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Explicit Approaches to the Birch and

Swinnerton-Dyer Conjecture

1 Introduction

My research reflects the rewarding interplay of theory with explicit computation
in number theory, as illustrated by Bryan Birch [Bir71]:

I want to describe some computations undertaken by myself and Swin-
nerton-Dyer on EDSAC by which we have calculated the zeta-functions
of certain elliptic curves. As a result of these computations we have
found an analogue for an elliptic curve of the Tamagawa number of an
algebraic group; and conjectures (due to ourselves, due to Tate, and
due to others) have proliferated.

The goal of this proposal is to carry out a wide range of computational and
theoretical investigations on elliptic curves and abelian varieties motivated by the
Birch and Swinnerton-Dyer conjecture (BSD conjecture). This will hopefully im-
prove our practical computational capabilities, extend the data that researchers
have available for formulating conjectures, and deepen our understanding of the-
orems about the BSD conjecture.

The PI is one of the more sought after people by the worldwide community
of number theorists, for computational confirmation of conjectures, for modular
forms algorithms, for data, and for ways of formulating problems so as to make
them more accessible to algorithms. The PI has also been successful at involving
numerous undergraduate and graduate students at all levels in his research.

1.1 Prior Support

The PI was partly supported by NSF postdoctoral fellowship during 2000–2004
(DMS-0071576) in the amount of $90,000. The PI was also awarded NSF grant
DMS-0555776 (and DMS-0400386) from the ANTC program in the amount of
$177,917 for the period 2004–2007. The PI’s work under DMS-0555776 suc-
ceeded at improving the modular forms database and resulted in numerous pa-
pers on the arithmetic of elliptic curves, modular forms and abelian varieties
[Ste, GJP+05, MST06, SW04, JS05, AS05, ARS06a, ARS06b, Ste04b], one com-
pleted book [Ste07] on computing with modular forms, and progress on another
book on number theory [Ste05]. It has also led to a new software initiative (see Sec-
tion 1.4 below). Funds from DMS-0555776 were used to run a successful workshop
at UCSD and to purchase a 16-processor compute server with 64GB RAM.
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1.2 The BSD Conjecture

The Birch and Swinnerton-Dyer conjecture is a central problems in number theory,
and this proposal is based on a group of ideas related to this conjecture.

An elliptic curve is a projective genus one curve with a distinguished rational
point. Every such curve is the projective closure of a nonsingular affine curve given
by y2 +a1xy +a3y = x3 +a2x

2 +a4x+a6. An abelian variety is a projective group
variety—the one dimensional abelian varieties are exactly the elliptic curves.

Conjecture 1.1 (BSD Conjecture). Let A be an abelian variety over Q. (The
objects and notation in the formula are discussed below.)

1. The rank r of A(Q) equals ords=1 L(A, s).

2. We have
L(r)(A, 1)

r!
=

#X(A) · ΩA · RegA

#A(Q)tor · #A∨(Q)tor
·
∏

ℓ|N

cℓ.

In the conjecture, L(A, s) is the Hasse-Weil L-series of A. The real volume ΩA

is the measure of A(R) with respect to a basis of differentials for the Néron model
of A. For each prime ℓ | N , the integer cℓ = #ΦA,ℓ(Fℓ) is the Tamagawa number
of A at ℓ, where ΦA,ℓ denotes the component group of the Néron model of A at ℓ.
The abelian variety dual of A is denoted A∨, and in the conjecture A(Q)tor and
A∨(Q)tor are the torsion subgroups. The Shafarevich-Tate group of A is

X(A) = Ker



H1(Q, A) →
⊕

p≤∞

H1(Qp, A)



 ,

which is a group that measures the failure of a local-to-global principle. It is
implicit in the statement of the conjecture that X(A) is finite, though this is only
known in some cases. The regulator RegA is the absolute value of the discriminant
of the Néron-Tate canonical height pairing A(Q)/tor × A(Q)/tor → R.

If A is an elliptic curve then #A(Q)tor, #A∨(Q)tor, ΩA, and cℓ are relatively
easy to compute; none of the other quantities are known to be computable in gen-
eral, even when A is an elliptic curve, though many can in practice be computed.

