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ALGORITHMS FOR THE ARITHMETIC OF ELLIPTIC CURVES

USING IWASAWA THEORY

WILLIAM STEIN AND CHRISTIAN WUTHRICH

Abstract. We explain how to use results from Iwasawa theory to obtain

information about p-parts of Tate-Shafarevich groups of specific elliptic curves
over Q. Our method provides a practical way to compute #X(E/Q)(p) in

many cases when traditional p-descent methods are completely impractical

and also in situations where results of Kolyvagin do not apply, e.g., when the
rank of the Mordell-Weil group is greater than 1. We apply our results along

with a computer calculation to show that X(E/Q)[p] = 0 for the 1,534,422

pairs (E, p) consisting of a non-CM elliptic curve E over Q with conductor
≤ 30,000, rank ≥ 2, and good ordinary primes p with 5 ≤ p < 1000 and

surjective mod-p representation.

1. Introduction

The papers [GJP+09, Mil10] describe verification of the Birch and Swinnerton-
Dyer conjecture for elliptic curves of conductor ≤ 5000 with rank ≤ 1 by a com-
putational application of Euler system results of Kato and Kolyvagin combined
with explicit descent. The main motivation for the present paper is to develop
algorithms using Iwasawa theory, in order to enable verification of the conjecture
in new directions, e.g., large-scale verification of assertions about X(E/Q), when
E has rank at least 2. The present paper naturally complements related projects
by Perrin-Riou [PR03] and Coates [CLS09, Coa11]. Moreover, we fill small gaps
in the literature (e.g., precision bounds in Section 3) and take the opportunity to
correct errors in the literature (e.g., Lemma 4.2) that we found in the course of
implementing algorithms.

In Sections 2–7 we recall the main objects and theorems involved in the classical
and p-adic Birch and Swinnerton-Dyer conjectures (BSD conjectures), correct some
minor errors in the literature, and state a tight error bound that is essential for
rigorous computation with p-adic L-series. These sections gather together disparate
results and provide unified notation and fill minor gaps. In Section 3, we define
p-adic L-functions and explain how to compute them. Next we define the p-adic
regulator, treating separately the cases of split multiplicative and supersingular
reduction, and recall p-adic analogues of the BSD conjecture. In Section 6, we
recall the basic definitions and results for the algebraic p-adic L-functions defined
using Iwasawa theory. This leads to the statement of the main conjecture and
Kato’s theorem.
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In Section 8 we discuss using p-adic results to bound X(E)(p) when E has
analytic rank 0, and Section 9 covers the case when the analytic rank is 1. In
Section 10 we describe a conditional algorithm for computing the rank of an elliptic
curve that uses p-adic methods and hence differs in key ways from the standard
n-descent approach. Similarly, Section 11 contains an algorithm that applies to
curves of any rank, and either computes X(E/Q)(p) or explicitly disproves some
standard conjecture. In Section 12 we give examples that illustrate the algorithms
described above in numerous cases, including verifying for a rank 2 curve E that
X(E/Q)(p) = 0 for a large number of p, as predicted by the BSD conjecture. In
particular, we prove the following theorem via a computation of p-adic regulators
and p-adic L-functions, which provides evidence for the BSD conjecture for curves
of rank at least 2:

Theorem 1.1. Let X be the set of 1,534,422 pairs (E, p), where E is a non-CM
elliptic curve over Q with rank at least 2 and conductor ≤30,000, and p ≥ 5 is a
good ordinary prime for E with p < 1000 such that the mod p representation is
surjective. Then X(E/Q)[p] = 0 for each of the pairs in X.

1.1. Background. Let E be an elliptic curve defined over Q and let

(1.1) y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6

be the unique global minimal Weierstrass equation for E with a1, a3 ∈ {0, 1} and
a2 ∈ {−1, 0, 1}. Mordell proved that the set of rational points E(Q) is an abelian
group of finite rank r = rank(E(Q)). Birch and Swinnerton-Dyer conjectured
that r = ords=1 L(E, s), where L(E, s) is the Hasse-Weil L-function of E (see
Conjecture 2.1 below). We call ran = ords=1 L(E, s) the analytic rank of E, which
is defined since L(E, s) can be analytically continuted to all C (see [BCDT01]).

There is no known algorithm (procedure that has been proved to terminate)
that computes r in all cases. We can computationally obtain upper and lower
bounds in any particular case. One way to give a lower bound on r is to search for
linearly independent points of small height via the method of descent. We can also
use constructions of complex and p-adic Heegner points in some cases to bound
the rank from below. To compute an upper bound on the rank r, in the case of
analytic ranks 0 and 1, we can use Kolyvagin’s work on Euler systems of Heegner
points; for general rank, the only known method is to do an n-descent for some
integer n > 1. The 2-descents implemented by Cremona [Cre97], by Simon [Sim02]
in Pari [PAR11] (and SAGE [S+11b]), and the 2, 3, 4, etc., descents in Magma
[BCP97] (see also [CFO+08, CFO+09, CFO+11]), are particularly powerful. But
they may fail in practice to compute the exact rank due to the presence of 2 or
3-torsion elements in the Tate-Shafarevich group.

The Tate-Shafarevich group X(E/Q) is a torsion abelian group associated to
E/Q. It is the kernel of the localization map loc in the exact sequence

0 −→X(E/Q) −→ H1(Q, E)
loc−−→

⊕
υ

H1(Qυ, E),

where the sum runs over all places υ in Q. The arithmetic importance of this group
lies in its geometric interpretation. There is a bijection from X(E/Q) to the Q-
isomorphism classes of principal homogeneous spaces C/Q of E which have points
everywhere locally. In particular, such a C is a curve of genus 1 defined over Q
whose Jacobian is isomorphic to E. Nontrivial elements in X(E/Q) correspond to
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curves C that defy the Hasse principle, i.e., have a point over every completion of
Q, but have no points over Q.

Conjecture 1.2. Shafarevich and Tate The group X(E/Q) is finite.

The rank r and the Tate-Shafarevich group X(E/Q) are encoded in the Selmer
groups of E. Fix a prime p, and let E(p) denote the Gal(Q̄/Q)-module of all torsion
points of E whose orders are powers of p. The Selmer group Selp(E/Q) is defined
by the following exact sequence:

0 −→ Selp(E/Q) −→ H1(Q, E(p)) −→
⊕
υ

H1(Qυ, E) .

Likewise, for any positive integer m, the m-Selmer group is defined by the exact
sequence

0→ Sel(m)
(E/Q)→ H1(Q, E[m]) −→

⊕
υ

H1(Qυ, E)

where E[m] is the subgroup of elements of order dividing m in E.
It follows from the Kummer sequence that there are short exact sequences

0 −→ E(Q)/mE(Q) −→ Sel(m)
(E/Q) −→X(E/Q)[m] −→ 0

and
0 −→ E(Q)⊗Qp/Zp −→ Selp(E/Q) −→X(E/Q)(p) −→ 0 .

If the Tate-Shafarevich group is finite, then the Zp-corank of Selp(E/Q) is equal

to the rank r of E(Q).
The finiteness of X(E/Q) is only known for curves of analytic rank 0 and 1, in

which case computation of Heegner points and Kolyvagin’s work on Euler systems
gives an explicit computable multiple of its order [GJP+09]. The group X(E/Q)
is not known to be finite for even a single elliptic curve with ran ≥ 2. In such
cases, the best we can do using current techniques is hope to bound the p-part
X(E/Q)(p) of X(E/Q), for specific primes p. Even this might not a priori be
possible, since it is not known that X(E/Q)(p) is finite. However, if it were the case
that X(E/Q)(p) is finite (as Conjecture 1.2 asserts), then this could be verified by

computing Selmer groups Sel(p
n)

(E/Q) for sufficiently many n (see, e.g., [SS04]).

Note that practical unconditional computation of Sel(p
n)

(E/Q) via the method of
descent is prohibitively difficult for all but a few very small pn.

We present in this paper two algorithms using p-adic L-functions Lp(E, T ), which
are p-adic analogs of the complex function L(E, s) (see Section 3 for the definition).
Both algorithms rely heavily on the work of Kato [Kat04], which is a major break-
through in the direction of a proof of the p-adic version of the BSD conjecture (see
Section 5). The possibility of using these results to compute information about
the Tate-Shafarevich group is well known to specialists and was for instance men-
tioned in [Col04] which gives a nice overview of the p-adic BSD conjecture. For
supersingular primes such methods were used by Perrin-Riou in [PR03] to calculate
X(E/Q)(p) in many interesting cases when p is a prime of supersingular reduction.

Our first algorithm, which we describe in Section 10, finds a provable upper
bound for the rank r of E(Q) by computing approximations to the p-adic L-series
for various small primes p. Any upper bound on the vanishing of Lp(E, T ) at T = 0
is also an upper bound on the rank r.

The second algorithm, which we discuss in Section 11, gives a new method for
computing bounds on the order of X(E/Q)(p), for specific primes p. We will
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exclude p = 2, since traditional descent methods work well at p = 2, and Iwasawa
theory is not as well developed for p = 2. We also exclude some primes p, e.g.,
those for which E has additive reduction, since much of the theory we rely on has
not yet been developed in this case.

Our second algorithm uses again the p-adic L-functions Lp(E, T ), but also re-
quires that the full Mordell-Weil group E(Q) is known. Its output, if it yields any
information, is a proven upper bound on the order of X(E/Q)(p); in particular, we
expect it to often prove the finiteness of the p-primary part of the Tate-Shafarevich
group. But it will not in general be able to give any information about the struc-
ture of X(E/Q)(p) as an abelian group or any information on its elements. For
such finer results on the Tate-Shafarevich group, one general method is to use pn-
descents as described above. In some cases, we can also use visibility [AS02] to
relate X(E/Q)(p) to Mordell-Weil groups of other elliptic curves or abelian va-
rieties. Assuming Kolyvagin’s conjecture, it may also be possible to compute the
structure of X(E/Q)(p), for E of any rank, by making Kolyvagin’s Euler system
explicit in some cases (see forthcoming work of the first author and Jared Weinstein
that builds on [Kol91b], and the remarks at the end of [Kol91a]). The computabil-
ity of our upper bound on #X(E/Q)(p) relies on several conjectures, such as the
finiteness of X(E/Q)(p) and Conjectures 4.1 and 4.4 on the nondegeneracy of the
p-adic height on E.

Under the assumption of the main conjecture (see Section 7), the number output
by our algorithm equals the order of X(E/Q)(p). There are several cases when
this conjecture is known to hold by Greenberg and Vatsal in [GV00], by Grigorov
in [Gri05], and in a forthcoming paper by Skinner and Urban [SU10]. In particular,
under appropriate hypotheses, [SU10] prove the main conjecture for elliptic curves
with good ordinary reduction (see Theorem 7.5 below). Thus in some cases, the
upper bound on X(E/Q)(p) that we obtain is actually a lower bound too, if all
the computations go through, e.g. the p-adic height is nondegenerate and we find
enough points to verify that the rank is equal to the order of vanishing.

Note that our algorithms can in principle be extended to give bounds in some
cases on the rank of E(K) and #X(E/K)(p) for number fields K which are abelian
extensions of Q (here we still assume E is defined over Q).

Acknowledgments. It is a pleasure to thank John Coates, Henri Darmon, Jerôme
Grand’maison, Ralph Greenberg and Dimitar Jetchev for helpful discussions and
comments. We are also greatly indebted to Robert Pollack who shared his code for
computing p-adic L-functions and helped with the error estimates in Section 3. We
also thank Mark Watkins, who independently implemented in Magma some of the
algorithms of this paper, and in so doing found bugs in our implementation and
discovered mistakes in an early draft of this manuscript.

