
1

Sage: Creating a Viable Free Open Source
Alternative to Magma, Maple, Mathematica,

and MATLAB

1



William Stein1

1 The work was supported by NSF grant DUE-1022574.



1.1 Introduction 3

1.1 Introduction

The goal of the Sage project (http://www.sagemath.org) is to create a

viable free open source alternative to Magma, MapleTM, Mathematica R©,

and MATLAB R©, which are the most popular non-free closed source

mathematical software systems.1 Magma is (by far) the most advanced

non-free system for structured abstract algebraic computation, Mathe-

matica and Maple are popular and highly developed systems that shine

at symbolic manipulation, and MATLAB is the most popular system for

applied numerical mathematics. Together there are over 3,000 employ-

ees working at the companies that produce the four Ma’s listed above,

which take in over a hundred million dollars of revenue annually.

By a viable free alternative to the Ma’s, we mean a system that will

have the important mathematical features of each Ma, with compara-

ble speed. It will have 2d and 3d graphics, an interactive graphical user

interface, and documentation, including books, papers, school and col-

lege curriculum materials, etc. A single alternative to all of the Ma’s is

not necessarily a drop-in replacement for any of the Ma’s; in particu-

lar, it need not run programs written in the custom languages of those

systems. Thus an alternative may be philosophically different than the

open source system Octave, which understands the MATLAB source lan-

guage and attempts to implement the entire MATLAB library. Develop-

ment could instead focus on implementing functions that users demand,

rather than systematically trying to implement every single function of

the Ma’s. The culture, architecture, and general look and feel of such a

system would be very different than that of the Ma’s.

In Section 1.2 we explain some of the motivation for starting the Sage

project, in Section 1.3 we describe the basic architecture of Sage, and in

Section 1.4 we sketch aspects of the history of the project.

1.2 Motivation for Starting Sage

Each of the Ma’s cost substantial money, and is hence expensive for

me, my collaborators, and students. The Ma’s are not owned by the

community like Sage is, or Wikipedia is, for that matter.

The Ma’s are closed, which means that the implementation of some

1 Maple is a trademark of Waterloo Maple Inc. Mathematica is a registered
trademark of Wolfram Research Incorporated. MATLAB is a registered
trademark of MathWorks. I will refer to the four systems together as “the Ma’s”
in the rest of this article.

http://www.sagemath.org


4 Sage: Creating a Viable Alternative

algorithms are secret, in which case you are not allowed to modify or

extend them.

“You should realize at the outset that while knowing about the internals of
Mathematica may be of intellectual interest, it is usually much less important
in practice than you might at first suppose. Indeed, in almost all practical uses
of Mathematica, issues about how Mathematica works inside turn out to be
largely irrelevant. Particularly in more advanced applications of Mathematica,
it may sometimes seem worthwhile to try to analyze internal algorithms in
order to predict which way of doing a given computation will be the most
efficient. [...] But most often the analyses will not be worthwhile. For the
internals of Mathematica are quite complicated..”

– The Mathematica Documentation

The philosophy espoused in Sage, and indeed by the vast open source

software community, is exactly the opposite. We want you to know about

the internals, and when they are quite complicated, we want you to

help make them more understandable. Indeed, Sage’s growth depends

on you analyzing how Sage works, improving it, and contributing your

improvements back.

sage: crt(2, 1, 3, 5) # Chinese Remainder Theorem
11
sage: crt? # ? = documentation and examples
Returns a solution to a Chinese Remainder Theorem ...
...
sage: crt?? # ?? = source code
def crt (...):
...

g, alpha , beta = XGCD(m, n)
q, r = (b - a). quo_rem(g)
if r != 0:

raise ValueError("No solution ...")
return (a + q*alpha*m) % lcm(m, n)

Moreover, by browsing http://hg.sagemath.org/sage-main/, you can

see exactly who wrote or modified any particular line of code in the Sage

library, when they did it, and why. Everything included in Sage is free

and open source, and it will foreover remain that way.

