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1 Introduction

In the late 1980s, Brumer and McGuinness [2] undertook the construction
of a database of elliptic curves whose discriminant ∆ was both prime and
satisfied |∆| ≤ 108. While the restriction to primality was nice for many
reasons, there are still many curves of interest lacking this property. As
ten years have passed since the original experiment, we decided to un-
dertake an extension of it, simultaneously extending the range for the
type of curves they considered, and also including curves with composite
discriminant. Our database can be crudely described as being the curves
with |∆| ≤ 1012 which either have conductor smaller than 108 or have
prime conductor less than 1010—but there are a few caveats concern-
ing issues like quadratic twists and isogenous curves. For each curve in
our database, we have undertaken to compute various invariants (as did
Brumer and McGuinness), such as the Birch–Swinnerton-Dyer L-ratio,
generators, and the modular degree. We did not compute the latter two
of these for every curve. The database currently contains about 44 million
curves; the end goal is find as many curves with conductor less than 108

as possible, and we comment on this direction of growth of the database
below. Of these 44 million curves, we have started a first stage of pro-
cessing (computation of analytic rank data), with point searching to be
carried out in a later second stage of computation.

Our general frame of mind is that computation of many of the in-
variants is rather trivial, for instance, the discriminant, conductor, and
even the isogeny structure. We do not even save these data, expecting
them to be recomputable quite easily in real time. For instance, for each
isogeny class, we store only one representative (the one of minimal Falt-
ings height), as we view the construction of isogenous curves as a “fast”
process. It is only information like analytic ranks, modular degrees (both



of which use computation of the Frobenius traces ap), and coordinates of
generators that we save; saving the ap would take too much storage space.
It might be seen that our database could be used a “seed” for other more
specialised databases, as we can quickly calculate the less time-consuming
information and append it to the saved data.

2 Generating the Curves.

While Brumer and McGuinness fixed the a1, a2, a3 invariants of the
elliptic curve (12 total possibilities) and then searched for a4 and a6 which
made |∆| small, we instead decided to break the c4 and c6 invariants into
congruence classes, and then find small solutions to c3

4 − c2
6 = 1728∆. We

write c?
4 for the least nonnegative residue of c4 modulo 576, and c?

6 for
the least nonnegative residue of c6 modulo 1728. The work of Connell [3]
gives necessary and sufficient conditions on c4 and c6 for an elliptic curve
with such invariants to exist. We first need that c6 ≡ 3 (mod 4) (when it
follows that c4 is odd), or 24 | c4 and c6 ≡ 0, 8 (mod 32), and secondly we
require a local condition at the prime 3, namely that c6 6≡ ±9 (mod 27).
Using this information and the fact that 1728 |

(

c3
4 − c2

6

)

, this leads to
288 possible (c?

4, c
?
6) pairs.

For each fixed such (c?
4, c

?
6) pair, we can simply loop over c4 and c6,

finding the curves with |∆| ≤ 1012. Of course, it is only under the ABC-
conjecture that we would have an upper bound on c4 to ensure that we
would have found all such curves, and even then the bound would be too
large. Our method was to take c4 ≤ 1.44 · 1012 in this first step; in any
case, curves with larger c4 are most likely found more easily using the
method of Elkies [5].

2.1 Minimal Twists

In the sequel, we shall write Ed for the quadratic twist of E by d. For each
(c4, c6) pair (again with c4 ≤ 1.44 · 1012) which satisfies the |∆| ≤ 1012

condition, we then determine whether this curve is minimal—not only
in the traditional sense for its minimal discriminant, but also whether
it is has the minimal discriminant in its family of quadratic twists. For
p ≥ 5, this is rather easy to determine; unless p6 | ∆ and p | c4, the curve
is minimal for quadratic twists (the only difference between this and the
standard notion of minimality is that the exponent here is 6 instead of 12).
If both the above conditions hold, then we throw the curve out, as Ep̃,

where p̃ =
(

−1

p

)

p, is a curve with lesser discriminant (which will be



found by our search procedure). Given that the curve is minimal at a
prime divisor p ≥ 5 of ∆, the local conductor at p is p2 if p | c4 and p1

otherwise.
The case with p = 3 is a bit harder. By Connell’s conditions, we see

that if 39 |
(

c3
4 − c2

6

)

while 3 | c6 but 35 does not exactly divide c6, then
E−3 is a curve with invariants (c4/9,−c6/27) which has the discriminant
reduced by 36. This is the only prohibition against the curve being the
minimal twist at 3. If 3 || c4, the curve has good reduction (at 3), while
if c4 is not divisible by 3, the curve has either good or multiplicative
reduction. In both cases, the local conductor can be computed readily,
it being 30 for good reduction and 31 for multiplicative. To compute the
conductor in the remaining cases, let c̃4 be the the least nonnegative
residue of (c4/9) modulo 3, and c̃6 be the the least nonnegative residue
of (c6/27) modulo 9. Table 1 then gives us the exponent of the local
conductor. Here e = 5 if 34 | c4 and e = 4 if 33 || c4 (note that we must
have 35 || c6 in this case for the curve to be twist-minimal).