2. The Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over Q. If the BSD conjecture (Conjecture 2.1
below) were true, it would yield an algorithm to compute both the rank r and the
order of X(E/Q).

Let E be an elliptic curve over Q, and let L(E, s) be the Hasse-Weil L-function
associated to the Q-isogeny class of E. According to [BCDT01] (which completes
work initiated in [Wil95]), the function L(E, s) is holomorphic on the whole complex
plane. Let ωE be the invariant differential dx/(2y + a1x + a3) of the minimal
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Weierstrass equation (1.1) of E. We write ΩE =
∫
E(R)

ωE ∈ R>0 for the Néron

period of E.

Conjecture 2.1. Birch and Swinnerton-Dyer

(1) The order of vanishing of the Hasse-Weil function L(E, s) at s = 1 is equal
to the rank r = rank(E(Q)).

(2) The leading coefficient L∗(E, 1) of the Taylor expansion of L(E, s) at s = 1
satisfies

(2.1)
L∗(E, 1)

ΩE

=

∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Reg(E/Q)

where the Tamagawa numbers are denoted by cυ and Reg(E/Q) is the regu-
lator of E, i.e., the discriminant of the Néron-Tate canonical height pairing
on E(Q).

Below we write #X(E/Q)an for the order of X(E/Q) that is predicted by
Conjecture 2.1.

Cassels proved in [Cas65] that if Conjecture 2.1 is true for an elliptic curve E
over Q, then it is true for all curves that are Q-isogenous to E.

Proposition 2.2 (Manin). If Conjecture 2.1 is true, then there is an algorithm to
compute r and #X(E/Q).

Proof. Manin proved this result in [Man71, §11], but we recall the essential ideas
here. By searching for points in E(Q) we obtain a lower bound on r, which gets
closer to the true rank r the longer we run the search. At some point this lower
bound will equal r, but without using further information we have no way to know
if that has occurred. As explained, e.g., in [Cre97, Coh07, Dok04], we can for any
k compute L(k)(E, 1) to any precision. Such computations yield upper bounds on
ran. In particular, if we compute L(k)(E, 1) and it is nonzero (to the precision
of our computation), then ran ≤ k. Eventually this method will also converge to
give the correct value of ran, though again without further information we do not
know when this will occur. However, if we know Conjecture 2.1, we know that
r = ran, hence at some point the lower bound on r computed using point searches
will equal the upper bound on ran computed using the L-series. At this point, by
Conjecture 2.1 we know the true value of both r and ran.

Once r is known, we can compute E(Q) via a point search (as explained in
[Cre97, §3.5] or [Ste07a, §1.2]), hence we can approximate Reg(E/Q) to any desired
precision. All quantities in (2.1) except #X(E/Q) can then be approximated to
any desired precision. Solving for #X(E/Q) in (2.1) and computing all other
quantities to large enough precision to determine the integer #X(E/Q)an then
determines #X(E/Q), as claimed. �

The above algorithm would only produce the order of X(E/Q) but no informa-
tion about its structure as an abelian group. We could compute the structure of

X(E/Q) by computing the group Sel(n)
(E/Q) where n2 = #X(E/Q), which is

possible since Sel(m)
(E/Q) is computable for all m. The algorithms in Section 10

and 11 mimic the ideas of the proof of Proposition 2.2, but they replace the complex
L-function by a p-adic L-series and use that much is known unconditionally about
p-adic analogues of the BSD conjecture.
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3. The p-adic L-function

We will assume for the rest of this article that E does not admit complex multi-
plication, though curves with complex multiplication are an area of active research
for these methods (see e.g., [Rub99, PR04, CLS09, CLS10]).

Formulating a p-adic analogue of the BSD conjecture requires a p-adic ana-
logue of the analytic function L(E, s), as introduced by Mazur and Swinnerton-
Dyer [MSD74, MTT86]. In this section, we recall the definition of this p-adic
L-function, and fill a gap in the literature by giving a complete recipe for how to
compute it in all cases, including proven error bounds on each coefficient.

Let π : X0(N) −→ E be the modular parametrization and let cπ be the Manin
constant, i.e., the positive integer satisfying cπ · π∗ωE = 2πif(τ)dτ with f the
newform associated to E. When E is an optimal quotient (so the dual map E →
Jac(X0(N)) is injective), Manin conjectured that cπ = 1, and much work has been
done toward this conjecture (see [Edi91, ARS06]).

Given a rational number r, define

λ+(r) = −πi ·
(∫ i∞

r

f(τ) dτ +

∫ i∞

−r
f(τ) dτ

)
∈ R.

There is a basis {γ+, γ−} of H1(E,Z) such that
∫
γ+
ωE is equal to ΩE if E(R) is

connected and to 1
2 ΩE otherwise. By a theorem of Manin [Man72], we know that

λ+(r) belongs to Q · ΩE. For all r ∈ Q, the modular symbol [r]+ ∈ Q is

[r]+ =
λ+(r)

ΩE
.

In particular, we have [0]+ = L(E, 1) · Ω−1
E . The quantity [r]+ can be computed

algebraically using modular symbols and linear algebra (see [Cre97] and [Ste07b]).
Let p be a prime of semistable reduction. We write1 ap for the trace of Frobenius.

Suppose first that E has good reduction at p, and let Ẽ denote the reduction of a
minimal model of E modulo p. Then Np = p + 1 − ap is the number of points on

Ẽ(Fp). Let X2 − ap ·X + p be the characteristic polynomial of Frobenius and let
α ∈ Q̄p be a root of this polynomial such that ordp(α) < 1. There are two choices
of α if E has supersingular reduction at p and there is a single possibility for α
when E has good ordinary reduction at p. Next suppose E has bad multiplicative
reduction at p. Then ap is 1 if the reduction is split multiplicative and ap is −1 if it
is nonsplit multiplicative reduction. In either multiplicative case, we define α = ap.

As in [MTT86, §I.10], define a measure on Z×p with values in Q(α) by

µα(a+ pkZp) =

{
1
αk
·
[
a
pk

]+ − 1
αk+1 ·

[
a

pk−1

]+
if E has good reduction,

1
αk
·
[
a
pk

]+
otherwise.

for any k ≥ 1 and a ∈ Z×p (by
[
a
pk

]+
we mean

[
a′

pk

]+
where a′ ∈ Z is equivalent to a

modulo pk, which is well defined because of the modular symbols relations). Given
a continuous character χ on Z×p with values in the completion Cp of the algebraic
closure of Qp, we may integrate χ against µα.

1The context should make it clear if we mean traces ap of Frobenius, coefficients ai as in (1.1),

or series coefficients as in Proposition 3.1.
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We assume henceforth that p is odd.2 As in [MTT86, §I.13], any invertible
element x of Z×p can be written as ω(x) · 〈x〉 where ω(x) is a (p− 1)-st root of unity
and 〈x〉 belongs to 1 + pZp. We call ω the Teichmüller character. We define the
analytic p-adic L-function by

Lα(E, s) =

∫
Z×p
〈x〉s−1 dµα(x) for all s ∈ Zp.

where by 〈x〉s−1 we mean expp((s−1) · logp(〈x〉)), and expp and logp are the p-adic
exponential and logarithm. The function Lα(E, s) extends to a locally analytic
function in s on the disc defined by |s−1| < 1 (see the first proposition of [MTT86,
§I.13]).

Let ∞G be the Galois group of the cyclotomic extension Q(µp∞) obtained by
adjoining to Q all p-power roots of unity. By κ we denote the cyclotomic character

∞G −→ Z×p . Because the cyclotomic character is an isomorphism, choosing a

topological generator γ in Γ = ∞G
(p−1) amounts to picking a generator κ(γ) of

1 + pZ×p . With this choice, we may convert the function Lα(E, s) into a p-adic

power series in T = κ(γ)s−1 − 1. We write Lα(E, T ) for this series in Qp(α)[[T ]].
We have

(3.1) Lα(E, T ) =

∫
Z×p

(1 + T )
logp(〈x〉)
logp(κ(γ)) dµα(x) .

For each integer n ≥ 1, define a polynomial

Pn(T ) =

p−1∑
a=1

pn−1−1∑
j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· (1 + T )j

 ∈ Qp(α)[T ].

Note that Pn(T ) depends on the choice of α, but for simplicity we do not include
α in the notation.

Proposition 3.1. We have

lim
n→∞

Pn(T ) = Lα(E, T ),

where the convergence is coefficient-by-coefficient, in the sense that if Pn(T ) =∑
j an,jT

j and Lα(E, T ) =
∑
j ajT

j, then limn→∞ an,j = aj .

We now give a proof of this convergence and in doing so obtain an explicit upper
bound for |aj − an,j |, which is critical to making the computation of Lα(E, T )
algorithmic, and which appears to not be explicitly stated in the literature.

For any choice ζr of pr-th root of unity in Cp, let χr be the Cp-valued character
of Z×p of order pr obtained by composing the map 〈 〉 : Z×p → 1+pZp defined above
with the map 1 + pZp → C∗p that sends 1 + p to ζr. Note that the conductor of χr
is pr+1.

Lemma 3.2. Let ζr be a pr-th root of unity with 1 ≤ r ≤ n− 1, and let χr be the
corresponding character of order pr, as above. Then

Pn(ζr − 1) =

∫
Z×p
χr dµα.

In particular, note that the right hand side does not depend on n.

2Everything in this section can be done for p = 2 with 1 + p replaced by an integer that is
congruent to 5 modulo 8, and various other slight modifications.
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Proof. Writing χ = χr, we have

Pn(ζr − 1) =

p−1∑
a=1

pn−1−1∑
j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· ζjr

=

p−1∑
a=1

pn−1−1∑
j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· χ
(
(1 + p)j

)
=

∑
b∈(Z/pnZ)×

µα (b+ pnZp) · χ(b) =

∫
Z×p
χ dµα.

In the second to the last equality, we use that

(Z/pnZ)× ∼= (Z/pZ)× × (1 + p(Z/pnZ))

to sum over lifts of b ∈ (Z/pnZ)× of the form ω(a)(1 + p)j , i.e., a Teichmüller lift
times a power of (1+p)j . In the last equality, we use that χ has conductor dividing
pn, so is constant on the residue classes modulo pn, and use the Riemann sums
definition of the given integral. �

For each positive integer n, let wn(T ) = (1 + T )p
n − 1.

Corollary 3.3. We have in Qp(α)[T ] that

wn−1(T ) divides Pn+1(T )− Pn(T ).

Proof. By Lemma 3.2, Pn+1(T ) and Pn(T ) agree on ζj − 1 for 0 ≤ j ≤ n − 1 and
any choice ζj of pj-th root of unity, so their difference vanishes on every root of

the polynomial wn−1(T ) = (1 + T )p
n−1 − 1. The claimed divisibility follows, since

wn−1(T ) has distinct roots. �

Lemma 3.4. Let f(T ) =
∑
j bjT

j and g(T ) =
∑
j cjT

j be in O[T ] with O the ring

of integers of a finite field extension of Qp. If f(T ) divides g(T ), then

ordp(cj) ≥ min
0≤i≤j

ordp(bi).

Proof. We have f(T )k(T ) = g(T ) with k(T ) ∈ O[T ]. The lemma follows by using
the definition of polynomial multiplication and the nonarchimedean property of
ordp. �

As above, let an,j be the j-th coefficient of the polynomial Pn(T ). Let

cn = max(0,−min
j

ordp(an,j))

so that pcnPn(T ) ∈ (Zp[α])[T ]. For any j > 0, let

en,j = min
1≤i≤j

ordp

(
pn

i

)
.

