½n�
has order at most nr: To prove the latter statement, by the structure theorem
for finite abelian groups, it suffices to prove it for the case when n is a power
of a prime. Moreover, we may assume that AðKÞ and JðKÞ=BðKÞ have no
prime-to-n torsion. Then JðKÞ=BðKÞ is in fact torsion-free, and so we may
also assume AðKÞ is torsion-free. With these assumptions, the statement we
want to prove follows easily by elementary group-theoretic arguments (in
particular, by considering of the Smith normal form of the matrix
representing c). ]

3.4. Proof of Theorem 3.1.
Proof of Theorem 3.1. The proof proceeds in two steps. The first step

is to use the hypothesis that B½n� � A to produce a map BðKÞ=nBðKÞ !
VisJðH1ðK ;AÞÞ½n�: This was done in Section 3.3. The second step is to
perform a local analysis at each place v of K in order to prove that the image
of this map consists of locally trivial cohomology classes. We divide this
local analysis into three cases:

1. When v is real archimedian, we use that gcdð2; nÞ ¼ 1: (We know that
for any pjn we have p > 2 because 14epop � 1; by assumption.)
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2. When gcdðcharðvÞ; nÞ ¼ 1; we use the result of Section 3.2 and a
relationship between unramified cohomology and the cohomology of a
component group.

3. When gcdðcharðvÞ; nÞa1; for each prime pjn; the reduction of J is
abelian and by hypothesis epop � 1; so we can apply an exactness theorem
from [BLR90].

We now deduce that the image of BðKÞ=nBðKÞ in H1ðK ;AÞ lies in VðAÞ:
Fix an element x 2 BðKÞ: To show that pðxÞ 2 VðAÞ; it suffices to show
that resvðpðxÞÞ ¼ 0 for all places v of K :

Case 1: v real archimedian. At a real archimedian place v; the restriction
resvðpðxÞÞ is killed by 2 and the odd n; hence resvðpðxÞÞ ¼ 0:

Case 2: gcdðcharðvÞ; nÞ ¼ 1: Suppose that gcdðcharðvÞ; nÞ ¼ 1: Let m ¼
cB;v ¼ FB;vðFvÞ be the Tamagawa number of B at v: The reduction of mx lies
in the identity component of the closed fiber BFv

of the Néron model of B at
v; so by Lemma 3.4, there exists z 2 BðKur

v Þ such that nz ¼ mx: Thus the
cohomology class resvðpðmxÞÞ is defined by a cocycle that sends s 2
GalðKv=KvÞ to sðzÞ � z 2 AðKur

v Þ (see diagram (3.2) for the definition of p).
In particular, resvðpðmxÞÞ is unramified at v: By Milne [Mil86, Proposition
3.8].

H1ðKur
v =Kv;AðKur

v ÞÞ ¼ H1ðKur
v =Kv;FA;vð %FFvÞÞ;

where FA;v is the component group of A at v: The Herbrand quotient of a
finite module is 1 (see, e.g., [Ser79, VIII.4.8]), so

#FA;vðFvÞ ¼ #H1ðKur
v =Kv;FA;vð %FFvÞÞ:

Thus, the order of resvðpðmxÞÞ divides both #FA;vðFvÞ and n: Since
by assumption gcdð#FA;vðFvÞ; nÞ ¼ 1; it follows that resvðpðmxÞÞ ¼ 0;
hence m resvðpðxÞÞ ¼ 0: Again, since the order of pðxÞ divides n; and
gcdðn;mÞ ¼ 1; we have resvðpðxÞÞ ¼ 0:

Case 3: gcdðcharðvÞ; nÞ ¼ pa1: Suppose that charðvÞ ¼ pjn: Let R be the
ring of integers of Kur

v ; and let A; J; and C be the Néron models of A; J;
and C; respectively. Since epop � 1 and J has abelian reduction at v (since
p[N), by Bosch et al. [BLR90, Theorem 7.5.4(iii)], the induced sequence
0 ! A ! J!f C ! 0 is exact, which means that f is faithfully flat and
surjective with scheme-theoretic kernel A: Since f is faithfully flat with
smooth kernel, f is smooth (see, e.g., [BLR90, 2.4.8]). By Lemma 3.6,
JðRÞ ! CðRÞ is a surjection; i.e., JðKur

v Þ ! CðKur
v Þ is a surjection.

So resvðpðxÞÞ is unramified, and again by Milne [Mil86, Proposition 3.8],

H1ðKur
v =Kv;AÞ ffi H1ðKur

v =Kv;FA;vð %FFvÞÞ:
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But H1ðKur
v =Kv;FA;vð %FFvÞÞ ¼ f0g; since FA;vð %FFvÞ is trivial, as A has good

reduction at v (because p[N). Thus resvðpðxÞÞ ¼ 0: ]

4. SOME EXAMPLES

This section contains some examples of visible and invisible elements of
Shafarevich–Tate groups. Section 4.1 uses Theorem 3.1 to produce
nontrivial visible elements of VðAÞ; where A is a 20-dimensional modular
abelian variety, thus giving evidence for the BSD conjecture. In Section 4.2
we show that an invisible Shafarevich–Tate group from [CM00] becomes
visible at a higher level.

In [AS02], we describe the notation used (which is standard) and the
algorithms that we used to carry out the computations described below. We
also report on a large number of similar computations, which were
performed using the second author’s modular symbols package, which is
part of Magma (see [BCP97]).

