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Introduction

Let Q̄ be an algebraic closure of Q, and for any prime number p, denote by
Q(µp) the cyclotomic subfield of Q̄ generated by the pth roots of unity.

Theorem . — Let p be a prime. If there exists an elliptic curve E over Q(µp)
such that the points of order p of E(Q̄) are all Q(µp)-rational, then p = 2, 3, 5, 13
or p > 1000.

The case p = 7 was treated by Emmanuel Halberstadt. The part of the theorem
that concerns the case p ≡ 3 (mod 4) is given in [3]. In this paper, we give the
details that permit our treating the more difficult case in which p ≡ 1 (mod 4).
We treat this last case with the aid of Proposition 2 below, which is not present in
loc. cit.. The case p = 13 is currently under investigation by Marusia Rebolledo, as
part of her Ph.D. thesis.

1. Counterexamples define points on X0(p)(Q(
√
p))

First we recall some of the results and notation of [3]. Let S2(Γ0(p)) denote
the space of cusp forms of weight 2 for the congruence subgroup Γ0(p). Denote
by T the subring of EndS2(Γ0(p)) generated by the Hecke operators Tn for all
integers n. Let f ∈ S2(Γ0(p)) have q-expansion

∑∞

n=1 anq
n. When χ is a Dirichlet

character, denote by L(f, χ, s) the entire function which extends the Dirichlet series
∑∞

n=1 anχ(n)/n
s.

Let S be the set of isomorphism classes of supersingular elliptic curves in charac-
teristic p. Denote by ∆S the group formed by the divisors of degree 0 with support
on S. It is equipped with a structure of T-module (induced, for example, from the
action of the Hecke correspondences on the fiber at p of the regular minimal model
of X0(p) over Z).

Let j ∈ F̄p − JS , where JS denotes the set of supersingular modular invari-
ants. We denote by ιj the homomorphism of groups ∆S −→ F̄p that associates
to

∑

E nE [E] the quantity
∑

E nE/(j − j(E)), where j(E) denotes the modular
invariant of E.
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One says that an element j ∈ Fp is anomalous if there exists an elliptic curve
over Fp with modular invariant j that possesses an Fp-rational point of order p
(then necessarily j /∈ JS).

Let p be a prime that is congruent to 1 modulo 4. In the following proposition
we prove, under a hypothesis on p, that if E is an elliptic curve over Q(µp) all of
whose torsion is Q(µp)-rational, then for each subgroup C ⊂ E(Q̄) of order p, the
point (E,C) on X0(p) is defined over Q(

√
p). As we will see in Proposition 2, this

Q(
√
p)-rationality conclusion is contrary to fact, from which we conclude that such

elliptic curves E do not exist when the hypothesis on p is satisfied. In Section 3 we
verify this hypothesis for p = 11 and 13 < p < 1000.

Proposition 1. — Suppose that p is congruent to 1 modulo 4. Suppose that for all

anomalous j ∈ Fp and all non-quadratic Dirichlet characters χ: (Z/pZ)∗ −→ C∗,

there exists tχ ∈ T and δ ∈ ∆S such that L(f, χ, 1) 6= 0 for every newform f ∈
tχS2(Γ0(p)) and ιj(tχδ) 6= 0.

Let E be an elliptic curve over Q(µp), such that the points of order p of E(Q̄)
are all Q(µp)-rational. Then for all subgroups C of order p of E(Q̄), there exists

an elliptic curve EC over Q(
√
p) equipped with a Q(

√
p)-rational subgroup DC of

order p, and the pairs (E,C) and (EC , DC) are Q̄-isomorphic.

Proof. —We prove the proposition using the results of [3]. The hypothesis ιj(tχδ) 6=
0 forces tχ /∈ pT and, a fortiori, tχ 6= 0; in addition, the non-vanishing hypothesis
on the L-series forces the hypothesis Hp(χ) of loc. cit., introduction.

By assumption, hypothesisHp(χ) is satisfied for all non-quadratic Dirichlet char-
acters χ of conductor p. Thus Corollary 3 of Proposition 6 of loc. cit. implies that E
has potentially good reduction at the prime ideal P of Z[µp] that lies above p.

Denote by j the modular invariant of the fiber at P of the Néron model of E.
According to the corollary of Proposition 15 of loc. cit., j is anomalous.

Let C be a subgroup of E(Q̄) of order p. By assumption E is an elliptic curve
over Q(µp) whose points of order p are all Q(µp)-rational, so the pair (E,C) defines
a Q(µp)-rational point P of the modular curve X0(p).