Proposition 3.5. For all n ≥ 0, we have an+1,0 = an,0, and for j > 0,

ordp(an+1,j − an,j) ≥ en−1,j −max(cn, cn+1).



ALGORITHMS USING IWASAWA THEORY 9

Proof. Corollary 3.3 implies that there is a polynomial h(T ) ∈ Qp(α)[T ] with
wn−1(T ) · h(T ) = Pn+1(T ) − Pn(T ). Let c ≤ max(cn, cn+1) be the integer such
that pc · (Pn+1(T ) − Pn(T )) ∈ Zp[α][T ] is primitive. Multiply both sides of the
above equation by pc, to get

wn−1(T ) · pch(T ) = pcPn+1(T )− pcPn(T ) ∈ Zp[α][T ].

The right hand side is primitive and integral, so it is reducible in Zp[α][T ]. Since
wn−1(T ) is integral, we must have pch(T ) ∈ Zp[α][T ]. Applying Lemma 3.4 and
renormalizing by pc gives c+ ordp(an+1,j − an,j) ≥ en−1,j , so

ordp(an+1,j − an,j) ≥ en−1,j − c ≥ en−1,j −max(cn, cn+1).

�

Lemma 3.6. The ck are uniformly bounded above.

Proof. Tracing through the definitions and using that ordp(1/α) > 1, we see that
the lemma is equivalent to showing that the modular symbol [x]+ appearing in
the definition of µα has bounded denominator. By the Abel-Jacobi theorem, the
quotient of the image of the modular symbol map [x] modulo Z2 ≈ H1(E,Z) is
equal to the image of the cuspidal subgroup C of J0(N). In particular, a bound
on the denominator of [x]+ is the largest power of p that divides the exponent of
the image of C in E(Q̄). The claim follows since C is finite, since it is generated
by finitely many “Manin symbols” as explained in [Man72, Thm. 2.7] or [Cre97,
Ch. 2], and C is torsion as noted on the footnote of [Man72, pg. 35]. �

For j fixed, en−1,j − max(cn+1, cn) goes to infinity as n grows since the ck are
uniformly bounded above, by Lemma 3.6. Thus, {an,j} is a Cauchy sequence and
Proposition 3.5 implies that

ordp(aj − an,j) ≥ en−1,j −max(cn, cn+1).

3.1. The p-adic multiplier. In this section we specialize the definition of p-adic
multiplier from [MTT86, §I.14] to the case of an elliptic curve. For a prime p of
good reduction, we define the p-adic multiplier by

(3.2) εp =
(
1− 1

α

)2
.

Note that ordp(εp) is equal to 2 ordp(Np) where Np = p+ 1− ap is the number of

points in Ẽ(Fp).
For a prime of bad multiplicative reduction, we put

εp = 1− 1
α =

{
0 if p is split multiplicative,

2 if p is nonsplit.

3.2. Interpolation property. The p-adic L-function constructed above satisfies
an interpolation property with respect to the complex L-function (see [MTT86,
§I.14]). For instance, we have that

Lα(E, 0) = Lα(E, 1) =

∫
Z×p
dµα = εp ·

L(E, 1)

ΩE

.



10 WILLIAM STEIN AND CHRISTIAN WUTHRICH

A similar formula holds when integrating nontrivial characters of Z×p against dµα.
If χ is the character on ∞G sending γ to a root of unity ζ of exact order pn, then

Lα(E, ζ − 1) =
1

αn+1
· pn+1

G(χ−1)
· L(E,χ−1, 1)

ΩE

.

Here G(χ−1) is the Gauss sum and L(E,χ−1, 1) is the Hasse-Weil L-function of E
twisted by χ−1.

3.3. The good ordinary case. Suppose that the reduction of the elliptic curve at
the prime p is good and ordinary, so ap is not divisible by p. As mentioned before,
in this case there is a unique choice of root α of the characteristic polynomial
x2− apx+ p that satisfies ordp(α) < 1. Since α is an algebraic integer, this implies
that ordp(α) = 0, so α is a unit in Zp. We get therefore a unique p-adic L-function
that we will denote simply by Lp(E, T ) = Lα(E, T ).

Proposition 3.7. Let E be an elliptic curve with good ordinary reduction at a
prime p > 2 such that E[p] is irreducible. Then the series Lp(E, T ) belongs to
Zp[[T ]].

Proof. See [GV00, Prop. 3.7] with χ = 1. �

We next illustrate the above material with a few numerical examples, one for
each type of reduction. Let E0/Q be the curve

(3.3) E0 : y2 + x y = x3 − x2 − 4x + 4

which is labeled 446d1 in Cremona’s tables [Cre]. The Mordell-Weil group E0(Q)
is isomorphic to Z2 generated by the points (2, 0) and (1,−1). We consider the
prime p = 5 where E0 has good and ordinary reduction. As the number of points
Np = 10 is divisible by p, this is an anomalous prime in the terminology of [Maz72].
Using [S+11b], we compute an approximation to the p-adic L-series as explained
above with n = 5 to find

L5(E0, T ) =O(54) · T + (5 + 52 + 3 · 53 + O(54)) · T 2

+ (2 · 5 + 3 · 52 + 3 · 53 + O(54)) · T 3 + (4 · 52 + 4 · 53 + O(54)) · T 4

+ (4 · 5 + 4 · 52 + O(53)) · T 5

+ (1 + 2 · 5 + 52 + 4 · 53 + O(54)) · T 6 + O(T 7) .

We see that the order of vanishing is at least 1 as follows. The interpolation
formula implies that L5(E0, 0) = 0 since [0]+ = 0. We will give an explanation for
the vanishing of the coefficient of T 1 later in the comments right after Theorem 6.1.
We remark that the coefficient of T 2 has valuation 1, but the coefficient of T 6 is a
unit.

3.4. Multiplicative case. We separate the cases of split and nonsplit multiplica-
tive reduction. In fact, if the reduction is nonsplit, then the description of the good
ordinary case applies just the same. But if the reduction is split multiplicative (the
“exceptional case” in [MTT86]), then the p-adic L-series must have a trivial zero,
i.e., Lp(E, 0) = 0 because εp = 0. By a result of Greenberg and Stevens [GS93] (see
also [Kob06] for a proof using Kato’s Euler system), we know that

dLp(E, T )

d T

∣∣∣∣
T=0

=
1

logp κ(γ)
·

logp(qE)

ordp(qE)
· L(E, 1)

ΩE
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where qE denotes the Tate period of E over Qp. It is now known thanks to [BDGP96]
that logp(qE) is nonzero. Hence we define the p-adic L -invariant as

(3.4) Lp =
logp(qE)

ordp(qE)
6= 0 .

We refer to [Col10] for a detailed discussion of the different L -invariants and their
connections.

3.5. The supersingular case. In the supersingular case, that is when ap ≡ 0
(mod p), we have two roots α and β both of valuation 1

2 . An analysis of the
functions Lα and Lβ is in [Pol03]. The series Lα(E, T ) might not have integral
coefficients in Qp(α). Nevertheless we can still extract two integral series L±p (E, T ).
We will not need this description.

There is a way of rewriting the p-adic L-series which relates more easily to
the p-adic height defined in the next section. We follow Perrin-Riou’s description
in [PR03].

As before, ωE denotes the chosen invariant differential on E. Let ηE = x · ωE.
The pair {ωE, ηE} forms a basis of the Dieudonné module

Dp(E) = Qp ⊗H1
dR(E/Q).

This Qp-vector space comes equipped with a canonical Frobenius endomorphism ϕ
that acts on it linearly. We normalize it in the following way, which makes it equal
to 1

p ·F with F being the Frobenius as used in [MST06] and [Ked01, Ked03, Ked04].

Let t be any uniformizer at the point OE at infinity on E, e.g., take t = −xy . Let

ν be a class in Dp(E) represented by the differential
∑
cn · tn−1 dt with cn ∈ Qp.

Then ϕ(ν) can be represented by the differential
∑
cn · tpn−1 dt. In particular

ϕ(dt) = tp−1 dt. The characteristic polynomial of ϕ is equal to X2−p−1 apX+p−1.
Write Lα(E, T ) as G(T ) + α · H(T ) with G(T ) and H(T ) in Qp[[T ]]. Then we

define
Lp(E, T ) = G(T ) · ωE + ap ·H(T ) · ωE − p ·H(T ) · ϕ(ωE) ,

which we view as a formal power series with coefficients in Dp(E)⊗Qp[[T ]], which
contains exactly the same information as Lα(E, T ). See [PR03, §1] for a direct def-
inition. Since the invariant differential ωE depends on the choice of the Weierstrass
equation (1.1), the expression Lp(E, T ) is also dependent on this choice. However,
if we write the series in the basis {ωE, ϕ(ωE)} rather than in {ωE, ηE}, then the co-
ordinates as above are independent. The Dp-valued L-series satisfies again certain
interpolation properties,3 e.g.,

(1− ϕ)−2 Lp(E, 0) =
L(E, 1)

ΩE

· ωE ∈ Dp(E) .

See Section 12.2 for an example.

3.6. Additive case. The case of additive reduction is much harder to treat, though
we are optimistic that such a treatment is possible. We have not tried to include the
possibility of additive reduction in our algorithm, especially because the existence
of the p-adic L-function is not yet guaranteed in general. Note that there are two
interesting papers [Del98] and [Del02] of Delbourgo on this subject.

3Perrin-Riou writes in [PR03] the multiplier as (1 − ϕ)−1 · (1 − p−1ϕ−1) and she multiplies

the right hand side with L(E/Qp, 1)−1 = Np · p−1. It is easy to see that (1−ϕ) · (1− p−1ϕ−1) =

1 − ϕ+ (ϕ− ap · p−1) + p−1 = Np · p−1.
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3.7. Quadratic twists. When the curve E is not semistable, we can try to use
the modular symbols of a quadratic twist E† of E in the computation of the p-adic
L-function for E. This leads to dramatic speedups when the quadratic twist has
lower conductor than E.

Suppose that there exists a fundamental discriminant D of a quadratic field
satisfying the following conditions:

• p does not divide D,
• D2 divides N ,
• M = N/D2 is coprime to D, and
• the conductor N† of the quadratic twist E† of E by D is of the form M ·Q

with Q dividing D.

Then ψ = (D· ) is the Dirichlet character associated to the quadratic field Q(
√
D)

over which E and E† become isomorphic. Let f†E be the newform of level N†

associated to the isogeny class of E†. As explained in [MTT86, §II.11], the twist of

f†E by ψ is equal to fE and we can use their formula (I.8.3)

(3.5) fE(τ) =
1

G(ψ)

∑
u mod |D|

ψ(u) · f†E
(
τ +

u

|D|

)
.

Here G(ψ) is as before the Gauss sum of ψ, whose value we know to be the square

root
√
D of D in R>0 or in i·R>0. Let cR be the number of connected components of

E(R), which is also the number of connected components of E†(R). We write Ω−
E†

for cR ·
∫
γ−
ωE† , similar to ΩE† = Ω+

E†
= cR ·

∫
γ+ ωE† with the notations from (3.1).

We also put

λ−(r) = πi ·
(∫ i∞

r

−
∫ i∞

−r

)
f(τ) dτ

and [r]− = λ−(r)/Ω−E . As for the modular symbol [r]+, we have [r]− ∈ Q. Follow-
ing [MTT86], we define the quantity η such that

√
D · Ω+

E = η · Ωsign(D)

E†
.

It is known that η is either 1 or 2.
Now we can compute the modular symbol [r]+ for the curve E in terms of

modular symbols for E†. Suppose first that D > 0.