Conjecture 1.2 (BSD(A, p)). Let A be an abelian variety over Q of rank r and
let p be a prime. Then

ordp

(

L(r)(A, 1)

r! · RegA ·ΩA

)

= ordp





#X(A)

#A(Q)tor · #A∨(Q)tor
·
∏

ℓ|N

cℓ



 .
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In Conjecture 1.2 the fraction on the left side is not known to be a rational
number (except when r ≤ 1), so its rationality is part of the conjecture.

Tate [Tat66] formulated the BSD conjecture for any abelian variety over a
global field K, and proved (generalizing work of Cassels) that if A and B are
related by an isogeny, then BSD(A, p) is true if and only if BSD(B, p) is true.

1.3 Modular Abelian Varieties

Modular abelian varieties are a special class of abelian varieties over Q that have
been studied intensively. Computation with modular abelian varieties is attractive
because they are easier to describe than arbitrary abelian varieties, have extra
hidden structure, and their L-functions are reasonably well understood.

We recall Shimura’s construction [Shi73] of modular abelian varieties. Let f =
∑

anqn be a weight 2 newform on Γ1(N). Then f corresponds to a differential on
the modular curve X1(N), which is a curve whose affine points over C correspond
to isomorphism classes of pairs (E,P ), where E is an elliptic curve and P ∈ E is
a point of order N . We view the Hecke algebra

T = Z[T1, T2, T3, . . .]

as a subring of the endomorphism ring of the Jacobian J1(N) of X1(N). Let If

be the kernel of the homomorphism T → Z[a1, a2, a3, . . .] that sends Tn to an, and
attach to f the quotient

Af = J1(N)/If J1(N).

Then Af is a simple abelian variety over Q of dimension equal to the degree of
the field Q(a1, a2, a3, . . .) generated by the coefficients of f . We also sometimes
consider a similar construction with J1(N) replaced by the Jacobian J0(N) of
the modular curve X0(N) that parametrizes isomorphism classes of pairs (E,C),
where C is a cyclic subgroup of E of order N .

Definition 1.3 (Modular abelian variety). An abelian variety over a number field
is a modular abelian varieties if it is a quotient of J1(N) for some N .

Algorithms for computing many of the invariants in the BSD conjecture for
modular abelian varieties has been a major part of the PI’s research program.

The celebrated modularity theorem of C. Breuil, B. Conrad, F. Diamond,
R. Taylor, and A. Wiles [BCDT01] asserts that every elliptic curve over Q is a
modular abelian variety. Also, it is now known (due to very recent work of Khare,
Wintenberger, and Dieulefait) that every abelian variety of GL2-type (see [Rib92])
and odd conductor is a modular abelian variety.

The PI recently completed a book on computing with modular forms [Ste07]
that will be published by the AMS. He is working on a graduate textbook with Ken
Ribet on modular abelian varieties, and an undergraduate text on number theory,
both intended for publication by Springer-Verlag. He led a 2-week high-school
student workshop on the Birch and Swinnerton-Dyer conjecture (see [SIM]).
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1.4 Software for Algebra and Geometry Experimentation

The PI is the principal author of SAGE—Software for Algebra and Geometry
Experimentation (see [SJ05]). Substantial work on SAGE has been done jointly
with students (7 undergraduates and 5 graduate students). The goal of SAGE
is to create an optimal open source software environment for research in algebra,
geometry, number theory, and related areas. The PI intends to make all data and
algorithms developed as part of the proposed research freely available online and
from SAGE.

The PI is the author of the modular forms and modular abelian varieties com-
ponents of Magma [BCP97]. When possible many of the proposed computations
will be independently verified using Magma.

When we describe a result that relies on computation below, there is an im-
plicit assumption that certain software produced correct output. Also, the ranges
of computations, e.g., “all curves of conductor up to 1000”, are in many cases
arbitrary. Our primary motivation for doing these computations is to motivate
the development of new conjectures and computational and theoretical tools.