“I see open source as Science. If you don’t spread your ideas in the open, if
you don’t allow other people to look at how your ideas work and verify that
they work, you are not doing Science, you are doing Witchcraft. Traditional
software development models, where you keep things inside a company and
hide what you are doing, are basically Witchcraft. Open source is all about
the fact that it is open; people can actually look at what you are doing, and
they can improve it, and they can build on top of it. [...] One of my favorite
quotes from history is Newton: ‘If I had seen further, it has been by standing
on the shoulders of giants.’”

http://hg.sagemath.org/sage-main/


1.2 Motivation for Starting Sage 5

– Linus Torvalds.
Listen at http://www.youtube.com/watch?v=bt_Y4pSdsHw

The design decisions of the Ma’s are not made openly by the commu-

nity. In contrast, important decisions about Sage development are made

via open public discussions and voting that is archived on public mailing

lists with thousands of subscribers.

Every one of the Ma’s uses a special mathematics-oriented inter-

preted programming language, which locks you into their product, makes

writing some code outside mathematics unnecessarily difficult, and im-

pacts the number of software engineers that are experts at programming

in that language. In contrast, the user language of Sage is primarily

the mainstream free open source language Python http://python.org,

which is one of the world’s most popular interpreted programming lan-

guages. The Sage project neither invented nor maintains the underly-

ing Python language, but gains immediate access to the IPython shell,

Python scientific libraries (such as NumPy, SciPy, CVXopt and Mat-

PlotLib), and a large Python community with major support from big

companies such as Google. In comparison to Python, the Ma’s are small

players in terms of language development. Thus for Sage most of the

problems of language development are handled by someone else.

The bug tracking done for three of four of the Ma’s is currently secret2,

which means that there is no published accounting of all known bugs,

the status of work on them, and how bugs are resolved. But the Ma’s

do have many bugs; see the release notes of each new version, which

lists bugs that were fixed3. Sage also has bugs, which are all publicly

tracked at http://trac.sagemath.org, and there are numerous “Bug

Days” workshops devoted entirely to fixing bugs in Sage. Moreover, all

discussion about resolving a given bug, including peer review of solu-

tions, is publicly archived. We note that sadly even some prize winning4

free open source systems, such as GAP http://www.gap-system.org/,

do not have an open bug tracking system, resulting in people reporting

the same bugs over and over again.

Each of the Ma’s is a combination of secret unchangeable compiled

code and less secret interpreted code. Users with experience program-

ming in compiled languages such as Fortran or C++ may find the loss of

a compiler to be frustrating. None of the Ma’s has an optimizing compiler

that converts programs written in their custom interpreted language to a

2 MATLAB has an open bug tracker, though it requires free registration to view.
3 See also http://cybertester.com/ and http://maple.bug-list.org/.
4 Jenks Prize, 2008

http://www.youtube.com/watch?v=bt_Y4pSdsHw
http://python.org
http://trac.sagemath.org
http://www.gap-system.org/
http://cybertester.com/
http://maple.bug-list.org/


6 Sage: Creating a Viable Alternative

fast executable binary format that is not interpreted at runtime.5 In con-

trast, Sage is tightly integrated with Cython6 http://www.cython.org,

which is a ython-to-C/C++ compiler that speeds up code execution and

has support for statically declaring data types (for potentially enor-

mous speedups) and natively calling existing C/C++/Fortran code.

For example, enter the following in a cell of the Sage notebook (e.g.,

http://sagenb.org):

def python_sum2(n):
s = int(0)
for i in xrange(1, n+1):

s += i*i
return s

Then enter the following in another cell:

%cython
def cython_sum2(long n):

cdef long i, s = 0
for i in range(1, n+1):

s += i*i
return s

The second implementation, despite looking nearly identical, is nearly a

hundred times faster than the first one (your timings may vary).

sage: timeit(’python_sum2 (2*10^6) ’)
5 loops , best of 3: 154 ms per loop
sage: timeit(’cython_sum2 (2*10^6) ’)
125 loops , best of 3: 1.76 ms per loop
sage: 154/1.76
87.5

Of course, it is better to choose a different algorithm. In case you don’t

remember a closed form expression for the sum of the first n squares,

Sage can deduce it:

sage: var(’k, n’)
sage: factor(sum(k^2, k, 1, n))

5 MATLAB has a compiler, but “the source code is still interpreted at run-time,
and performance of code should be the same whether run in standalone mode or
in MATLAB.” Mathematica also has a Compile function, but simply compiles
expressions to a different internal format that is interpreted, much like Sage’s
fast callable function.