λ+
E(r) =πi ·

(∫ i∞

r

+

∫ i∞

−r

)
1√
D

D−1∑
u=1

ψ(u)f†E

(
τ +

u

D

)
dτ

=
πi√
D

D−1∑
u=1

ψ(u)

∫ i∞

r+u/D

f†E(τ)dτ

+
πi√
D

D−1∑
v=1

ψ(D − v)

∫ i∞

−r
f†E

(
τ + 1− v

D

)
dτ

=
πi√
D

D−1∑
u=1

ψ(u)

(∫ i∞

r+u/D

+

∫ i∞

−r−u/D

)
f†E(τ)dτ

=
1√
D

D−1∑
u=1

ψ(u)λ+
E†

(
r +

u

D

)
.
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We used that ψ(u) = sign(D)ψ(D−u), that f†E(τ +1) = f†E(τ) and Equation (3.5).
Similarly for D < 0, we find

λ+
E(r) =

−1√
D

|D|−1∑
u=1

ψ(u)λ−
E†

(
r +

u

D

)
.

Therefore, we have for any fundamental discriminant D

[r]+E =
sign(D)

η

|D|−1∑
u=1

(D
u

)
·
[
r +

u

D

]sign(D)

E†
.

We can also express the unit eigenvalue α of Frobenius in terms of the corresponding
α† unit eigenvalue for E† as

α = ψ(p) · α†.
In summary, we can evaluate the approximations to the p-adic L-function of E using
only modular symbols of the curve E† with smaller conductor. The estimations for
the error of these approximations remain exactly the same.

We recalled that the computation of the modular symbols [r]± can be done
purely algebraically. Unfortunately, the algebraic computation determines them
only up to one single fixed choice of sign. If [0]+ is nonzero, we can simply compare
the value of the modular symbol at 0 with L(E, 1)/ΩE and adjust the sign when
needed. If L(E, 1) = 0, we can use the above formula to compute [0]+

E†
for some

quadratic twist E† with nonvanishing L-value. So we can easily adjust the unknown
sign. Also, if we only know the modular symbols up to a rational multiple, we can
use these formulae to scale them.

We should also add here that we can not possibly do a similar thing with quartic
or sextic twists when they exist. This is due to the fact that the extension over
which the twists become isomorphic is no longer an abelian extension. So we would
have to twist the modular symbols with a Galois representation of dimension at
least 2. Nevertheless there is a way of using these twists for computing the p-adic
L-function as explained in [CLS09], using the fact that these curves have complex
multiplication.

4. p-adic heights

The second term that we will generalize in the BSD formula is the real-valued
regulator. In p-adic analogues of the conjecture we replace it by a p-adic regulator,
which we define using a p-adic analogue of the height pairing. We follow here the
generalized version [BPR93] and [PR03].

Let ν be an element of the Dieudonné module Dp(E) (see Section 3.5). We will
define a p-adic height function hν : E(Q) −→ Qp which depends linearly on the
vector ν. Hence it is sufficient to define it on the basis ω = ωE and η = ηE.

If ν = ω, then we define

hω(P ) = logE(P )2

where logE is the linear extension of the p-adic elliptic logarithm

logÊ : Ê(pZp) −→ pZp

defined on the formal group Ê, by integrating our fixed differential ωE.
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For ν = η, we define the p-adic sigma function of Bernardi as in [Ber81] to be
the solution σ of the differential equation

−x =
d

ωE

(
1

σ
· dσ
ωE

)
such that σ(OE) = 0, dσ

ωE
(OE) = 1, and σ(−P ) = −σ(P ). If we denote by t = −xy

the uniformizer at OE, we may develop the sigma function as a series in t:

σ(t) = t+
a1

2
t2 +

a2
1 + a2

3
t3 +

a3
1 + 2a1a2 + 3a3

4
t4 + · · · ∈ Q((t)),

where the ai are the coefficients of the Weierstrass equation (1.1). As a function

on the formal group Ê(pZp), it converges for all t with ordp(t) >
1
p−1 .

We say that a point P in E(Q) has good reduction at a prime p if P reduces to
the identity component of the special fiber of the Néron model of E at p. Given a
point P in E(Q) there exists a multiple m ·P such that σ(m ·P ) converges and such
that m · P has good reduction at all primes. Denote by e(m · P ) ∈ Z the square
root of the denominator of the x-coordinate of m · P . Define

hη(P ) =
2

m2
· logp

(
e(m · P )

σ(m · P )

)
.

Bernardi [Ber81] proves that this function is quadratic and satisfies the parallelo-
gram law.

Finally, if ν = aω + b η then put

hν(P ) = a hω(P ) + b hη(P ) .

Since this function is quadratic and satisfies the parallelogram law, it induces a
bilinear symmetric pairing 〈·, ·〉ν with values in Qp defined by

〈P,Q〉ν =
1

2
·
(
hν(P +Q)− hν(P )− hν(Q)

)
.

Note that all these definitions are dependent on the choice of the Weierstrass equa-
tion. It is easy to verify that the pairing is zero if one of the points is a torsion
point.

4.1. The good ordinary case. Since we have only a single p-adic L-function in
the case that the reduction is good ordinary, we have also to pin down a canonical
choice of a p-adic height function. This was first done by Schneider [Sch82] and
Perrin-Riou [PR82]. We refer to [MT91] and [MST06] for more details.

Let να = aω+ b η be an eigenvector of ϕ on Dp(E) associated to the eigenvalue
1
α . The value e2 = E2(E,ωE) = −12 · ab is the value of the Katz p-adic Eisenstein
series of weight 2 at (E,ωE). If a point P has good reduction at all primes and lies
in the range of convergence of σ(t), we define the canonical p-adic height of P to
be

ĥp(P ) =
1

b
· hνα(P )

= −a
b
· logE(P )2 + 2 log

(
e(P )

σ(P )

)
= 2 logp

(
e(P )

exp( e224 logE(P )2) · σ(P )

)
= 2 logp

(
e(P )

σp(P )

)
.(4.1)
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The function σp, defined by the last line, is called the canonical sigma-function,
see [MT91]; it is known to lie in Zp[[t]]. The p-adic height defined here is up to a
factor of 2 the same as in [MST06].4 It is also important to note that the function

ĥp is independent of the Weierstrass equation.

We write 〈·, ·〉p for the canonical p-adic height pairing on E(Q) associated to ĥp,
and Regp(E/Q) for the discriminant of the height pairing on E(Q)/E(Q)tor.

Conjecture 4.1. Schneider [Sch82] The canonical p-adic height is nondegenerate
on E(Q)/E(Q)tor. In other words, the canonical p-adic regulator Regp(E/Q) is
nonzero.

Apart from the special case treated in [Ber82] of curves with complex multipli-
cation of rank 1, there are hardly any results on this conjecture. See also [Wut04].

We return to our running example curve E0 from Section 3.3. The methods
of [MST06, Har08] permit us to quickly compute to relatively high precision the
p-adic regulator of E0. We have

E2(E0, ωE) = 3 · 5 + 4 · 52 + 53 + 54 + 55 + 2 · 56 + 4 · 57 + 3 · 59 + O(510),

and the regulator associated to the canonical p-adic height is

(4.2) Regp(E0/Q) = 2 · 5 + 2 · 52 + 54 + 4 · 55 + 2 · 57 + 4 · 58 + 2 · 59 + O(510).

4.2. The multiplicative case. When E has multiplicative reduction at p, if we
want to have the same closed formula in the p-adic version of the BSD conjecture
for multiplicative primes as for other ordinary primes, the p-adic height has to be
changed slightly. We use the description of the p-adic regulator given in [MTT86,
§II.6]. Alas, their formula is not correct, as explained in [Wer98], so we use the
corrected version.

If the reduction is nonsplit multiplicative, we use the same formula (4.1) to define
the p-adic height as for the good ordinary case.

We assume for the rest of this section that the reduction is split multiplicative.
We use Tate’s p-adic uniformization (see for instance in [Sil94, Ch. V]). We have an
explicit description of the height pairing in [Sch82]. Let qE be the Tate parameter
of the elliptic curve E over Qp, so we have an analytic homomorphism ψ : Q̄×p −→
E(Q̄p) whose kernel is precisely qZE. The image of Z×p under ψ is equal to the
subgroup of points of E(Qp) lying on the connected component of the reduction

modulo p of the Néron model of E. Let C be the constant such that ψ∗(ωE) = C · duu
where u is a uniformizer of Q×p at 1. The value of the p-adic Eisenstein series of
weight 2 is

e2 = E2(E,ωE) = C2 ·

1− 24 ·
∑
n≥1

∑
d|n

d · qnE

 .

Then we use the formula as in the good ordinary case to define the canonical sigma
function σp(t(P )) = exp( e224 logE(P )2) · σ(t(P )). We could also have used directly
the formula

σp(u) =
u− 1

u1/2
·
∏
n≥1

(1− qnE · u)(1− qnE/u)

(1− qnE)2

4This factor is needed if we do not want to modify the p-adic version of the BSD conjecture
(Conjecture 5.1).
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where u ∈ 1+pZp is the unique preimage of P ∈ Ê(pZp) under the Tate parametriza-

tion ψ, where Ê is the formal group of E at p.
Let P be a point in E(Q) having good reduction at all finite places and with

trivial reduction at p. Then we define

ĥp(P ) = 2 logp

(
e(P )

σp(t(P ))

)
−

logp(u)2

logp(qE)

with u as above. The p-adic regulator is formed as before but with this modified

p-adic height ĥp.

4.3. The supersingular case. In the supersingular case, we do not find a canoni-
cal p-adic height with values in Qp. Instead, the height has values in the Dieudonné
module Dp(E), as explained in [BPR93] and [PR03].

First, if the rank of the curve is 0, we define the p-adic regulator of E/Q to be
ω = ωE ∈ Dp(E). Thus assume for the rest of this section that the rank r of E(Q)
is positive. Let ν = aω+ b η be any element of Dp(E) not lying in Qp ω, (so b 6= 0).
It can be easily checked that the value of

Hp(P ) =
1

b
· (hν(P ) · ω − hω(P ) · ν) ∈ Dp(E)

is independent of the choice of ν. We will call this the Dp-valued height on E(Q).
But note that it depends on the choice of the Weierstrass equation of E: if we
change coordinates by putting

(4.3) x′ = u2 · x+ r and y′ = u3 · y + s · x+ t,

then the Dp-valued height H ′p(P ) computed in the new coordinates x′, y′ will satisfy

H ′p(P ) = 1
u ·Hp(P ) for all points P ∈ E(Q).

On Dp(E) there is a canonical alternating bilinear form [·, ·] characterized by
the property that [ωE, ηE] = 1. Write Regν ∈ Qp for the regulator of hν on
E(Q)/E(Q)tor. Then we have the following lemma which is a corrected version5 of
[PR03, Lem. 2.6].

Lemma 4.2. Suppose that the rank r of E(Q) is positive. There exists a unique
element Regp(E/Q) in Dp(E) such that for all ν ∈ Dp(E) not in Qpω, we have

(4.4) [Regp(E/Q), ν] =
Regν

[ω, ν]r−1
.

Furthermore, if the rank r is 1, then Regp(E/Q) = Hp(P ) for a generator P . If

the Weierstrass equation is changed as in (4.3), the regulator Reg′p(E/Q) computed

in the new equation satisfies Reg′p(E/Q) = 1
u · Regp(E/Q).

We call Regp(E/Q) ∈ Dp(E) the Dp-valued regulator of E/Q, or better, of the
chosen Weierstrass equation.