4.1. Visibility in an Abelian Variety of Dimension 20. Using the methods
described in [AS02], we find that S2ðG0ð389ÞÞ contains exactly five Galois-
conjugacy classes of newforms, and these are defined over extensions of Q of
degrees 1, 2, 3, 6, and 20. Thus, J ¼ J0ð389Þ decomposes, up to isogeny, as a
product A1 � A2 � A3 � A6 � A20 of abelian varieties, where d ¼ dim Ad

and Ad is the quotient corresponding to the appropriate Galois-conjugacy
class of newforms.

Next we consider the arithmetic of each Ad : Using [AS02], we find that

LðA1; 1Þ ¼ LðA2; 1Þ ¼ LðA3; 1Þ ¼ LðA6; 1Þ ¼ 0;

and

LðA20; 1Þ
OA20

¼ 52 � 2?

97
;

where 2? is a power of 2. Using [AS02], we find that #A20ðQÞ ¼ 97 and the
Tamagawa number of A20 at 389 is also 97. The BSD Conjecture then
predicts that #VðA20Þ ¼ 52 � 2?: The following proposition provides
support for this conjecture.

Proposition 4.1. There is an inclusion

ðZ=5ZÞ2 ffi A1ðQÞ=5A1ðQÞ+VisJðVðA_
20ÞÞ:

Proof. Let A ¼ A_
20;B ¼ A_

1 ¼ A1 and J ¼ A þ B � J0ð389Þ: Using
algorithms in [AS02], we find that A \ B ffi ðZ=4Þ2 � ðZ=5ZÞ2; so B½5� �
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A: Since 5 does not divide the numerator of ð389 � 1Þ=12; it does not divide
the Tamagawa numbers or the orders of the torsion subgroups of A; B; J;
and J=B (we also verified this using a modular symbols computations), so
Theorem 3.1 implies that there is an injective map

A1ðQÞ=5A1ðQÞ+VisJðVðA_
20ÞÞ:

To finish, note that Cremona [Cre97] has verified that A1ðQÞ � Z� Z: ]

4.2. Invisible Elements that Becomes Visible at Higher Level. Consider the
elliptic curve E of conductor 5389 ¼ 17 � 317 defined by the equation

y2 þ xy þ y ¼ x3 � 35 590x � 2 587 197:

In [CM00], Cremona and Mazur observe that the BSD conjecture implies
that #VðEÞ ¼ 9; but they find that VisJ0ð5389ÞðVðEÞ½3�Þ ¼ f0g: We will
now verify, without assuming any conjectures, that 9j#VðEÞ and that these
9 elements of VðEÞ are visible in J0ð5389 � 7Þ:

First note that the mod 3 representation rE;3 attached to E is irreducible
because E is semistable and admits no 3-isogeny (according to [Cre]). The
newform attached to E is

fE ¼ q þ q2 � 2q3 � q4 þ 2q5 � 2q6 � 2q7 þ � � � ;

and a2
7 ¼ ð�2Þ2 � ð7 þ 1Þ2 ðmod 3Þ; so Ribet’s level-raising theorem [Rib90]

implies that there is a newform g of level 7 � 5389 that is congruent modulo 3
to fE : This observation led us to the following proposition.

Proposition 4.2. Map E to J0ð7 � 5389Þ by the sum of the two

maps on Jacobians induced by the two degeneracy maps

X0ð7 � 5389Þ ! X0ð5389Þ: The image E0 of E in J0ð7 � 5389Þ is 2-isogenous

to E and

ðZ=3ZÞ2 � VisJ0ð7�5389ÞðVðE0ÞÞ:

Proof. It is easy to see from the discussion in [Rib90] that the kernel of
the sum of the two degeneracy maps J0ð5389Þ ! J0ð7 � 5389Þ is a group of 2-
power order, so E0 is isogenous to E via an isogeny of degree a power of 2.

Consider the elliptic curve F defined by y2 � y ¼ x3 þ x2 þ 34x � 248:
Using Cremona’s programs tate and mwrank we find that F has conductor
7 � 5389; and that FðQÞ ffi Z� Z: The Tamagawa numbers of F at 7, 17, and
317 are 1, 2, and 1, respectively. The newform attached to F is

fF ¼ q � 2q2 þ q3 þ 2q4 � q5 � 2q6 � q7 þ � � �



AGASHE AND STEIN184
and, by Sturm [Stu87], we prove that fEðqÞ þ fEðq7Þ � fF ðmod 3Þ by
checking this congruence for the first 7632 ¼ ½SL2ðZÞ : G0ð7 � 5389Þ�=6
terms. Since 24ko3 and 3[7 � 5389; the first part of the multiplicity one
theorem of [Edi92, Sect. 9] implies that F ½3� ¼ E0½3�:

Finally, we apply Theorem 3.1 with A ¼ E0;B ¼ F ; J ¼ A þ B � J0ð7 �
5389Þ;N ¼ 7 � 5389; and n ¼ 3: It is routine to check the hypothesis. For
example, the hypothesis that J=B has no Q-rational 3-torsion can be
checked as follows. Cremona’s online tables imply that E admits no 3-
isogeny, so E½3� is irreducible. Since J=B is isogenous to E; the
representation ðJ=BÞ½3� is also irreducible, so ðJ=BÞðQÞ½3� ¼ f0g: Thus, by
Theorem 3.1, we have ðZ=3ZÞ2 � VisJðVðE0ÞÞ: To finish the proof, note
that VisJðVðE0ÞÞ � VisJ0ð7�5389ÞðVðE0ÞÞ: ]

Since E0 is 2-isogenous to E and 9j#VðE0Þ; it follows that 9j#VðEÞ; as
predicted by the BSD conjecture.
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