6 The Cython project has received extensive contributions from Sage developers,
and is very popular in the world of Python-based scientific computing.

http://www.cython.org
http://sagenb.org


1.3 What is Sage? 7

1/6*(n + 1)*(2*n + 1)*n

And now our simpler fast implementation is:

def sum2(n):
return n*(2*n+1)*(n+1)/6

Just as above, we can also use the Cython compiler:

%cython
def c_sum2(long n):

return n*(2*n+1)*(n+1)/6

Comparing times, we see that Cython is 10 times faster:

sage: n = 2*10^6
sage: timeit(’sum2(n)’)
625 loops , best of 3: 1.41 microseconds per loop
sage: timeit(’c_sum2(n)’)
625 loops , best of 3: 0.145 microseconds per loop
sage: 1.41/.145
9.72413793103448

In this case, the enhanced speed comes at a cost, in that the answer is

wrong when the input is large enough to cause an overflow:

sage: c_sum2 (2*10^6) # WARNING: overflow
-407788678951258603

Cython is very powerful, but to fully benefit from it, one must under-

stand machine level arithmetic data types, such as long, int, float, etc.

With Sage you have that option.

1.3 What is Sage?

The goal of Sage is to compete with the Ma’s, and the intellectual prop-

erty at our disposal is the complete range of GPL-compatibly licensed

open source software.

Sage is a self-contained free open source distribution of about 100

open source software packages and libraries7 that aims to address all

7 See the list of packages in Sage at http://sagemath.org/packages/standard/.
The list includes R, Pari, Singular, GAP, Maxima, GSL, Numpy, Scipy, ATLAS,
Matplotlib, and many other popular programs.

http://sagemath.org/packages/standard/


8 Sage: Creating a Viable Alternative

computational areas of pure and applied mathematics. The download

of Sage contains all dependencies required for the normal functioning of

Sage, including Python itself. Sage includes a substantial amount of code

that provides a unified Python-based interface to these other packages.

Sage also includes a library of new code written in Python, Cython and

C/C++, which implements a huge range of algorithms.

1.4 History

I made the first release of Sage in February 2005, and at the time called it

“Software for Arithmetic Geometry Experimentation.” I was a serious

user of, and contributor to, Magma at the time, and was motivated to

start Sage for many of the reasons discussed above. In particular, I was

personally frustrated with the top-down closed development model of

Magma, the fact that several million lines of the source code of Magma

are closed source, and the fees that my colleagues had to pay in order to

use the substantial amount of code that I contributed to Magma. Despite

my early naive hope that Magma would be open sourced, it never was.

So I started Sage motivated by the dream that someday the single most

important item of software I use on a daily basis would be free and open.

David Joyner, David Kohel, Joe Wetherell, and Martin Albrecht were

also involved in the development of Sage during the first year.

In February 2006, the National Science Foundation funded a 2-day

workshop called “Sage Days 2006” at UC San Diego, which had about

40 participants and speakers from several open and closed source math-

ematical software projects. After doing a year of fulltime mostly solitary

work on Sage, I was surprised by the positive reception of Sage by mem-

bers of the mathematical research community. What Sage promised was

something many mathematicians wanted. Whether or not Sage would

someday deliver on that promise was (and for many still is) an open

question.

I had decided when I started Sage that I would make it powerful

enough for my research, with or without the help of anybody else, and

was pleasantly surprised at this workshop to find that many other people

were interested in helping, and understood the shortcomings of existing

open source software, such as GAP and PARI, and the longterm need to

move beyond Magma. Six months later, I ran another Sage Days work-

shop, which resulted in numerous talented young graduate students, in-

cluding David Harvey, David Roe, Robert Bradshaw, and Robert Miller,



1.4 History 9

getting involved in Sage development. I used startup money from Uni-

versity of Washington to hire Alex Clemesha as a fulltime employee to

implement 2d graphics and help create a notebook interface to Sage.

I also learned that there was much broader interest in such a system,

and stopped referring to Sage as being exclusively for “arithmetic ge-

ometry”; instead, Sage became “Software for Algebra and Geometry

Experimentation.” Today the acronym is deprecated.

The year 2007 was a major turning point for Sage. Far more people

got involved with development, we had four Sage Days workshops, and

prompted by Craig Citro, we instituted a requirement that all new code

must have tests for 100% of the functions touched by that code, and ev-

ery modification to Sage must be peer reviewed. Our peer review process

is much more open than in mathematical research journals; everything

that happens is publicly archived at http://trac.sagemath.org. Dur-

ing 2007, I also secured some funding for Sage development from Mi-

crosoft Research, Google, and NSF. Also, a German graduate student

studying cryptography, Martin Albrecht presented Sage at the Trophées

du Libre competition in France, and Sage won first place in “Scientific

Software”, which led to a huge amount of good publicity, including arti-

cles in many languages around the world and appearances8 on the front

page of http://slashdot.org.