Proof. Since hω is made out of the square of the linear function logE, the matrix
of the associated pairing on a basis {Pi} of E(Q) modulo torsion has entries of

5The wrong normalization in [PR03] only influences the computations for curves of rank greater
than 1. It seems that, by chance, the computations in [PR03] were done with a ν in Dp(E) such

that [ω, ν] = 1, so that the normalization did not enter into the end results.
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the form logE(Pi) · logE(Pj) and hence has rank 1. Therefore the regulator of the
pairing associated to ν = a · ω + b · η is equal to

Regaω+bη = a · br−1 ·X + br · Y
for some constants X and Y . In fact, we must have X = Regω+η −Regη and
Y = Regη. Therefore the expression on the right hand side of (4.4) is linear in ν.
More explicitly, we may define

Regp(E/Q) = Y · ω −X · η.
The formula for the case of rank 1 is then also immediate. The variance of the
regulator with the change of the equation can be checked just as for Hp. �

We continue to assume that the rank r of E/Q is positive, as in Lemma 4.2.
Define the fine Mordell-Weil group as in [Wut07] to be the kernel

M(E/Q) = ker
(
E(Q)⊗ Zp −→ E(Qp)p-adic completion

)
,

which is a free Zp-module of rank r − 1. The bilinear form associated to the
normalized p-adic height

hν(P )

[ω, ν]
,

can be restricted to obtain a pairing

〈·, ·〉0 : M(E/Q)× (E(Q)⊗ Zp) −→ Qp .

It is then independent of the choice of ν 6∈ Qpω. We call the regulator of this bilinear
form 〈·, ·〉0 on a basis of M(E/Q) the fine regulator Reg0(E/Q) ∈ Qp, which is an
element of Qp defined up to multiplication by a unit in Zp.

Lemma 4.3. Suppose there exists a point Q in E(Q) ⊗ Zp such that M(E/Q) +
ZpQ = E(Q)⊗ Zp. Then

[Regp(E/Qp), ω] ≡ logE(Q)2 · Reg0(E/Q) (mod Z×p ).

Proof. From the proof of the Lemma 4.2, we only have to show that

X = Regω+η −Regη ≡ hω(Q) Reg0(E/Q).

By hypothesis, there is a basis of M(E/Q) that we can complete to a basis of
E(Q)⊗ Zp by adding Q to it. If M is the matrix of the pairing for η in this basis,
then the matrix for ω + η is obtained by changing the entry for 〈Q,Q〉 by adding
hω(Q) to it. Since X is the difference of the two determinants, it is hω(Q) times
the determinant of 〈·, ·〉η on the basis of M(E/Q), which equals Reg0(E/Q) by
definition. �

This lemma proves the last equality in [PR03, §2]. We should mention that
the formula just above it, linking Regp(E/Q) to Hp(Q) ·Reg0(E/Q), is not known
to hold as it can not be assumed in general that we can find a point Q as in
the lemma above which is orthogonal to M(E/Q). In particular, the Dp-valued
regulator Regp(E/Q) is nonzero provided the fine regulator does not vanish, because
logE(Q) 6= 0.

Conjecture 4.4. Perrin-Riou [PR93, Conjecture 3.3.7.i] The fine regulator of E/Q
is nonzero for all primes p. In particular, Regp(E/Q) 6= 0 for all primes where E
has supersingular reduction.
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Conjecture 3.3.7.ii’ in [PR93], which asserts that Regν is nonzero for at least one
ν, is implied by the above conjecture. This is explained in remark iii) following the
conjecture there, if we use the fact that the weak Leopoldt conjecture is now known
for E and p.

We have presented here how to compute the p-adic regulator in the basis {ω, η},
but in order to compare it later to the leading term of the p-adic L-function, it is
better to write it in terms of the basis {ω, ϕ(ω)}. In particular, we would then have
a vector whose coordinates are independent of the chosen Weierstrass equation.

In [BPR93, pg. 232], there is an algorithm for computing the action of ϕ by
successive approximation using the expansion of ω in terms of a uniformizer t. It is
dramatically more efficient to replace this by the computation of ϕ using Monsky-
Washnitzer cohomology as explained in [Ked01, Ked03, Ked04, Har08].

4.4. Normalization. In view of Iwasawa theory, it is natural to normalize the
heights and the regulators depending on the choice of the generator γ. In this way
the heights depend on the choice of an isomorphism Γ −→ Zp rather than on the

Zp-extension only. This normalization can be achieved by simply dividing ĥp(P )
and hν(P ) by κ(γ). The regulators will be divided by logp κ(γ)r where r is the
rank of E(Q). Hence we write

Regγ(E/Q) =
Regp(E/Q)

log(κ(γ))r
.

5. The p-adic Birch and Swinnerton-Dyer conjecture

5.1. The ordinary case. The following conjecture is due to Mazur, Tate and
Teitelbaum [MTT86]. Rather than formulating it for the function Lα(E, s), we
state it directly for the series Lp(E, T ). It is then a statement about the expansion
of this function at T = 0 rather than at s = 1.

Conjecture 5.1. Mazur, Tate and Teitelbaum [MTT86] Let E be an elliptic curve
with good ordinary reduction or with multiplicative reduction at a prime p.

• The order of vanishing of the p-adic L-function Lp(E, T ) at T = 0 is equal
to the rank r = rank(E(Q)), unless E has split multiplicative reduction at
p in which case the order of vanishing is equal to r + 1.
• The leading term L∗p(E, 0) satisfies

(5.1) L∗p(E, 0) = εp ·
∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q)

unless the reduction is split multiplicative in which case the leading term is

(5.2) L∗p(E, 0) =
Lp

log(κ(γ))
·
∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q),

where Lp is as in Equation (3.4).

The conjecture asserts exact equality, not just equality up to a p-adic unit. How-
ever, the current approaches to the conjecture, which involve the main conjecture
of Iwasawa theory, prove results up to a p-adic unit, since the characteristic power
series is only defined up to a unit, as we will see in Section 7.

Again, we consider the curve E0 (see Equation (3.3)) for an example in the good
ordinary case. For this curve, we have

∏
cυ = 2 and E0(Q)tor = 0, so all the terms
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in the expression above can be computed except for the unknown size of X(E0/Q).
The p-adic BSD conjecture predicts that

#X(E0/Q) = 1 + O(53)

which is consistent with the complex BSD conjecture, which predicts that X(E0/Q)
is trivial.

5.2. The supersingular case. The conjecture in the case of supersingular reduc-
tion is given in [BPR93] and [PR03]. The conjecture relates an algebraic and an
analytic value in the Qp-vector space Dp(E) of dimension 2. (The fact that we have
two coordinates was used by Kurihara and Pollack in [KP07] to construct global
points via a p-adic analytic computation.)

Conjecture 5.2. Bernardi and Perrin-Riou [BPR93] Let E be an elliptic curve
with supersingular reduction at a prime p.

• The order of vanishing of the Dp-valued L-series Lp(E, T ) at T = 0 is equal
to the rank r of E(Q).
• The leading term L∗p(E, 0) satisfies

(5.3) (1− ϕ)
−2 · L∗p(E, 0) =

∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q) ∈ Dp(E) .

We emphasize that both sides of (5.3) are dependent on the Weierstrass equation.
But under a change of the form x′ = u2 · x+ r, they both get multiplied by 1

u and
hence the conjecture is independent of this choice.

6. Iwasawa theory of elliptic curves

We suppose from now on that p > 2. Let ∞Q be the cyclotomic Zp-extension
of Q, which is a Galois extension of Q whose Galois group is Γ. Let Λ be the
completed group algebra Zp[[Γ]]. We use a fixed topological generator γ of Γ to
identify Λ with Zp[[T ]] by sending γ to 1 + T . Any finitely generated Λ-module
admits a decomposition up to quasi-isomorphism as a direct sum of elementary
Λ-modules. Denote by nQ the n-th layer of the Zp-extension, so nQ is a subfield of

∞Q and Gal(nQ/Q) ≈ Z/pnZ. As in Section 1.1, we define the p-Selmer group of
E over nQ by the exact sequence

0 −→ Selp(E/nQ) −→ H1(nQ, E(p)) −→
⊕
υ

H1(nQυ, E)

with the product running over all places υ of nQ. Over the full Zp-extension, we
define Selp(E/∞Q) to be the direct limit lim−→Selp(E/nQ) with respect to the maps

induced by the restriction maps H1(nQ, E(p)) −→ H1(n+1Q, E(p)). The group
Selp(E/∞Q) encodes information about the growth of the rank of E(nQ) and of

the size of X(E/nQ)(p) as n tends to infinity. We will consider the Pontryagin
dual

X(E/∞Q) = Hom
(
Selp(E/∞Q),Qp/Zp

)
,

which is a finitely generated Λ-module (see [CS00]). For further introduction to
these objects, see [Gre01].
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6.1. The ordinary case. Assume that the reduction at p is either good ordinary
or of multiplicative type. Kato’s theorem (see [Kat04, Thm. 17.4]), which uses the
work of Rohrlich [Roh84], states that X(E/∞Q) is a torsion Λ-module, so we may
associate to it a characteristic series

(6.1) fE(T ) ∈ Zp[[T ]]

that is well-defined up to multiplication by a unit in Zp[[T ]]×.
The following result is due to Schneider [Sch85] and Perrin-Riou [PR82], and

the multiplicative case is due to Jones [Jon89]. Note that it uses the analytic and
algebraic p-adic height defined by Schneider in [Sch82]; taking into account the
mentioned correction by Werner, these heights agree with the height in Section 4.2.

Theorem 6.1 (Schneider, Perrin-Riou, Jones). The order of vanishing of fE(T )
at T = 0 is at least equal to the rank r. It is equal to r if and only if the p-adic
height pairing is nondegenerate (Conjecture 4.1) and the p-primary part of the Tate-
Shafarevich group X(E/Q)(p) is finite (Conjecture 1.2). In this case the leading
term of the series fE(T ) has the same valuation as

εp ·
∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2
· Regγ(E/Q),

unless the reduction is split multiplicative in which case the same formula holds with
εp replaced by Lp/ log(κ(γ)).

Let us consider again our running example curve E0. We have computed the 5-
adic regulator and found that it is nonzero. The above theorem shows that the order
of vanishing of fE0

(T ) is at least equal to the rank. The finiteness of X(E0/Q)(5)
is now equivalent to the statement that the order of vanishing of fE0(T ) is equal
to the rank 2 of E0. If this is the case, then the leading coefficient has valuation
equal to

ord5(f∗E0
(0)) = ord5(#X(E0/Q)(5)) + 1,

since ord5(Reg5(E0/Q)) = 1 by Equation (4.2) and cv, ε5 and torsion are coprime
to 5.

For general E, if the valuation of the leading term of fE(T ) is positive we call p
an irregular6 prime for E. For irregular primes either the Mordell-Weil rank of E
over ∞Q is larger than the rank of E(Q) or the Tate-Shafarevich group X(E/∞Q)
is no longer finite or both. We will determine exactly what happens for E0 with
p = 5 in Section 7.1 below.

6.2. The supersingular case. The supersingular case is more complicated, since
the Λ-module X(E/∞Q) is not torsion. A beautiful approach to the supersingular
case has been found by Pollack [Pol03] and Kobayashi [Kob03]. As mentioned above
(in Section 3.5), there are two p-adic series L±p (E, T ) to which will correspond two

new Selmer groups X±(E/∞Q), which are Λ-torsion. Despite the advantages of
this ±-theory, we use the approach of Perrin-Riou here (see [PR03, §3]).

