
William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

SAGE: Software for Algebra and Geometry
Experimentation

Major Points

• SAGE is free open source software for research in algebra, geometry, num-
ber theory, cryptography, and numerical computation.

• SAGE is an environment for rigorous mathematical computation
built using Python, GAP, Maxima, Singular, PARI, etc., and provides a
unified interface to Mathematica, Maple, Magma, MATLAB, etc.

• There have been several successful SAGE workshops, and there are
many active SAGE developers.

• The primary goal of SAGE is to make modern research-level algorithms
available in an integrated package with a graphical interface.

1 Introduction

SAGE is a project that the PI launched in January 2005 to create a software en-
vironment for research and experimentation in algebra, geometry, number theory,
cryptography, and numerical computation. This involves the creation of free open
source software and databases that support advanced mathematical research.

The PI is one of the more sought-after people by the world-wide community
of mathematicians, for computational confirmation of conjectures, for algorithms,
for data, and for ways of formulating problems so as to make them more accessible
to algorithms. He is also successful at bringing together a wide range of people to
work on collaborative mathematics projects; for example, he organized the MSRI
workshop [30], two NSF-funded SAGE Days workshops [10; 11], and will organize
several more workshops during the next year [1; 31; 12; 2]. He has extensive
experience with software development, having written HECKE, much of SAGE,
and over 25,000 lines of code that are included in Magma.

1.1 Prior Support

The PI has used his startup money at UC San Diego and University of Washington,
his NSF grant (DMS-0555776), and the UW’s VIGRE grant to support two SAGE
workshops, six undergraduate employees, four graduate students, and research
visitors. Obtaining grant funding is critical to the continuation of SAGE
development at its present level.

Other Grant Applications: The PI has also applied this year to the NSF
CSUMS program to fund an undergraduate education project entitled “CSUMS:

1

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

SAGE-Software for Algebra and Geometry Experimentation”, and to the NSF
ANTC program to support his computational and theoretical work on the Birch
and Swinnerton-Dyer conjecture.

2 SAGE and the Mathematical Software Landscape

First we discuss the relationship between SAGE and many high quality mathemat-
ical software packages. Then we explain precisely what SAGE is and how it unifies
existing mathematical software via its flexible interfaces. We also discuss indepen-
dent verification of research results, free open source mathematics software, and
the SAGE development community.

2.1 Mathematical Software

In this section we briefly describe the closed source programs Magma, Maple,
Mathematica and MATLAB, and discuss several open source programs.

Magma [13] is a high quality, mature, closed source program developed in
Australia. It is a non-free (indeed, quite expensive) software package with a vast
range of functionality in number theory, algebraic geometry, arithmetic geometry,
graph theory, and group theory. It features a specialized language for mathemat-
ics. Magma has an excellent command line interface, though it does not have a
graphical user interface. Magma has very limited support for numerical computa-
tion and symbolic integration. It is not possible for end users to define their own
datatypes, but the Magma developers are often responsive to requests to add new
datatypes to the C language core for the next release of Magma. In Magma it is
easy to save the complete state of a running Magma session, though there is no
way to evaluate arbitrary strings, so it is difficult to store to disk individual objects
that one has computed. Magma’s huge and highly optimized library is far more
powerful and comprehensive for research in certain areas (e.g., arithmetic geome-
try, group theory, coding theory) than perhaps anything else available. Much of
Magma is written in C, so it can link in functionality from some existing C libraries
(e.g., GMP), though such linking is only possible by rebuilding Magma and end
users are not allowed to build Magma from source. Also, many freely available
libraries cannot be legally linked to Magma because of license restrictions.

Maple [14] is a powerful closed source commercial program developed in
Canada. It features a sophisticated graphical user interface, and has a wide range
of functionality, especially for symbolic computation and plotting relevant to un-
dergraduate education. Its programming language is also highly regarded. Much of
the source of Maple is distributed with Maple and can be viewed by users, though
unfortunately such interpreted source files can run slowly (see Section 2.4); some
arithmetic and many functions related to number theory are notably slower than
the corresponding functions in Magma (see Section 3.1.2).

2

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

Mathematica [15] is an optimized, closed source, commercial mathematics
software package developed in the USA. It has a unique mathematical program-
ming language, a vast library of optimized special functions, powerful symbolic
manipulation capabilities, and sophisticated 2 and 3-dimensional plotting. It also
features a pioneering graphical user interface. In many areas it has substantial
coverage of important algorithms, though in number theory, arithmetic geometry,
and cryptography, it has limited functionality.

MATLAB [17] is closed source commercial software developed in the USA,
which focuses on numerical computation. It has a wide range of functionality for
numerical computation, excellent performance, a graphical user interface, and a
custom programming language. It also has symbolic computation capabilities via
a link to Maple’s symbolic engine.