In 2008, I organized 7 Sage Days workshops at places such as IPAM

(at UCLA) and the Clay Mathematics Institute, and for the first time,

several people besides me made releases of Sage. In 2009, we had 8 more

Sage Days workshops, and the underlying foundations of Sage improved,

including development of a powerful coercion architecture. This coercion

model systematically determines what happens when performing opera-

tions such as a + b, when a and b are elements of potentially different

rings (or groups, or modules, etc.).

sage: R.<x> = PolynomialRing(ZZ)
sage: f = x + 1/2; f
x + 1/2
sage: parent(f)
Univariate Polynomial Ring in x over Rational Field

We compare this with Magma (V2.17-4), which has a more ad hoc co-

ercion system:

8 For example, http://science.slashdot.org/story/07/12/08/1350258/
Open-Source-Sage-Takes-Aim-at-High-End-Math-Software

http://trac.sagemath.org
http://slashdot.org
http://science.slashdot.org/story/07/12/08/1350258/Open-Source-Sage-Takes-Aim-at-High-End-Math-Software
http://science.slashdot.org/story/07/12/08/1350258/Open-Source-Sage-Takes-Aim-at-High-End-Math-Software


10 Sage: Creating a Viable Alternative

> R<x> := PolynomialRing(IntegerRing ());
> x + 1/2

^
Runtime error in ’+’: Bad argument types
Argument types given: RngUPolElt[RngInt], FldRatElt

Robert Bradshaw and I also added support for beautiful browser-

based 3D graphics to Sage, which involved writing a 3D graphics library,

and adapting the free open source JMOL Java library (see http://jmol.

sourceforge.net/) for rendering molecules to instead plot mathemat-

ical objects.

sage: f(x,y) = sin(x - y) * y * cos(x)
sage: plot3d(f, (x,-3,3), (y,-3,3), color=’red’)

In 2009, following a huge amount of porting work by Mike Hansen,

development of algebraic combinatorics in Sage picked up substantial

momentum, with the switch of the entire MuPAD-combinat group to

Sage (forming sage-combinat http://wiki.sagemath.org/combinat),

only months before the formerly free system MuPAD R©9 was bought

out by Mathworks (makers of MATLAB). In addition to work on Lie

theory by Dan Bump, this also led to a massive amount of work on a

category theoretic framework for Sage by Nicolas Thiery.

In 2010, there were 13 Sage Days workshops in many parts of the

world, and grant funding for Sage significantly improved, including new

NSF funding for undergraduate curriculum development. I also spent

much of my programming time during 2010–2011 developing a number

theory library called psage http://code.google.com/p/purplesage/,

which is currently not included in Sage, but can be easily installed.

9 MuPAD is a registered trademark of SciFace Software GmbH & Co.

http://jmol.sourceforge.net/
http://jmol.sourceforge.net/
http://wiki.sagemath.org/combinat
http://code.google.com/p/purplesage/


1.4 History 11

Many aspects of Sage make it an ideal tool for teaching mathematics,

so there’s a steadily growing group of teachers using it: for example,

there have been MAA PREP workshops on Sage for the last two years,

and a third is likely to run next summer, there are regular posts on the

Sage lists about setting up classroom servers, and there is an NSF-funded

project called UTMOST (see http://utmost.aimath.org/) devoted to

creating undergraduate curriculum materials for Sage.

The page http://sagemath.org/library-publications.html lists

101 accepted publications that use Sage, 47 preprints, 22 theses, and 16

books, and there are surely many more “in the wild” that we are not

aware of. According to Google Analytics, the main Sage website gets

about 2,500 absolute unique visitors per day, and the website http:

//sagenb.org, which allows anybody to easily use Sage through their

web browser, has around 700 absolute unique visitors per day.

For many mathematicians and students, Sage is today the mature,

open source, and free foundation on which they can build their research

program.

http://utmost.aimath.org/
http:// sagemath.org/library-publications.html
http://sagenb.org
http://sagenb.org

	Sage: Creating a Viable Alternative
	Introduction
	Motivation for Starting Sage
	What is Sage?
	History