Let TpE be the Tate module and define H1
loc to be the projective limit of the

cohomology groups H1(nQp, TpE) with respect to the corestriction maps. Here

nQp is the localization of nQ at the unique prime p above p. Perrin-Riou [PR94]

6For a good introduction to such terminology and the basics of Iwasawa theory of elliptic
curves, we refer the reader to [Gre99].
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constructed a Λ-linear Coleman map Col from H1
loc to a submodule of Qp[[T ]] ⊗

Dp(E).
Define the fine Selmer group to be the kernel

R(E/nQ) = ker (Sel(E/nQ) −→ E(nQp)⊗Qp/Zp) .

It is again a consequence of the work of Kato, namely [Kat04, Thm. 12.4], that the
Pontryagin dual Y (E/∞Q) of R(E/∞Q) is a Λ-torsion module. Denote by gE(T )
its characteristic series.

Let Σ be any finite set of places in Q containing the places of bad reduction for
E and the places ∞ and p. Let GΣ(nQ) denote the Galois group of the maximal
extension of nQ unramified at all places which do not lie above Σ. Next we define
H1

glob as the projective limit of H1(GΣ(nQ), TpE). It is a Λ-module of rank 1 and
it is independent of the choice of Σ.

By Kato again, the Λ-module H1
glob is torsion-free and H1

glob ⊗ Qp has Λ ⊗ Qp-
rank 1. Choose now any element ∞c in H1

glob such that Zc = H1
glob/(Λ · ∞c) is

Λ-torsion. Typically such a choice could be the “zeta element” of Kato, i.e., the
image of his Euler system in H1

glob. Write hc(T ) for the characteristic series of Zc.

Then we define an algebraic equivalent of the Dp(E)-valued L-series by

fE(T ) = Col(∞c) · gE(T ) · hc(T )−1 ∈ Qp[[T ]]⊗Dp(E)

where by Col(∞c) we mean the image under the Coleman map Col of the localization
of ∞c to H1

loc. The resulting series fE(T ) is independent of the choice of ∞c. Of
course, fE(T ) is again only defined up to multiplication by a unit in Λ×.

Again we have a result due to Perrin-Riou [PR93]:

Theorem 6.2 (Perrin-Riou). The order of vanishing of fE(T ) at T = 0 is at
least equal to the rank r. It is equal to r if and only if the Dp(E)-valued regula-
tor Regp(E/Q) is nonzero (Conjecture 4.4) and the p-primary part of the Tate-
Shafarevich group X(E/Q)(p) is finite (Conjecture 1.2). In this case the leading
term of the series (1− ϕ)−2 fE(T ) has the same valuation as∏

υ

cυ ·#X(E/Q)(p) · Regp(E/Q) .

Note that the proof of this theorem in the appendix of [PR03] for the supersin-
gular case uses the formula in Lemma 4.3 rather than the wrong definition of the
regulator. Also we simplified the right hand term in comparison to (5.3), because
the reduction at p is supersingular, so Np ≡ 1 (mod p), hence #E(Q)tor must be a
p-adic unit.

7. The Main Conjecture

The main conjecture links the two p-adic power series (3.1) and (6.1) of the
previous sections. We formulate everything simultaneously for the ordinary and
the supersingular case, even though they are of a quite different nature. We still
assume that p 6= 2.

Conjecture 7.1. Main conjecture of Iwasawa theory for elliptic curves If E has
good or nonsplit multiplicative reduction at p, then there exists an element u(T ) in
Λ× such that Lp(E, T ) = fE(T ) ·u(T ). If the reduction of E at p is split multiplica-
tive, then there exists such a u(T ) in T · Λ×.
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Our statement above of the main conjecture for supersingular primes is equiv-
alent to Kato’s formulation in [Kat04, Conj. 12.10] and to Kobayashi’s version
in [Kob03]. In the notation of Section 6.2, it asserts that gE(T ) = hc(T ), where c
is Kato’s zeta element.

Much is now known about this conjecture. To the elliptic curve E we attach the
p-adic representation

ρp : Gal(Q̄/Q)→ Aut(Tp(E)) ≈ GL2(Zp)

and its reduction

ρ̄p : Gal(Q̄/Q)→ Aut(E[p]) ≈ GL2(Fp).

Serre [Ser72] proved that ρ̄p is almost always surjective (note our running hypothesis
that E does not have complex multiplication) and that for curves with multiplicative
reduction at p, surjectivity can only fail when there is an isogeny of degree p defined
over Q (see [Ser96] and [RS01, Prop. 1.1] for the case p = 2 of this statement, though
the theorem below has the hypothesis that p is odd).

Proposition 7.2. If p ≥ 5 then ρ̄p is surjective if and only if ρp is surjective.

Proof. See [GJP+09, §2.1] for references for this and related results. �

Kato’s Theorem 7.3. Suppose that E has semistable reduction at p and that ρp is
surjective. Then there exists a series d(T ) in Λ such that Lp(E, T ) = fE(T ) · d(T ).
If the reduction is split multiplicative then T divides d(T ).

The main ingredient for this theorem is in [Kat04, Thm. 17.4], which addresses
the good ordinary case when ρ̄p is surjective. For the exceptional case we refer
to [Kob06], which treats the case of split multiplicative reduction (i.e., where ex-
ceptional zeroes appear).

For the remaining cases, we obtain only a weaker statement:

Kato’s Theorem 7.4. Suppose that ρ̄p is not surjective. Then there is an integer
m ≥ 0 such that fE(T ) divides pm · Lp(E, T ).

Greenberg and Vatsal [GV00] have shown that in certain cases the main conjec-
ture holds when E[p] is reducible. Recently, Skinner-Urban have proved the main
conjecture in many more cases. The following is a slightly weaker form of [SU10,
Thm. 1]:

Theorem 7.5 (Skinner-Urban). Suppose that E has good ordinary reduction at p,
that ρp is surjective and that there exists a prime q of multiplicative reduction such
that ρ̄p is ramified at q. Then the main conjecture holds, i.e., Lp(E, T ) is equal to
fE(T ), up to a unit in Λ.

The condition on the extra prime q is satisfied if E has split multiplicative
reduction at q and p does not divide the Tamagawa number cq. If E has non-split
multiplicative reduction, one has to check that p does not divide the Tamagawa
number over the unramified quadratic extension of Qq. Equivalently, in both cases
of multiplicative reduction, the representation ρ̄p is ramified at q if p - ordq(∆E),
as explained in [RS01, §2.4].
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7.1. The Example. Consider again the curve E0 (see Equation (3.3)) and the
good ordinary prime p = 5. Kato’s theorem implies that fE0(T ) divides Lp(E0, T ).
Since we have found two linearly independent points of infinite order in E0(Q), we
know that the rank of E0(Q) is at least 2. Hence the order of vanishing of fE0

(T )
at T = 0 is at least 2 and, by Theorem 7.3, so is the order of vanishing of Lp(E0, T ).
By explicitly computing an approximation to Lp(E0, T ) we see that the order of
vanishing cannot be larger than 2. Therefore the rank of E0(Q) is equal to the
order of vanishing of the p-adic L-series.

But we know more now. The fact that the order of vanishing of fE0
(T ) is equal

to 2 shows that the 5-primary part of X(E0/Q) cannot be infinite. We compute
the p-adic valuation of the leading term of fE0

(T ) by approximating Regp(E) and
using Theorem 6.1. Comparing the leading term of Lp(E0, T ), which has valuation
1, and the leading term of fE0

(T ), which has valuation 1 + ord5(#X(E0/Q)(5)),
shows that the 5-primary part of X(E0/Q) is trivial.

Moreover, the series fE0
(T ) and Lp(E0, T ) have the same leading term, which

implies that the main conjecture holds, i.e., fE0(T ) ∈ Lp(E0, T ) ·Λ×. By analyzing
the series Lp(E0, T ), one can show that

fE0
(T ) = T · ((T + 1)5 − 1) · u(T )

for a unit u(T ) ∈ Λ×. Let 1Q be the first layer of the Z5-extension of Q. Unless
the Tate-Shafarevich group X(E/1Q)(5) is infinite, Iwasawa theory predicts that
the rank of the Mordell-Weil group E0(1Q) is 6. Doing a quick search it is easy
to find points of infinite order in E0(1Q) which are not defined over Q. Therefore,
we know that the rank of E0(1Q) and of E0(∞Q) is 6 and that X(E0/1Q)(5)
and X(E0/∞Q)(5) are finite. For more examples of such factorizations of p-adic
L-series we refer to [Pol].

8. If the L-series does not vanish

Suppose the Hasse-Weil L-function L(E, s) does not vanish at s = 1. In this case,
Kolyvagin proved that E(Q) and X(E/Q) are finite. In particular, Conjecture 1.2
is valid; also, Conjectures 4.1 and 4.4 are trivially true in this case.

Let p > 2 be a prime of semistable reduction such that the representation ρ̄p
is surjective. By the interpolation property, we know that Lp(E, 0) is nonzero,
unless E has split multiplicative reduction.

8.1. The good ordinary case. In the ordinary case we have

ε−1
p · Lp(E, 0) =

L(E, 1)

ΩE

= [0]+,

which is a nonzero rational number by [Man72]. In the following inequality, we
use Theorem7 6.1 of Perrin-Riou and Schneider for the first equality and Kato’s

7In the case of analytic rank 0, the theorem is actually relatively easy and well explained
in [CS00, Ch. 3].
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Theorem 7.3 on the main conjecture for the inequality in the second line.

ordp

(
εp ·

∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2

)
= ordp(fE(0))

≤ ordp(Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
+ ordp(εp)

Hence, we have the following upper bound on the p-primary part of the Tate-
Shafarevich group

ordp (#X(E/Q)(p)) ≤ ordp

(
L(E, 1)

ΩE

)
− ordp

( ∏
cυ

(#E(Q)tor)2

)
= ordp(#X(E/Q)an).(8.1)

Under the assumption of the main conjecture, this is sharp. In particular, if the
conditions of Theorem 7.5 are satified for p, then we have the equality

ordp(#X(E/Q)(p)) = ordp(#X(E/Q)an).

This is Theorem 2.a in [SU10].

8.2. The multiplicative case. If the reduction is nonsplit, then the above holds
just the same, because in all the theorems involved the nonsplit case never differs
from the good ordinary case (only the split multiplicative case is exceptional). If
instead the reduction is split multiplicative, we have that Lp(E, 0) = 0 and

L′p(E, 0) =
Lp

log κ(γ)
· L(E, 1)

ΩE

=
Lp

log κ(γ)
· [0]+ 6= 0 .

Since the p-adic multiplier is the same on the algebraic as on the analytic side, we
can once again compute as above to obtain the same bound (8.1).

8.3. The supersingular case. For the supersingular Dp(E)-valued series, we have

(1− ϕ)−2 · Lp(E, 0) =
L(E, 1)

ΩE

· ωE = [0]+ · ωE,

which is a nonzero element of Dp(E). The Dp(E)-valued regulator Regp(E/Q) is
equal to ωE. We may therefore concentrate solely on the coordinate in ωE. Write
ordp(fE(0)) for the p-adic valuation of the leading coefficient of the ωE-coordinate
of fE(T ). Again we obtain an inequality by using Theorem 6.2:

ordp

(∏
υ

cυ ·#X(E/Q)(p)

)
= ordp((1− ϕ)−2 fE(0))

≤ ordp((1− ϕ)−2 Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
.