Consider the morphism φχ = φtχ : X0(p) → J0(p) obtained by composing the
standard embedding of X0(p) into J0(p) with tχ. As in section 1.3 of loc. cit., φχ
extends to a map from the minimal regular model of X0(p) to the Néron model
of J0(p). When ιj(tχδ) 6= 0, this map is a formal immersion at the point P/Fp ,
according to loc. cit., Proposition 4. The hypothesis that L(f, χ, 1) 6= 0 for every
newform f ∈ tχS2(Γ0(p)), translates into L(tχJ0(p), χ, 1) 6= 0, which in turn implies
that the χ-isotypical component of tχJ0(p)(Q(µp)) is finite (this is Kato’s theorem,
see the discussion in section 1.5 of loc. cit.). We can then apply Corollary 1 of
Proposition 6 of loc. cit.. This proves that P is Q(

√
p)-rational, which translates

into the conclusion of Proposition 1.

Remark 1: Proposition 1 is true even under the weaker hypothesis that tχ lies in
T⊗ Z[χ], which acts Z[χ]-linearly on modular forms.

2. Elliptic curves and quadratic fields
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Proposition 2. — Let p be a prime number > 5 and congruent to 1 modulo 4.
Let E be an elliptic curve over Q̄. There exists a subgroup C ⊂ E(Q̄) of order p
such that (E,C) can not be defined over Q(

√
p).

Proof. — We procede by contradiction, i.e., we assume that for all cyclic sub-
groups C of order p of E(Q̄), the pair (E,C) can be defined over Q(

√
p). We

choose such a pair (E0, C0) over Q(
√
p).

Assume first that all twists of E are quadratic, i.e. that j(E) is neither 0 nor
1728. We show that the group Gal(Q̄/Q(

√
p)) acts by scalars on the Fp-vector space

E0(Q̄)[p]. For this it suffices to show that all subgroups of order p of E0(Q̄)[p] are
stable by Gal(Q̄/Q(

√
p)).

Suppose C1 is a cyclic subgroup of order p of E0(Q̄)[p]. By assumption, there
exists a quadratic twist E1 of E0 and a cyclic subgroup C ′

1 of E1(Q̄)[p] that is
defined over Q(

√
p), such that the image of C1 by the isomorphism E0 ' E1 is C ′

1.
Since Gal(Q̄/Q(

√
p)) leaves C ′

1 stable and the action of Gal(Q̄/Q(
√
p)) on E0(Q̄)[p]

is a quadratic twist of the action on E1(Q̄)[p], we see that Gal(Q̄/Q(
√
p)) leaves C1

stable. Thus Gal(Q̄/Q(
√
p)) fixes all lines in E0(Q̄)[p], and hence acts by scalars.

Denote by α the corresponding character of Gal(Q̄/Q(
√
p)).

Because of the Weil pairing, α2 coincides with the cyclotomic character modulo p,
and it factors through Gal(Q(µp)/Q(

√
p)). But, when p ≡ 1 (mod 4), the group

Gal(Q(µp)/Q(
√
p)) is of even order, and the characters modulo p form a group

generated by the reduction modulo p of the cyclotomic character, which, therefore,
can not be a square.

Next suppose that j(E) = 0 or j(E) = 1728. Indeed, in these two cases E has
complex multiplication by an order of K = Q[

√
−3] or Q[

√
−1]. Let dK = 3 or

dK = 2 in these two cases respectively. Let C be a subgroup of order p of E(Q̄).
Consider the map ρ0 : Gal(Q̄/Q(

√
p)) −→ AutE0(Q̄)[p]. Since E has complex

multiplication, the image of ρ0 has no element of order p. Therefore, there are at
least two subgroups, including C0, of order p of E(Q̄) stable under the image of
ρ0. Call the other subgroup C1. Let C2 be a subgroup of order p of E(Q̄) which is
distinct from C0 and C1. The pair (E,C2) can be defined over Q(

√
p). Therefore,

there exists an extension field K2 of Q(
√
p), whose degree d2 divides 2dK , such

that the image of the restriction of ρ0 to Gal(Q̄/K2) leaves stable three distinct
subgroups of order p of E0(Q̄), and therefore consists only of scalars. If d2 ≤ 2, one
concludes as in the cases where j(E) 6= 0 and j(E) 6= 1728. We suppose now that
d2 > 2. The projective image of ρ0 has order dK .

Since E is an elliptic curve over Q̄ with complex multiplication by a field of
class number one, there is a model for E that is defined over Q. Consider the
map ρ : Gal(Q̄/Q) −→ AutE(Q̄)[p]. By the theory of complex multiplication, the
projective image of ρ has order 2(p+1) or 2(p−1). There exists a field extension L of
degree dividing dK ofQ(

√
p) such that the restrictions to Gal(Q̄/L) of the projective

images of ρ and ρ0 coincide. Therefore one has (p−1)|d2
K or (p+1)|d2

K . This imposes
p = 5 and dK = 2.