2 The BSD Formula: Computing X

Much of this research proposal is about computing X, which is the most difficult
to compute invariant appearing in the BSD conjecture.

2.1 Applying Theorems of Kato and Kolyvagin

The PI, 3 undergraduates and a graduate student proved the following in [GJP+05]:

Theorem 2.1 (Stein et al.). Suppose that E is a non-CM elliptic curve of rank
≤ 1, conductor ≤ 1000 and that p is a prime. If p is odd, assume further that
the mod p representation ρE,p is irreducible and p does not divide any Tamagawa
number of E. Then BSD(E, p) is true.

The proof involves an application of results of Kato and Kolyvagin, new refine-
ments of Kolyvagin’s theorem, explicit 2-descent and 3-descent and much explicit
calculation. This is a first step toward the following goals:

Goal 2.2. Verify the BSD Conjecture for every elliptic curve over Q of conductor
< 1000, except for the 18 curves of rank 2.

Goal 2.3. For each curve E over Q of conductor < 1000 and rank 2, prove that
X(E)[p] = 0 for all p < 1000.

We hope to make further progress toward Goal 2.3 using p-adic methods (see
Section 2.3 below), since unconditional computation of Sel(p)(E/Q) directly using
standard algebraic number theory techniques for p > 5 appears to not be practical.
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Another approach is to improve on work of Kolyvagin—Theorem 2.1 excludes
divisors of Tamagawa numbers because Kolyvagin’s theorem is not sufficiently
precise at such primes.

Goal 2.4. Refine Kolyvagin’s bound when a prime p divides a Tamagawa number.

Dimitar Jetchev (who began working with the PI as an undergraduate) has
been working on Goal 2.4 in consultation with the PI. Let E be an elliptic curve
over Q, let K be a field that satisfies the Heegner hypothesis for E, i.e., such that
each prime dividing N splits in K. Assume that E has analytic rank 1 over K, and
let yK ∈ E(K) be the Heegner point. Suppose p ≥ 5 and that ρE,p is surjective.
Jetchev has made great progress toward the following:

Goal 2.5. If ordp(
∏

cℓ) ≥ 1, where the cℓ are the Tamagawa numbers of E, prove
that ordp(#X(E/K)) ≤ ordp([E(K) : ZyK ]) − 2.

Kolyvagin gives a formula (see, e.g., [Kol91a, Gro91, McC91]) for #X(E/K)
which involves global divisibility of Heegner points and Jetchev links those global
divisibility exponents to Tamagawa numbers. Work toward Goal 2.5 uses Poitou-
Tate global duality and the Chebotarev density theorem to show that mod p there
are no nontrivial Kolyvagin systems; this is equivalent to showing that all Heegner
points Pn on E over ring class fields are globally divisible by p.

2.2 Complex Multiplication Curves

A complex multiplication (CM) elliptic curve E over a number field is one such
that End(EC) 6= Z. The PI and Aron Lum proved the following result:

Theorem 2.6 (Stein, Lum). Suppose E is a CM elliptic curve over Q with rank
at most 1 and conductor at most 5000. Then BSD(E, p) is true for all primes
p ≥ 5 of good reduction for E.

This is an application of Rubin [Rub91] for rank 0 curves and Kolyvagin [Kol90,
Cor. D] for rank 1 curves. The PI to compute to much higher conductor.

Goal 2.7. Suppose E is a complex multiplication elliptic curve over Q and that
p ≥ 5 is a prime of bad reduction for E. Find and implement a practical algorithm
to verify BSD(E, p), then apply it to all E of conductor up to 5000.

Goal 2.7 is difficult mainly because the mod p representation is not “as sur-
jective as possible”, so the methods used for Theorem 2.6 do not apply. One
approach to Goal 2.7 is to try do computations using Theorem 2.11 below.
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2.3 p-adic Methods

Suppose E is an elliptic curve over a number field K and p ≥ 5 is a prime (of OK)
of good ordinary reduction for E. In [MST06] the PI, Mazur, and Tate give a new
approach to computing p-adic heights

hp : E(K) → Qp

that leverages Kedlaya’s fast algorithm [Ked01, Ked04] for explicit computation
of Monsky-Washnitzer cohomology groups. We made our algorithm explicit only
when K = Q or K is a quadratic imaginary field, though the key ideas for creating
a general explicit algorithm are given in [MST06]. The PI, David Harvey, Jen
Balakrishnan, and Liang Xiao have implemented and optimized this algorithm
over Q and quadratic imaginary K in both SAGE and Magma (this was a major
project at an MSRI graduate student workshop that the PI ran in August 2006).