So we have once again that #X(E/Q)(p) is bounded from above by the highest
power of p dividing #X(E/Q)an.
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8.4. Conclusion. Summarizing the above computations, we have

Theorem 8.1 (Kato, Perrin-Riou, Schneider). Let E be an elliptic curve such that
L(E, 1) 6= 0. Then X(E/Q) is finite and

#X(E/Q)
∣∣∣ C · L(E, 1)

ΩE

· (#E(Q)tor)
2∏

cυ

where C is a product of a power of 2 and of powers of primes of additive reduction
and of powers of primes for which the representation ρ̄p is not surjective.

This improves [Rub00, Cor. 3.5.19].

9. If the L-series vanishes to the first order

We suppose for this section that E has good ordinary reduction at p and that
the complex L-series L(E, s) has a zero of order 1 at s = 1. Kolyvagin’s theorem
implies that X(E/Q) is finite and that the rank of E(Q) is equal to 1. Let P be
a choice of generator of the Mordell-Weil group modulo torsion. Suppose that the

p-adic height ĥp(P ) is nonzero. A theorem of Perrin-Riou in [PR87] asserts the
following equality of rational numbers:

1

Reg(E/Q)
· L
′(E, 1)

ΩE

=
1

Regp(E/Q)
·

L′p(E, 0)

(1− 1
α )2 · log(κ(γ))

,

where, on the left hand side, the canonical real-valued regulator Reg(E/Q) = ĥ(P )
appears along with the leading coefficient of L(E, s), while, on the right hand side,

we have the p-adic regulator Regp(E/Q) = ĥp(P ) and the leading term of the p-
adic L-series. By the BSD conjecture (or its p-adic analogue), this rational number
should be equal to

∏
cυ ·#X(E/Q) · (#E(Q)tor)

−2. By Kato’s theorem, we know
that the characteristic series fE(T ) of the Selmer group divides Lp(E, T ), at least
up to a power of p. Hence the series fE(T ) has a zero of order 1 at T = 0 and
its leading term divides the above rational number in Qp (here we use that E(Q)
has rank 1 so T | fE(T )). Imposing the additional hypothesis that ρp is surjective,
Theorem 7.3 implies the above divisibility over Zp (rather than just up to a power
of p), and we thus arrive at the following theorem.

Theorem 9.1 (Kato, Perrin-Riou). Let E/Q be an elliptic curve with good ordinary
reduction at the odd prime p. Assume that the p-adic regulator of E is nonzero.
Suppose that the representation ρp is surjective. If L(E, s) has a simple zero at
s = 1, then

ordp(#X(E/Q)(p)) ≤ ordp

(
(#E(Q)tor)

2∏
cυ

· 1

Reg(E/Q)
· L
′(E, 1)

ΩE

)
= ordp(#X(E/Q)(p)an).

In other words the upper bound asserted by the BSD conjecture is true up to a
factor involving only bad and supersingular primes, and primes p for which ρ̄p is
not surjective or the p-adic regulator is 0.

The above theorem has as a hypothesis that the reduction is good ordinary,
because this is the only case when we know a proof of the p-adic Gross-Zagier
formula. It would be interesting to obtain a generalization of the p-adic Gross-
Zagier formula to the supersingular case.
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10. Algorithm for an upper bound on the rank

Let E/Q be an elliptic curve. In this section we explain how to compute upper
bounds on the rank r of the Mordell-Weil group E(Q). For this purpose, we choose
a prime p satisfying the following conditions:

• p > 2,
• E has good reduction at p.

By computing the analytic p-adic L-function Lp(E, T ) to a certain precision, we
find an upper bound, say b, on the order of vanishing of Lp(E, T ) at T = 0. Note
that a theorem of Rohrlich [Roh84] guarantees that Lp(E, T ) is not zero. Then

b ≥ ordT=0 Lp(E, T ) ≥ ordT=0 fE(T ) ≥ r

by Kato’s Theorems 7.3 and 7.4 and by Theorems 6.1 and 6.2. Hence we have an
upper bound on the rank r.

Proposition 10.1. The computation of an approximation of the p-adic L-series
of E for an odd prime p of good reduction produces an upper bound on the rank r
of the Mordell-Weil group E(Q).

By searching for points of small height on E, we also obtain a lower bound on
the rank r. Simultaneously, we can increase the precision of the computation of
the p-adic L-function in order to try to lower the bound b. Eventually, the lower
bound is equal to the upper bound, unless the p-adic BSD Conjecture 5.1 or 5.2
is false. This is similar to the conditional algorithm described in Proposition 2.2,
except that we do know here that our upper bounds are unconditional. We do
not know unconditionally that this procedure terminates after finitely many steps.
Summarizing we can claim the following.

Proposition 10.2. Let E be an elliptic curve, and assume that there is a prime
p of good reduction such that the p-adic BSD conjecture is true. Then there is an
algorithm that computes the rank r of E using p-adic L-functions.

Of course, the procedure for computing bounds on the rank r using m-descents
has the same properties: it tries to determine the rank by searching for points and
by bounding r from above by the rank of the various m-Selmer groups. Unless
all the p-primary parts of the Tate-Shafarevich group are infinite, this procedure
returns the rank r after a finite number of steps.

But the two algorithms are fundamentally different, since the m-descent algo-
rithm is fast and there are optimized implementations for small m, but it would be
prohibitively time-consuming for larger m (e.g., m ≥ 13). In contrast, computing
the p-adic L-series even for p around 1000 is reasonably efficient, assuming one can
compute the relevant modular symbols spaces.

10.1. Technical remarks. The second condition above (good reduction) on the
prime p is too strict. We may actually allow primes of multiplicative reduction,
too. Of course in the exceptional case, when E has split multiplicative reduction,
the upper bound b on the order of vanishing of the p-adic L-function Lp(E, T ) at
T = 0 satisfies b ≥ r + 1.

Note that, assuming that the p-adic BSD conjecture holds, it is easy to predict
the needed precision in the computation of the p-adic L-series. So we can compute
immediately with the precision that should be sufficient and concentrate on the
search for points of small heights.
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For practical purposes, we take p as small as possible. The computation of the
leading term of Lp(E, T ) using the algorithm of Section 3 for curves of higher rank
r is time-consuming for large p. Also we should avoid primes p with supersingular
or split multiplicative reduction as there the needed precision is much higher and
the computation of b is much slower.

Also the speed of the computation of Lp(E, T ) using modular symbols depends
on the size of the conductor. As the conductor grows, the determination of the
rank, when it is larger than 1, using the descent method becomes much more
efficient than the use of p-adic L-series computed using modular symbols following
the linear algebra algorithm of [Cre97]. However, using p-adic L-series may provide
an advantage when considering families of quadratic twists.

An advantage to the descent method is that the determination of the m-Selmer
group for some m > 1 can be used for the search of points of infinite order. If the
elements of the Selmer group can be expressed as coverings, it is more efficient to
search for rational points on the coverings rather than on the elliptic curve itself.

11. The algorithm for the Tate-Shafarevich group

The second algorithm takes as input an elliptic curve E and a prime p and tries
to compute an upper bound on the p-primary part of X(E/Q). To apply the
results above, we impose the following conditions on (E, p):

• p > 2,
• E does not have additive reduction at p,
• the image of ρ̄p is the full group GL2(Fp).

As mentioned above, these conditions apply to all but finitely many primes p.

Algorithm 11.1. Given an elliptic curve E/Q and a prime p satisfying the above
conditions, this procedure either gives an upper bound for #X(E/Q)(p) or terminates
with an error.

(1) Attempt to determine the rank r and the full Mordell-Weil group E(Q). Exit
with an error if we fail to do this.

(2) Compute higher and higher approximations to the p-adic regulator of E over
Q using the algorithm in [MST06, Har08]. Exit with an error if after a pre-
determined number of steps, the p-adic height pairing is not shown to be
nondegenerate.

(3) Using modular symbols, compute an approximation of the coefficient L∗p(E, 0)
of the leading term of the p-adic L-series Lp(E, T ). If the order of vanishing

ordT=0 Lp(E, T )

is equal to r (or r + 1 if E has split multiplicative reduction at p), then we
print that X(E/Q)(p) is finite, otherwise we increase the precision of the
computation of Lp(E, T ). If, after some prespecified cutoff, this fails to prove
that ordT=0 Lp(E, T ) = r (or r + 1), then exit with an error.

(4) Compute the remaining information, including the Tamagawa numbers cυ and
the p-adic multiplier εp. If p is a good ordinary prime or a prime at which E
has nonsplit multiplicative reduction, let

bp = ordp(L∗p(E, 0))− ordp(εp)

−
∑
υ

ordp(cυ)− ordp(Regγ(E/Q)).
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If p is supersingular, let

bp = ordp((1− ϕ)−2 L∗p(E, 0))− ordp(Regp(E/Q))−
∑
υ

ordp(cυ).

Finally, if E has split multiplicative reduction at p, let

bp = ordp(L∗p(E, 0))− ordp(Lp)

−
∑
υ

ordp(cυ)− ordp(Regγ(E/Q)) .

(5) Output that #X(E/Q)(p) is bounded by pbp .

Proof. At Step 4, we have shown that Conjecture 4.1 (or Conjecture 4.4 in the
supersingular case) on the nondegeneracy of the p-adic regulator holds and that
X(E/Q)(p) is indeed finite by Theorem 6.1 (or Theorem 6.2 in the supersingular
case). Moreover this theorem shows that

ordp(#X(E/Q)(p)) = ordp(f
∗
E(0)) + ordp

(
(#E(Q)(p))2

εp ·
∏
υ cυ

· 1

Regγ(E/Q)

)
in the ordinary case (or the same formula where εp is replaced by Lp in the split
multiplicative case) and

ordp(#X(E/Q)(p)) = ordp((1− ϕ)−2 f∗E(0))− ordp(Regp(E/Q))−
∑
υ

ordp(cυ)

in the supersingular case. Note that #E(Q)(p) = 1 since we assumed that ρ̄p is
surjective. Finally, we use Kato’s Theorem 7.3 that

ordp(f
∗
E(0)) ≤ ordp(L∗p(E, 0))

to prove that bp is indeed an upper bound on ordp(#X(E/Q)(p)). �

In the next proposition we summarize the discussion of this section.

Proposition 11.2. Let E be an elliptic curve and p > 2 a prime for which E
has semistable reduction. If Conjectures 4.1 and 4.4 hold and if we are able to
determine the Mordell-Weil group of E, then there is a algorithm to verify that the
p-primary part of X(E/Q) is finite. If moreover the representation ρ̄p is surjective,
then the algorithm produces an upper bound on #X(E/Q)(p). If Conjecture 7.1
holds then the result of the algorithm is equal to the order of X(E/Q)(p).

11.1. Technical remarks. In Step 1 of Algorithm 11.1 we may use several ways
to determine the rank and the Mordell-Weil group. E.g., first compute the modular
symbol [0]+. If it is not zero, we have that L(E, 1) 6= 0 and the rank has to be 0.
If the order of vanishing of L(E, s) at s = 1 is 1, we may use Heegner points to
find the full Mordell-Weil group, which then is of rank 1. Otherwise we use descent
methods or the algorithm in the previous section to bound the rank from above and
search for points to find a lower bound. When enough points are found to generate
a group of finite index, we saturate the group using infinite descent in order to find
the full group E(Q). In practice this step does not create any problems as Step 3
is usually computationally more difficult.

In Step 3, it is easy to determine the precision that will be needed to compute
the p-adic valuation of the leading term L∗p(E, 0) if we assume the complex and the
p-adic version of the BSD conjecture. Hence it is easy to decide when to exit at
this step.



ALGORITHMS USING IWASAWA THEORY 29

The algorithm exits with an error only if the Mordell-Weil group could not be
determined (in Step 1), if Conjecture 4.1 or 4.4 is wrong (in Step 2), if the p-primary
part of X(E/Q) is infinite or if the main conjecture is false (both in Step 3). Hence
only weaker variants of the p-adic Birch and Swinnerton-Dyer conjecture are needed.