3. Verification of the hypothesis of Proposition 1 Let p be a prime number. In
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this section we explain how we used a computer to verify that the second hypothesis
of Proposition 1 are satisfied for p = 11 and 13 < p < 1000. (In the present paper,
this verification is only required for p that are congruent to 1 modulo 4.)

We first list the anomalous j-invariants j ∈ Fp. Since p is fairly small in the range
of our computations, we created this list by simply enumerating all of the elliptic
curves over Fp and counting the number of points on each curve. For example,
when p = 31 the anomalous j-invariants are j = 10, 14.

Let χ : Z/pZ −→ C be a non-quadratic Dirichlet character, and denote by Z[χ]
the subring of Q(ζp−1) generated by the image of χ. Denote by S2(Γ0(p);Z) the
set of modular forms f ∈ S2(Γ0(p)) whose Fourier expansion at the cusp ∞ lies in
Z[[q]].

We study the T-modules T, ∆S , and S2(Γ0(p);Z). After extension of scalars
to Q, these are T ⊗ Q-modules that are free of rank 1, of which the irreducible
sub-T ⊗ Q modules are the annihilators of the minimal prime ideals of T. We
compute a list of the minimal prime ideals of T by computing appropriate kernels
and characteristic polynomials of Hecke operators of small index on ∆S , which we
find using the graph method of Mestre and Oesterlé [4].

Having computed the minimal prime ideals of T, we verify that some nontrivial
ideal I of T (always a minimal prime ideal in the range of our computations)
simultaneously satisfies the following three conditions:

1) For each anomalous j-invariant, there exists x ∈ ∆S such that Ix = 0 and
ιj(x) 6= 0.

2) Each of the newforms f ∈ S2(Γ0(p)) with If = 0 satisfies L(f, χ, 1) 6= 0.

3) The image of I in the T-module T/pT is a direct factor.

Let I be an ideal of T. Here is how we verify these conditions for I.

Verification of condition 1.

We verified that I satisfies the first condition by finding a T-eigenvector v of
∆S⊗Z̄ that is annihilated by I and satisfies ιj(v) 6= 0 for all anomalous j-invariants.
Because ιj is a homomorphism, this implies the existence of x as in condition 1.

Verification of condition 2.

We verified the second condition using modular symbols. Our method is purely
algebraic, so we do not perform any approximate computation of integrals. Using
the algorithm described in [2], we compute the action of the Hecke algebra T on the
space HomQ[χ](H1(X0(p);Q[χ]),Q[χ]). By intersecting the kernels of appropriate
elements ofT, we find a basis ϕ1, . . . , ϕn for the subspace of HomQ[χ](H1(X0(p);Q[χ]),Q[χ])
that is annihilated by I. Let ΦI = ϕ1×· · ·×ϕn denote the linear mapH1(X0(p);Q[χ]) −→
Q[χ]n defined by the ϕi.

Let TQ[χ] = T⊗Q[χ], where Q[χ] is the number field generated the image of χ.
The χ-twisted winding element (denoted θχ in [3])

eχ =
∑

a∈(Z/pZ)∗

χ̄(a)
{

∞,
a

p

}
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generates the χ-twisted winding submodule TQ[χ] · eχ. To compute this submodule,
we use that T is generated, even as a Z-module, by T1, T2, . . . , Tb, for any b ≥
(p+ 1)/6 (see [1]).

Lemma 3. — Let I be a minimal prime ideal of T, and let χ : (Z/NZ)∗ −→ C∗

be a nontrivial Dirichlet character. Then the dimension of the Q[χ]-vector space

ΦI(TQ[χ] · eχ) is equal to the cardinality of the set of newforms f such that If = 0
and L(f, χ, 1) 6= 0.
Proof. — We have

dimQ[χ] ΦI(TQ[χ] · eχ) = dimC ΦI(TC · eχ).

This dimension is invariant upon changing the basis ϕ1, . . . , ϕn used to define ΦI . In
particular, over C there is a basis ϕ′1, . . . , ϕ

′
n so that the resulting map Φ′

I
satisfies

Φ′
I(x) =

(

Re(

∫

x

f (1)), Im(

∫

x

f (1)), . . . ,Re(

∫

x

f (d)), Im(

∫

x

f (d))
)

,

where f (1), . . . , f (d) are the Galois conjugates of a newform f (1) =
∑

a
(1)
n qn such

that If (1) = 0. Furthermore, Φ′
I
is a TC-module homomorphism if we declare that

TC acts on R2d = Cd via

Tn(x1, y1, . . . , xd, yd) = Tn(z1, . . . , zd) = (a(1)
n z1, . . . , a

(d)
n zd),

where zj = xj + iyj and the a
(j)
n are Fourier coefficients of the f (j).