Table 1. Local Conductors at 3

c̃4\c̃6 0 1 2 3 4 5 6 7 8

0 e 3 3 5 2 2 5 3 3
1 2 3 4 3 4 4 3 4 3
2 2 3 2 3 3 3 3 2 3

For p = 2, the minimality test and conductor computation is much
more complicated. We include the prime at infinity (twisting by −1) in the
test for p = 2. By Connell’s conditions, if 26 | c4 and 28 | c6, we see that
E2 is a curve with invariants (c4/4, c6/8), and has a lesser discriminant.
Also if 26 | c4 and 26 || c6, then one of the twists E±2 (the sign depending
on whether c6/8 is 8 mod 32) has lesser discriminant. And finally if we
have 24 || c4 and 26 || c6 and 218 |

(

c3
4 − c2

6

)

, then one of E±1 (depending
on whether c6/64 is 3 mod 4) is nonminimal (in the standard sense)
at 2, and hence can be ignored. If none of these events happens, then the
curve is twist-minimal at p = 2 and the infinite prime. We next describe
how to compute the local conductor at p = 2 in terms of congruence
conditions. If c4 is odd, then the local conductor is 20 or 21, depending
on whether 2 divides ∆. If c4 is even, then it is divisible by 16. In this
case, if c6 is 8 mod 32, there is good reduction at 2, and again the local
conductor is 20. So we are left to consider the cases of additive reduction
where 24 | c4 and 25 | c6. Let c̃4 be the the least nonnegative residue of



(c4/16) modulo 8, and c̃6 be the the least nonnegative residue of (c6/32)
modulo 8. Table 2 then gives the exponent of the local conductor at 2. In
this, the dashed entries simply do not occur. For the entries marked by e,
let c̃4 be the the least nonnegative residue of (c4/16) modulo 16, and c̃6

be the the least nonnegative residue of (c6/32) modulo 16. We then use
the further Table 3. All the conductor computations are exercises with
Tate’s algorithm [9].

Table 2. Local Conductors at 2

c̃4\c̃6 0 1 2 3 4 5 6 7

1,5 6 4 e 3 6 4 e 3
2,6 8 3 6 4 7 3 6 4
3,7 5 2 7 2 5 2 7 4
4 6 2 - 4 3 2 - 4
0 6 2 - 4 2 2 - 4

Table 3. More of the Same

c̃4\c̃6 2 6 10 14

1 4 5 5 3
5 3 2 4 4
9 5 3 4 5
13 4 4 3 2

A curve which has minimal discriminant at p = 2 will be of minimal
conductor at p = 2 unless 24 || N or 26 || N ; we can throw out the
curve in the first case, since E−1 will be found in the search process (and
it has lesser conductor). But in the latter case, we cannot immediately
discard the curve, as E2 will have conductor smaller by a factor of 2, but
the discriminant rises by a factor of 64. So only if |∆| ≤ 1012/64 do we
discard the curve; in the alternative case we replace the curve by E2, so
that we have the twist of minimal conductor. Finally, if we have 25 || N
(possibly after the above twisting by 2), or 27 | N , we make the arbitrary
decision to discard the curve if c6 < 0, as we will also find E−1 in the
search, which will have the same conductor and discriminant.

Using the above method, we can rid ourselves of all curves which
are not minimal twists, and simultaneously compute the conductor. If
N > 1010, we simply ignore the curve; if N > 108 (and N ≤ 1010), we



check whether N is a strong pseudoprime for 2, 13, 23, and 1662803,
this being sufficient to prove primality [6]. At this point, we have a list
of curves which meet our size conditions on the discriminant, and which
have the minimal conductor in a family of quadratic twists, and minimal
discriminant at primes other than p = 2.