Goal 2.8. Design and implement a general algorithm for computing p-adic heights
(for all primes p) on elliptic curves over arbitrary number fields.

The natural height pairing here is not very well understood; indeed, it still
only conjectural that is nondegenerate. It can be verified in particular cases via
computation:

Conjecture 2.9 (Schneider). Suppose E is an elliptic curve over Q and p is a
prime of good ordinary reduction. Then the p-adic cyclotomic height pairing on
E(Q) is nondegenerate.

There are very few general results toward this conjecture (except in the CM
case). It can be verified in particular cases:

Goal 2.10. Create a table of p-adic regulators to precision O(p5) for every elliptic
curve of conductor up to 120000 and the first five primes p ≥ 5 of good ordinary
reduction for E.

The data from Goal 2.10 will also be of interest in investigations about con-
gruences between algebraic parts of p-adic L-functions.

Theorem 2.11 (Schneider [Sch83] and Perrin-Riou). Suppose p is an odd prime

of good ordinary reduction for E, and let Reg
(p)
E ∈ Qp be the p-adic regulator of E,

i.e., the discriminant of the p-adic height pairing on E(Q). If the p-primary part
X(E/Q)(p) of X(E/Q) is finite, then the leading term of the algebraic p-adic
L-function of E has the same p-adic valuation as

#X(E) · Reg
(p)
E

#E(Q)2tor
· #E(Fp)

2 ·
∏

ℓ|N

cℓ.
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The following is needed in order to apply Theorem 2.11:

Goal 2.12. Create software and better algorithms for computing with p-adic L-
functions of elliptic curves and modular abelian varieties.

Much work toward Goal 2.12 in Magma has already been done by the PI,
Robert Pollack, and Christian Wuthrich. Substantial work on the main conjecture
of Iwasawa theory connects the algebraic and analytic (computable) L-functions.

Remark 2.13. There are other cases where we can apply analogues of Theo-
rem 2.11, e.g., when p is a prime of good supersingular reduction (see [PR03]).

2.4 Constructing Nonzero Elements of X(E)

There are 6581 optimal curves in [Cre] of conductor up to 120000 for which p
divides the BSD conjectural order of X(E) for some p ≥ 3. Of these, 1387
have conjectural order divisible by a prime p ≥ 5 and 339 have conjectural order
divisible by a prime p ≥ 7. Of these 1387 curves, the mod p representation is
surjective except in 11 cases.

Goal 2.14. For the 1387 curves of conductor up to 120000 for which a prime
p ≥ 5 divides the conjectured #X(E), construct an element of order p in X(E).

One approach to Goal 2.14 for small p, e.g., p = 5, is to construct X(E) using
visibility, i.e., by finding an elliptic curve F of rank 2 such that E[p] ∼= F [p], and
using the visibility techniques of [CM00, AS02, AS05].

A second approach, which works in many cases (because the mod p repre-
sentation is often surjective), is to use results of [Gri05], which gives an explicit
criterion in terms of modular symbols to construct nonzero elements of X(E)[p].
Initial computations of the PI and Grigorov (discussed in [Gri05]) suggest that
this approach will succeed in many cases.

A third approach is to use Theorem 2.11 and explicit calculation of p-adic reg-
ulators and p-adic L-functions to at least prove that X(E)(p) has the conjectured
order. This approach doesn’t give an explicit construction of X(E)(p).

A fourth approach is to explicitly compute Kolyvagin cohomology classes cn,p ∈
H1(K,E)[p] and show that they are in fact elements of X(E)[p]. Jetchev, Lauter,
and the author have done such a computation in a few cases (unpublished).