As explained in Section 2.2 of [3],
∫

eχ
f = ∗ ·L(f, χ, 1), where ∗ is some nonzero

real or pure-imaginary complex number, according to whether χ(−1) equals 1 or −1,
respectively. Combining this observation with the equality

dimC ΦI(TC · eχ) = dimC(TC · ΦI(eχ)),

and that the image of TC in End(Cd) is equal to the diagonal matrices, proves the
asserted equality.

Remark 2: The dimension of ΦI(TQ[χ] · eχ) is unchanged if χ is replaced by a
Galois-conjugate character.

In practice, computations over the cyclotomic fieldQ[χ] are extremely expensive.
Fortunately, for our application it suffices to give a lower bound on the dimension
appearing in the lemma. Such a bound can be efficiently obtained by instead com-
puting the reductions of Φ, χ, and the χ-twisted winding submodule modulo a
suitable maximal ideal of the ring of integers of Q[χ] that splits completely; this
amounts to performing the above linear algebra over a relatively small finite field
F` where ` is congruent to 1 modulo p− 1.

Remark 3: For every newform f in S2(Γ0(p)), with p ≤ 1000, and every mod p
Dirichlet character χ, we found that L(f, χ, 1) 6= 0 if and only if L(fσ, χ, 1) 6= 0 for
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all conjugates fσ of f . More generally, for any f and χ, this equivalence holds ifQ[χ]
is linearly disjoint from the field Kf = (T/I) ⊗Q. The first few primes for which
there is a form f and a mod p character χ such that the linear disjointness hypothesis
fails are p = 31, 113, 127, and 191. The analogue of this nonvanishing observation
is false if we instead consider newforms on Γ1(p) and allow χ to be arbitrary. For
example, let f be one of the two Galois-conjugate newforms in S2(Γ1(13)). Then
there is a character χ : (Z/7Z)∗ −→ C∗ of order 3 such that L(f, χ, 1) = 0 and
L(fσ, χ, 1) 6= 0.

Verification of condition 3.

The third condition is satisfied for all p < 10000, except possibly p = 389,
because we have verified that the discriminant of T is prime to p for all such p 6= 389,
so the ring T/pT is semisimple. The discriminant computation was carried out by
the second author as follows. Using the method of [4], we computed discrimininants
of characteristic polynomials mod p of the Hecke operators T2, T3, T5, and T7. In the
few cases when all four of these characteristic polynomials had discriminant equal
to 0 mod p, we resorted to modular symbols to compute several more characteristic
polynomials until we found one having nonzero discriminant modulo p.

We consider the remaining case p = 389 in detail. There are exactly five minimal
prime ideals of T, which we denote P1, P2, P3, P6, and P20, where the quotient
field of T/Pi has dimension i. The discriminant of the characteristic polynomial of
T2 is exactly divisible by 389. Since the field of fractions of T/P20 has discriminant
divisible by 389, we see that 389 is not the residue characteristic of any congruence
prime. Let Oi = T/Pi. The natural map T→ ∏Oi has finite kernel and cokernel
each of order coprime to 389, so T/389T ∼=

∏

Oi/389Oi. The nonquadratic charac-
ters χ : (Z/pZ)∗ → C∗ have orders 1, 4, 97, 193, 388. We must verify that for each of
these degrees, one of the ideals Pi satisfies conditions 1–3. We check as above that
conditions 1–3 for χ of order 4 are satisfied by P2 and conditions 1–3 for χ of order
greater than 4 are satisfied by P1. When χ is the trivial character, conditions 1–3
are satisfied only by P20.

Summary.

For each prime p < 1000 different than 2, 3, 5, 7, 13, we verified the existence of
an ideal that satisfies the three conditions given above, as follows. We consider each
Galois conjugacy class of non-quadratic characters χ. We find a single newform f
such that L(f, χ, 1) 6= 0 for all conjugates of f and of χ. Then we let I be the
annihilator of f , and try to verify condition 1 for all of the anamolous j-invariants
in Fp. When the three conditions are satisfied for an ideal I of T, there exists
tχ ∈ T that is annihilated by I and is the inverse image of a projector of T/pT on
the complement of I + pT. Putting δ = x, one has ιj(tχδ) = ιj(δ) 6= 0 (because
ιj takes its values in characteristic p, it follows that δ is annihilated by I and
tχ ∈ 1 + pT+ P). Every newform f ∈ tχS2(Γ0(p)) satisfies If = 0, and therefore,
by our second condition, L(f, χ, 1) 6= 0. The pair (tχ, δ) then satisfies the conditions
required by Proposition 1.
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