2.2 Isogenous Curves

The next step will be to get rid of isogenous curves. The process of finding
all curves isogenous to a given one is described in [4]. This is a fairly fast
process, as most curves will have no nontrivial isogenies. Amongst the
isogenous curves, we then take the curve of largest fundamental volume,
that is, minimal Faltings height (which is unique by [8], as our represen-
tative. Note that this curve might not have the minimal discriminant in
the isogeny class. Our final set of curves is then: the set of elliptic curves
E such that E has minimal height in its isogeny class, and has some
isogenous curve F for which we have c4 ≤ 1.44 · 1012 and either N ≤ 1010

with |∆| prime, or N ≤ 108 with |∆| ≤ 1012 for either the curve F or F2.

2.3 Future Extension of the Database

As stated above, we would desire to have all minimal twists which have
conductor less than 108. There are three ways of enlarging the database.
The first is extending the range on c4 by using the algorithm of [5]. The
second is to incorporate the data from the exhaustive methods of Cre-
mona. The third is to find families in which we expect the conductor to
be substantially less than the discriminant; for instance, curves with a
rational point of order 5 often have some prime to the 5th power divid-
ing the discriminant. In the same vein, curves with (say) a 5-isogeny are
parametrised from X0(5), and in such a parametrised family we again ex-
pect a large difference between the conductor and discriminant. We could
also extend the discriminant limit to (say) 1013 for certain (c?

4, c
?
6) pairs,

especially those for which we know ahead of time that we will save signif-
icant powers of 2 and 3 in the conductor compared to the discriminant.

3 Data Computed for Each Curve

One object of interest for an elliptic curve is its algebraic rank. This is
hard to compute; indeed, there is no known algorithm to do this, only
ones which work conditionally. By the process given in [4], we can try



to determine the analytic rank of the curve, which is the degree of
vanishing of its L-series at the central point. Of course, as there is no
way to determine if a computed number is exactly zero, we can only
give a good guess as to the analytic rank. The conjecture of Birch and
Swinnerton-Dyer asserts that the algebraic rank and the analytic rank
are equal, and that the first nonzero derivative of the L-function at the
central point has arithmetic significance. For each curve in the database,
we computed the suspected analytic rank and first nonzero derivative for
both the curve itself and some of its quadratic twists.

Each curve in our database is the curve of minimal Faltings height
in its isogeny class. A conjecture of Stevens [8] asserts that this curve
should be the optimal curve for parametrisations from X1(N), in the
sense that the parametrisations to the isogenous curves factor through
the parametrisation to the strong curve (the existence of a modular
parametrisation from X1(N) was proved in [1] following the methods
initiated by Wiles [11]). It is sometimes the case that the optimal curve
for parametrisations from X0(N) differs from the curve we find; in [10],
a process is given to find the X0(N)-optimal curve, assuming a technical
condition, namely that the Manin constant of the optimal curve is 1 (this
is similar to the Stevens conjecture). As many of the Frobenius traces
were already computed for the analytic rank computation, these can be
re-used at this stage. In a section below, we discuss the data obtained.

In the aforementioned paper [10], a process is given to compute the
modular degree of an elliptic curve, again assuming that the Manin con-
stant is 1. Compared to the computation of the analytic rank, which
requires about the first

√
N of the Frobenius traces, this method requires

on the order of N of these (actually Ñ , the symmetric-square conduc-
tor; see below). Thus for N ≥ 300000 or so, it becomes rather time-
consuming to compute the modular degree. We therefore compromised,
computing the modular degree only if the symmetric-square conductor of
the elliptic curve was sufficiently small (if we write N =

∏

p pfp as a prod-
uct of local conductors, then the symmetric-square conductor is simply
Ñ =

∏

p pdfp/2e, except possibly when f2 = 8, when the local symmetric-
square conductor at 2 might be either 23 or 24; see [10] for details). We
also computed the modular degree in some other interesting cases, for
instance, when the rank is large.



4 Differing Optimal Curves

Here we discuss the question of differing optimal curves for parametrisa-
tions from X0(N) and X1(N). Note that we do not compute the actual
optimal curve for the latter, relying instead on the Stevens conjecture,
and compute the optimal curve for X0(N) only under the assumption
that the Manin constant is 1. But the results are still interesting.

There appear to be three major cases when the optimal curves differ
by a 2-isogeny. One of these, the so-called Setzer-Neumann curves, was
considered in [7]. These curves are parametrised by c4 = u2 + 48 and
c6 = −u

(

u2 + 72
)

, with the discriminant u2 + 64 being a prime and u
being taken to be congruent to 1 mod 4. The second family corresponds
to taking c4 = 16

(

u2 + 3
)

and c6 = −32u
(

2u2 + 9
)

with u again being
1 mod 4 and p = u2 + 4 being prime. Here the conductor is 4p and the
discriminant is 16p; the differing optimal curves property appears to be
preserved upon twisting by −1.