Recent exciting work of Skinner and Urban also addresses the question of
providing very general explicit lower bounds on #X(E).

2.5 Tamagawa numbers

The following is a consequence of the BSD conjecture.
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Conjecture 2.15. Suppose E is an elliptic curve and that p ≥ 5 is odd prime
such that ρE,p is irreducible. Then

ordp





∏

ℓ|N

cℓ



 ≤ ordp

(

L(E, 1)

ΩE

)

Let f = fE be the newform corresponding to E. Under the hypotheses of
Conjecture 2.15, [Rib91] implies that there is a newform g of level a proper divisor
of the conductor of E whose coefficients (of index coprime to the conductor) are
congruent to the coefficients of f . The PI showed in unpublished work how to
use this congruence, in some cases, to prove that L(E, 1)/ΩE ≡ 0 (mod p). The
PI proposes to write up the details of this argument (jointly with Jetchev), then
attempt to refine the argument to yield the congruence of Conjecture 2.15. The
PI also hopes to find connections between the components group of E and the T-
module (defined using modular symbols) whose order is the p-part of L(E, 1)/ΩE .
This approach gives a conceptual explanation of part of the BSD conjecture.

3 The Rank

Let E be an elliptic curve over Q. If ran = ords=1 L(E, s) ≤ 1, then the rank
part of the BSD conjecture is known for E; moreover, in principle, and often
in practice (as explained elsewhere in this proposal) one can verify the full BSD
conjecture. There isn’t a single E with ran ≥ 2 for which the PI is aware of even a
plausible strategy for proving that X(E) is finite, let alone verifying the full BSD
conjecture—it is even unknown that L′′(E, 1)/(ΩE · RegE) ∈ Q for any E. One
can verify in particular cases the rank part of the BSD conjecture if ran ≤ 3; the
PI is aware of no strategy to verify the rank statement for even a single example
when ran ≥ 4. Morever, if E has analytic rank 2 or larger, then the PI is aware
of no conjectural construction of E(Q) analogous to that of Gross-Zagier in the
rank 1 case. Thus new ideas are needed when ran ≥ 2, and the PI hopes the
computations he proposes might play a role in finding them.

3.1 Kolyvagin’s Cohomology Classes

Let E be an elliptic curve over Q with conductor N , and to simplify the discus-
sion assume that E does not have complex multiplication (there are analogues of
everything below even if E has CM). Let K be a quadratic imaginary field that
satisfies the Heegner hypothesis for E. Fix a prime p such that E[p] is irreducible
(we could also replace p by an integer n and remove the requirement that the
representation be irreducible).

Kolyvagin defined (see, e.g., [Gro91]) classes cn,p ∈ H1(K,E[n]) for infinitely
many squarefree integers n satisfying a Chebotarev condition. Let dn,p be the
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image in H1(K,E)[p] of cn,p. Kolyvagin proved that resv(dn,p) = 0 for all v ∤ n
and computed the order of resℓ(dn,p) in terms of local properties of the point yK.
He used these classes to prove his celebrated results toward the BSD conjecture.

Dimitar Jetchev, Kristin Lauter and the PI have solved the following problem
in a handful of cases, and intend to continue working on refining our methods.

Goal 3.1. Find and implement a practical algorithm to compute the order of cn,p

and the order of its image dn,p.

For simplicity, assume that n = ℓ is a prime. By the modularity theorem
there is a surjective homomorphism π : X0(N) → E. The two degeneracy maps
X0(Nℓ) → X0(N) induce maps δ1 and δℓ from J0(N) to J0(Nℓ). We say that dℓ,p

is visible of level Nℓ if dℓ,p maps to 0 under the map on cohomology induced by

E
π∗−−−→ J0(N)

(δ1±δℓ)
∗

−−−−−−−→ J0(Nℓ)

for either choice of sign.

Goal 3.2. Find and implement a practical algorithm to determine whether or not
a Kolyvagin class dℓ,p is visible at level Nℓ.

Goal 3.3. Based on the data obtained from Goal 3.2 formulate a conjecture about
visibility of the classes dℓ,p.