Another application of the algorithm is the following remark. If, for a given
elliptic curve E and a prime p, the algorithm yields as output that the p-primary
part of X(E/Q) is trivial, then the algorithm has actually also proved the main
conjecture for E and p. Because we know by then that Lp(E, T ) and the character-
istic series fE(T ) of the Selmer group have the same order of vanishing at T = 0 and
the leading terms have the same valuation. Since, by Kato’s theorem fE(T ) divides
Lp(E, T ), we know then that the quotient is a unit in Zp[[T ]]. Such calculations
and especially this remark on how to verify the main conjecture in special cases are
already contained in [PR03] for supersingular primes p.

12. Numerical results

The algorithms described above were implemented by the authors in Sage (see
[S+11b]) and all of the calculations given below can be carried out using Sage and
PSage [S+11a].

12.1. A split multiplicative example. To give an example of a curve with split
multiplicative reduction, we use the same curve as before (see Equation (3.3))

E0 : y2 + x y = x3 − x2 − 4x + 4

but with the prime p = 223. Of course, there is no hope in practice that an explicit
223-descent could be used to compute the order of X(E0/Q)(223). However, we
can compute the p-adic regulator and the L -invariant to high precision quickly
using Tate’s parametrization of E0:

Regp(E0/Q) = 153 · 2232 + 125 · 2233 + 124 · 2234 + O(2235),

L = 179 · 223 + 85 · 2232 + 30 · 2233 + O(2234).

The computation of the p-adic L-series is more time consuming8. But as we only
need the first p-adic digit to prove the triviality of X(E0/Q)(223), we only need
to sum over 222 · 223 modular symbols. This yields

Lp(E0, T ) = O(2234) + O(2231) · T + O(2231) · T 2 + (139 + O(223)) · T 3 + O(T 4).

In fact, we know that the first three coefficients vanish as we are in the exceptional
case, so the leading term has valuation 0. From these computations, we see that
the p-adic BSD conjecture predicts that

#X(E0/Q) ≡ 1 (mod 223);

in particular, we may conclude that X(E0/Q)(223) = 0.

8The optimized implementation mentioned in Section 12.4 does this entire computation in less
than one second total time, including the modular symbols space computation.
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12.2. A supersingular example. Let E be the elliptic curve

E : y2 + x = x3 + x2 + 2x + 2

listed as curve 1483a1 in Cremona’s tables. The curve has rank 2 generated by
(−1, 0) and (0, 1). The reduction of E at p = 5 is supersingular. The p-adic
L-series is

Lp(E, T ) =
(
(1 + O(5)) · T 2 + (1 + O(5)) · T 3 + O(T 4)

)
· ωE

+
(
(4 · 5 + O(52)) · T 2 + (4 · 5 + O(52)) · T 3 + O(T 4)

)
· ϕ(ωE)

where we have already taken in account that the first two terms vanish. We compute
the normalized Dp-valued regulator

Regγ(E/Q) =
(
1 + 2 · 5 + 3 · 52 + 53 + O(55)

)
· ωE

+
(
4 · 5 + 4 · 52 + 4 · 53 + 54 + 2 · 55 + O(56)

)
· ϕ(ωE) .

Hence the p-adic BSD conjecture predicts that(
1 + O(5)

)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE) =

#X(E/Q) ·
((

1 + O(5)
)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE)

)
.

In particular, we have shown that X(E/Q)(5) is trivial. It follows from Iwasawa-
theoretic consideration as in [PR03] that, if #X(E/nQ)(5) = 5en then

en =
p

p2 − 1
· pn + O(1) .

12.3. An example whose Tate-Shafarevich group is nontrivial. Let E be
the elliptic curve given by

E : y2 + x y = x3 + 16353089x − 335543012233

which is labeled 858k2 in [Cre]. The curve has rank 0 and is semistable, and the
full BSD conjecture predicts that the Tate-Shafarevich group X(E/Q) consists of
two copies of Z/7Z.

We may compute the 7-adic L-series, which yields

L7(E, T ) =72 · (2 · 72 + 73 + 74 + 3 · 75 + O(76) + (5 · 72 + O(73)) · T
+ (3 + 4 · 7 + 5 · 72 + O(73)) · T 2 + O(T 3))

On the algebraic side, we find that the constant term of the characteristic series of
E has valuation 2 + ord7(#X(E/Q)). So our algorithm yields the correct upper
bound, that #X(E/Q)(7) ≤ 72. We can change to the curve 858k1 with a 7-
isogeny and prove there directly that the upper bound on the 7-primary part of the
Tate-Shafarevich group is 1, so by isogeny invariance of the Birch and Swinnerton-
Dyer conjecture it follows that #X(E/Q)(7) = 72. (Of course, this can be shown
with other methods for this curve of rank 0, e.g., by using Heegner points.) Since
we know the exact order of X(E/Q), we deduce that the main conjecture holds.
(Also, this can be deduced from Theorem 7.5 taking q = 11.)

Once again we learn even more from the computation of the p-adic L-series.
Iwasawa theory tells us that the order of the Tate-Shafarevich group grows quickly
(for an ordinary prime) in the Z7-extension. Namely if #X(E/nQ) = 7en then
en = 2 · 7n + 2 · n+ O(1).
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12.4. Tate-Shafarevich Groups of Elliptic Curves of Rank at Least 2. Ac-
cording to [Cre], for every elliptic curve with rank ≥ 2 and conductor up to 130,000,
the BSD conjecture predicts that X(E/Q) = 0. In this section, we describe the
computation we did to verify Theorem 1.1, which gives evidence for this observa-
tion, at least up to conductor 30,000.

Consider a pair (E, p) consisting of

(1) an optimal elliptic curve E defined over Q with rank r ≥ 2 and conductor
≤ 30,000, and

(2) a good ordinary prime p with 5 ≤ p < 1,000 such that ρ̄E,p : GQ →
Aut(E[p]) is surjective.

There are 9,679 such curves E and 1,534,422 such pairs (E, p). For each pair, we
do the following:

(1) Show that r = ordT Lp(E, T ).
(2) Compute the conjectural order of X(E/Q) according to Conjecture 5.1

mod p, and check that it is 1 +O(p).

As explained in the proof of Algorithm 11.1, our hypotheses on p then imply that
X(E/Q)[p] = 0. As evidence for Conjecture 5.1 and as a double check on our
implementation, we also verify the conjecture to precision O(p) for each pair (E, p).

(1) We compute9 approximations to Lp(E, T ) that are sufficient to show that
ordT (Lp(E, T )) = r. For 1,523,413 of our 1,534,422 pairs (E, p), we did
this by computing P2 ≡ Lp(E, T ) (mod (p, T 5)); for the remaining 11,009
pairs, we computed to higher precision.

(2) For all of our pairs (E, p), we computed the p-adic regulator Regp(E) ∈ Qp
to precision at least O(p12). In all cases this computation confirmed that
Regp(E) 6= 0.

(3) With the above data for our pairs (E, p), it was then straightforward to
compute the conjectural order of X(E/Q) according to Conjecture 5.1,
and in all cases we got 1 +O(p), so X(E/Q)[p] = 0.

Remark 12.1. In fact, we carried out the regulator calculation mentioned above
for all pairs (E, p) with 5 ≤ p < 1000 good ordinary for which the conductor of
E is ≤ 130,000 and the rank is ≥ 2. A selection of large ordp(Regp(E)) is given
in Table 1. For example, for the first curve 53770a1 with p = 7, the conductor
factors as 53770 = 2 · 5 · 19 · 283, the Tamagawa numbers are 12, 2, 6, 1, which are
all coprime to 7, we have X(E/Q)an = 1, and N7 = 9, which is coprime to 7, but

Reg7(E) = 77 · 419257219506 +O(721)

is divisible by a rather large power of 7. The leading coefficient of the 7-adic L-series
vanishes to order 7− rank(E), as expected, so X(E/Q)(7) = 0:

L7(E, T ) = O(79) +O(76)T +
(
6 · 75 +O(76)

)
T 2 +

(
3 · 75 +O(76)

)
T 3

+
(
5 + 5 · 7 + 2 · 74 + 75 +O(76)

)
T 4 +O(T 5)

Remark 12.2. A very hard case is (E, p) = (17856j1, 757), in which E has rank 2
and

Regp(E) = 261 · 7574 + 531 · 7575 + 293 · 7576 + 309 · 7577 + · · ·

9The computation of the approximate p-adic L-series for all of our pairs (E, p) took several
months of CPU time using an optimized implementation of the algorithm of Section 3.
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The leading coefficient of the 757-adic L-series must be divisible by 7572, so we must
compute L7(E, T ) (mod 7573), which is enormously time consuming, even with our
highly optimized implementation, since each power of p increases the complexity
by a factor of p (and, in addition, we use slower arbitrary precision arithmetic to
avoid overflow). The computation took over two months of CPU time, and yielded

L757(T ) = O(7573) +O(7573)T +
(
399 · 7572 +O(7573)

)
T 2 + · · ·

Thus the p-adic BSD conjecture predicts that #X(E/Q)(757) ≡ 1 (mod 757),
hence X(E/Q)[757] = 0.

Table 1. Various examples in which ordp(Regp(E)) is large

Curve Rank p Regp(E)

53770a1 2 7 77 · 419257219506 +O(721)
60237b1 2 7 77 · 195984223121 +O(721)
65088bm1 2 5 57 · 3628814228 +O(521)
71236b1 2 5 57 · 2905505203 +O(521)
74220b1 2 7 77 · 411568240919 +O(721)
82096e1 2 11 117 · 163096174634581 +O(1121)
91143f1 2 17 177 · 32722747582988964 +O(1721)
101552a1 2 5 57 · 1575344534 +O(521)
116634k1 2 5 57 · 1877361868 +O(521)
121212q1 2 5 57 · 5806958402 +O(521)
123888bm1 2 7 77 · 537125029809 +O(721)
127368d1 2 13 137 · 485242111874635 +O(1321)
27448d1 3 5 56 · 115188708423 +O(522)
53122a1 3 5 56 · 31988633 +O(522)
90953a1 3 7 76 · 28674298268349 +O(722)

Let E be the elliptic curve 389a of rank 2. We verified for a large number of
primes p that X(E/Q)[p] = 0.

Theorem 12.3. Let E be the rank 2 elliptic curve of conductor 389. Then for 2 and
all 5,005 good ordinary primes p < 48,859 except p = 16,231 we have X(E/Q)[p] =
0. For each such p, the p-adic BSD conjectural order of X is congruent to 1
modulo p. This only excludes the following bad or supersingular primes and the
good ordinary prime 16,231:

p =107, 389, 599, 1049, 2957, 6661, 8263, 9397, 9551, 14633, 15101, 28591,

30671, 30869, 31799, 34781, 36263, 45161.

Proof. This is a computation similar to the one described above that takes several
weeks CPU time. �

Remark 12.4. For the prime p = 16,231, we have ordp(Regp) = 3 instead of 2 =
rank(E). Thus the computation is roughly 16,231 times as difficult as it is for
nearby primes using our algorithm, so we estimate it would take several CPU
years to finish. It should be possible to instead deal with this exceptional case
efficiently using the overconvergent modular symbols approach of Pollack-Stevens
[PS11], when a suitable implementation is available.
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Remark 12.5. We have excluded supersingular primes from this section not because
our algorithms do not apply (they do apply), but because our implementations are
significantly slower in this case. We hope to address this shortcoming in future
work.
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