The third family we found is obtained by taking c4 = p (p + 16) + 16
and c6 = (p + 8)

(

p2 + 16p − 8
)

of discriminant p (p + 16) with both p
and p + 16 primes congruent to 3 mod 4. A similar thing occurs if p and
p + 16 are more generally powers of primes, but at least one of the two
must be a power of a prime which is congruent to 3 mod 4 (i.e. p = 11 or
p = 2401 works, but p = 625 does not). If p is congruent to 1 mod 4, then
the sign of c6 must be switched. Finally, p can be taken to be negative,
for instance p = −5. Note that p = 9 leads to 15A, in which the optimal
curves differ by a 4-isogeny; also, 17A might be thrown into consideration
here with p = 1, which also has the optimal curves differing by a 4-isogeny.

With these considerations, there are but a couple of outstanding cases
of optimal curves differing by a 2-isogeny (though proofs of this classifi-
cation are lacking), those being the isogeny classes 24A/48A, 40A/80A,
32A/64A, and 128B/128D, though this last case can be seen as the p = 8
case of the second family. Ignoring the 5-isogeny example of 11A as being
spurious, this leaves just the occasions of the optimal curves differing by
a 3-isogeny. Here, all known examples are parametrised by

c4 = (n + 3)
(

n3 + 9n2 + 27n + 3
)

and

c6 = −
(

n6 + 18n5 + 135n4 + 504n3 + 891n2 + 486n − 27
)

with the discriminant being n
(

n2 + 9n + 27
)

. The n’s for which the opti-
mal curves differ are (experimentally) precisely those for which n2+9n+27



is a prime power and n has no prime factors congruent to 1 mod 6; else
the optimal curves are the same. We have no theoretical justification of
this observation.

5 Data Obtained

This may seem strange for a comprehensive database project, but we do
not dwell on large-scale phemonemon; indeed, the Brumer–McGuinness
work is probably already sufficient in this manner, at least for prime con-
ductor. As noted there, telling the difference between a small power of 108

(or whatever the upper limit of consideration may be) and a large power
of its logarithm is rather hopeless—extending their data by a factor of
5/4 on the logarithmic scale does not help matters much. We mention
that there are 11386955 isogeny classes of curves with prime conductor
less than 1010 in our database (this should grow slightly when curves
with c4 ≥ 1.44 · 1012 are added). Of these curves with prime conduc-
tor, of the ones we have processed, we have that 62.5% of the curves
with even functional equation possess rank 0, compared to about 60% for
Brumer–McGuinness. It is conjectured that asymptotically this percent-
age should be 100%. Similarly, 92.5% of the curves with odd functional
equation have rank 1, slightly more than the previous results; there is
no real reason to think that our numbers will change drastically upon
extending the rank computation to all the prime conductor curves we
have. The least conductor for a rank 5 curve we have found is 48012824
for [0, 1, 0,−625, 6099], and for rank 6 we have [0, 0, 1,−277, 4566] of con-
ductor 7647224363. These respectively fall short to the best-known (to
the authors) examples of [0, 0, 1,−79, 342] of conductor 19047851 and
[0, 0, 1,−7077, 235516] of conductor 5258110041.

Instead of concentrating on large-scale behavior, we see our database
as more of a tool to be used by other mathematicians. For instance,
Neil Dummigan queried us concerning examples of strong Weil curves
with rank 2 and a rational point of order 5 for which the conductor
is not divisible by 5, and we were able to provide him with the exam-
ple [0, 1, 1,−840, 39800] of conductor 13881 (and modular degree 52000),
among other examples which were beyond the range of Cremona’s ta-
bles (which include [1, 1, 1,−2365, 43251] of conductor 5302). Though we
would likely be better able to answer the question after extending our
database with parametrisations from X0(5), the efficacy of our database
was evinced. As another example, the second author has conjectured in
[10] that 2r divides the modular degree for any curve (where r is the rank),



and perhaps higher powers of 2 should divide the modular degree when the
conductor is composite, due to factorisation through Atkin–Lehner invo-
lutions. For many large-rank curves in the Brumer–McGuinness database,
we verified this. With our extension to curves of composite conductor, we
are able to give more evidence for this conjecture. Also, the third 2-isogeny
family in the previous section was discovered after looking at our data, as
was the parametrisation of the 3-isogeny family, and finally our analytic
rank data concerning quadratic twists could be of use.
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