Suppose E is an elliptic curve over Q with analytic rank ≥ 2. Fix an odd
prime p such that E[p] is irreducible. Then the Kolyvagin classes dn,p are elements

of X(E)[p] and the classes cn,p lie in Sel(p)(E).

Conjecture 3.4 (Kolyvagin). Let E and p be as above. Then Sel(p)(E) is gener-
ated by the classes cn,p.

The PI intends to develop a theory for computing with the subgroup of Sel(p)(E)
generated by a given finite collection of classes cn,p. Kolyvagin hints at doing this
in [Kol91b, Pg. 120].

For example, let E be the rank 2 elliptic curve y2 + y = x3 + x2 − 2x of con-
ductor 389. The PI, Jetchev, and Lauter computed the class c5,3 and showed that

it defines a nonzero element of Sel(3)(E)—this computation did not require com-
puting E(Q). This computation thus gives an explicit construction using Heegner
points of the image in Sel(3)(E) of a nonzero element of the rank 2 Mordell-Weil
group E(Q). Making this computation practical has already involved interesting
techniques (e.g., using p-adic methods to verify global non-divisibility of Heeg-
ner points). Moreover, we are computationally verifying Kolyvagin’s conjecture,
which has interesting consequences (unpublished work of Cornut, Nekovar).
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3.2 Mazur and Rubin’s Shadow Lines

When E is an elliptic curve over Q of rank 2 there is a construction of Mazur and
Rubin, using p-adic heights, that attaches to appropriate quadratic imaginary
fields K a certain line in the p-adic completion of the Mordell-Weil group; these
are sometimes referred to as “shadow lines”. Conjecturally, for every quadratic
imaginary field K such that the Mordell-Weil group of the twist of E by the
quadratic character of K has rank one (and such that the discriminant of K is
prime to the conductor of E) we have such a “shadow line”. On the one hand the
shadow line is the image of universal norms in the p-adic completion E(Q)⊗Zp of
the Mordell-Weil group of the elliptic curve over layers of the p-adic anticyclotomic
tower attached to K, and on the other hand the shadow line is the null space of
the p-adic anti-cyclotomic height pairing.

Goal 3.5. Gather extensive numerical data about Mazur-Rubin shadow lines. In
particular, are they uniformly distributed as we vary K?

The PI has done computations in this direction using slow methods (see [MR04]).
More recently, he and Liang Xiao have been applying the methods of Section 2.3.

4 Databases

The modular forms database (see [Ste04a]) is a freely-available collection of data
about objects attached to modular forms. It is analogous to Neil Sloane’s tables
of integer sequences, and generalizes John Cremona’s tables of elliptic curves [Cre]
to dimension bigger than one and weight bigger than two. The database is used
by many prominent number theorists. The PI proposes to greatly expand the
databases with more information about modular forms, elliptic curves, and mod-
ular abelian varieties. In each enumeration problem below, we intend to store the
result of the computation in two forms:

1. A plain text file that can be easily parsed, similar to [Cre].

2. SAGE provides robust support for saving nearly arbitrary individual ob-
jects. Since SAGE is free and every version of SAGE is archived in multiple
locations, this data will not be lost because of changes to SAGE.

4.1 Elliptic Curves

The elliptic curve over Q with rank 4 and smallest known conductor is the curve
y2 +xy = x3−x2−79x+289, with conductor 234446 = 2 ·117223. Nobody knows
if there is a curve with smaller conductor and rank 4, though the PI showed that
any such curve has composite conductor by finding all curves of prime conductor
up to 234446 (see [JBS03]).
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Goal 4.1. Enumerate every elliptic curve up to isogeny of conductor up to 234446.

Cremona [Cre] has spent years methodically enumerating all curves of con-
ductor up to 130000 and computing the invariants in the BSD conjecture (except
#X). The PI believes an independent computation whose goal is just to find all
curves would be extremely valuable, as the following illustrates:

Bad news: Bill Allombert found an elliptic curve not in my database,
conductor 97200 (it was [0, 0, 0, 0, 15] !!!!) and I just found that there
are 40 conductors in the range 90k–100k where there are curves in
Stein-Watkins and not in Cremona. Misery!

– email to me from John Cremona, 2006-09-07

The Stein-Watkins table [SW02, BMSW06] mentioned above is a massive table
by the PI and Mark Watkins of over 100 million elliptic curves, which was made
by systematically enumerating Weierstrass equations. Though it does not contain
every curve of a given conductor, a substantial fraction are there.

Cremona enumerates elliptic curves by computing the matrix of the Hecke
operator T2 on the space of weight 2 modular symbols for Γ0(N), then finding
the kernels of T2 − 2, T2 − 1, T2, T2 + 1, T2 + 2. Next, he computes the Hecke
operator T3 restricted to each of the kernels, and decomposes those kernels under
T3, and likewise for T5, etc. The crucial point is that for the purposes of finding
elliptic curves it is not necessary to compute the minimal polynomial of T2, which
is extremely difficult when N is large, e.g., if N = 200003 then this dimension is
16667. Another key fact is that Cremona computes Hecke operators using modular
symbols, which yield dense matrices, so the linear algebra is difficult.

Goal 4.2. Use the Mestre method of graphs [Mes86] to find all elliptic curves of
conductor N ≤ 234446, for all integers N that are either prime or of the form pM
with p prime and M ≤ 10 or M = 12, 13, 16, 18.

The method of graphs, when applicable, very quickly produces extremely sparse
matrices of the Hecke operators Tp on S2(Γ0(N))p−new for small p (e.g., p =
2, 3, 5, 7, 11, say). Sparse linear algebra then yields an upper bound on the number
of isogeny classes of elliptic curves of conductor N . Consulting the tables of Stein-
Watkins and Cremona yields a lower bound. If these disagree, it is likely that we
have found a new curve; we then prove this by sparse linear algebra computations
over Q, which we do via a multimodular algorithm (see [Ste07, Ch. 7]). Ifti
Burhanuddin did partial work toward Goal 4.2 at the MSRI summer graduate
student workshop that the PI organized.

David Kohel, Lassina Dembele, and the PI have been working on a strategy
to carry out the following computation:
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Goal 4.3. Use quaternion algebra arithmetic over Q (much as in [Dem05]) to
compute sparse matrices for several Hecke operators, then proceed as above to
find all curves of conductor ≤ 234446 for which some prime exactly divides N .

Computing the quaternion algebra presentation and the Hecke operators in the
first place can be time consuming—however, for large levels linear algebra with
matrices of Hecke operators dominates the runtime, so obtaining sparse matrices
using quaternion algebras or the method of graphs is extremely helpful.

There are only 960 integers up to 234446 that do not satisfy the conditions
of Goal 4.3 (which is about 0.4%). For these remaining conductors we might use
modular symbols to compute all rational eigenforms:

Goal 4.4. Compute using modular symbols all elliptic curves of the 960 conduc-
tors up to 234446 not covered by Goal 4.3.

These calculations are easy to parallelize, and the linear algebra involved in
some cases requires a huge amount of memory (which is one reason the PI is
requesting a memory upgrade to 128GB for his main server).

4.2 Modular Abelian Varieties

In each case the elliptic curves enumeration in Goals 4.2–4.4 starts by computing
matrices of Hecke operators. The PI will store these matrices and also use them to
enumerate modular abelian varieties (and, equivalently, newforms in S2(Γ0(N))).

The linear algebra involved in searching for higher-degree factors is much more
prohibitive than in searching for elliptic curves.

Goal 4.5. Compute every quotient Af of J0(N) for all N ≤ 10000.

Note, for example, that dimS2(Γ0(10000)) = 1411, so computing and factoring
the relevant minimal polynomials should be possible.

Goal 4.6. Compute every quotient Af of J1(N) for all N ≤ 1000.

For Goal 4.6, we directly compute the spaces S2(Γ1(N), ε) for each Dirichlet
character ε of modulus N . The main difficulty is linear algebra over large cyclo-
tomic fields. Recent work in progress of the PI on algorithms for multimodular
linear algebra over cyclotomic fields will be very helpful (see [Ste07, Ch. 7]).
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