GAP [6], PARI [22], Singular [27], Macaulay2 [7] and Maxima [18] are
large, mature, high quality, free, open source mathematics software programs.
All are currently supported and under active development. There is surprisingly
little overlap between their functionality (except Macaulay2 and Singular). For
example, GAP has sophisticated functionality for computing with groups, but
limited support for commutative algebra or number theory, whereas Singular has a
huge range of commutative algebra functionality and PARI has substantial number
theory functionality but little group theory or commutative algebra.

Table 1: There is little overlap in functionality among free math software

Function Singular Gap PARI Maxima
Multivariate polynomial factorization Yes No No Yes
Subgroup enumeration No Yes No No
Class groups of number fields No No Yes No
Symbolical integration No No No Yes

SAGE incorporates all four programs listed in Table 1 (and many others) into
a single unified program so it does all the listed problems well.

Every mathematics software system described above has its own special-purpose
programming language. Many of these languages make it easy to express math-
ematical concepts and get results quickly. Unfortunately, most do not support
modern exception handling (like that available in C++, Java, and Python), name
spaces and many cannot be extended with new data types (or classes). For exam-
ple, PARI’s programming language is useful for writing short programs but awk-
ward for large projects. In addition, these special purpose mathematics languages
can be difficult to use when one needs to do non-mathematical programming (e.g.,
create a web server to distribute the results of computations, or connect to an
online database or web page and parse the results).

3

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

Some of the closed source systems, most notably recent versions of Mathemat-
ica and MATLAB, make use of multiple processors on a computer when available.
None of the open source programs listed above do. Tightly integrated support for
parallel computation is a key goal of SAGE.

2.2 SAGE: A Unifying Approach

SAGE is

1. A distribution of free open source mathematics software,
2. A new interpreter, graphical user interface, and library of imple-

mentations of mathematical algorithms,
3. A better way to use existing mathematics software together.

2.2.1 A Distribution of Math Software

SAGE is a cohesive distribution of several dozen pieces of open source mathe-
matics software, with almost no external dependencies, which can easily be built
completely from source with one command on OS X, Linux, and Windows. Cre-
ating this distribution has required the combined work of numerous specialists
in the arcane build processes of different operating systems, and requires regular
maintenance (which would be funded by this proposal) to remain up to date. The
PI has often been told by mathematicians that various open source programs, e.g.,
PARI and Singular, can easily be built as part of SAGE, but are “impossibly dif-
ficult” for them to build without SAGE. The PI also distributes prebuilt binaries
of SAGE for some of these platforms.

The PI is requesting funds in order to regularly purchase new hardware for
testing automated building of SAGE from source on a wide range of platforms, and
building binaries. The PI used $38,000 in funding from NSF grant (DMS-0555776)
for the purchase of a 16-core computer with 64GB RAM that is the main home
for SAGE development. But a much wider range of equipment is needed to test
and optimize implementations of algorithms on diverse hardware. The PI must
own such hardware in order to have dedicated access to it for intensive testing
of new implementations; moreover, regular compilation of SAGE from source is
resource intensive. Also, in many cases (e.g., Itaniums) it is nearly impossible to
gain sufficient access to hardware without purchasing that hardware. Finally, it is
important to test building of SAGE on both a range of hardware and operating
system installs, which requires owning the hardware.

2.2.2 A New Interpreter, Graphical Interface, and Library

SAGE improves on the existing systems by using the Python programming lan-
guage, which is a popular, mainstream, open source, free programming language

4

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

with support for programming constructs that are useful in mathematics, such as
user-defined classes, list comprehensions and regular expressions.

SAGE can be used interactively from the SAGE command line [23], via the
SAGE Notebook, and as a library from Python and C/C++ programs.

As mentioned before, the other major mathematics software packages have
their own custom programming languages. This can be particularly costly to oc-
casional and beginning users of mathematical software, as well as those whose work
straddles several mathematical subdisciplines. The use of Python for SAGE avoids
this problem. Moreover, because Python has long been used for database and web
programming applications, it provides excellent support for saving and loading of
individual objects and network programming. Also Python has a massive stan-
dard library and active development community that is constantly optimizing the
language and moving it forward.

The SAGE Notebook is a sophisticated web-browser based graphical user in-
terface, which the PI created in response to student demand. Graphical output
can be easily embedded in the notebook, and the notebook can be used as a front
end for many other mathematical software systems that do not have a graphical
interface, including Magma, PARI, and Singular. The PI intends to use funds to
improve the robustness and security model of the notebook using Twisted [33].

The PI hopes to include support in SAGE for practical parallel computation at
several different levels. For example, the PI is chairing the organizing committee
of the upcoming MSRI workshop “Interactive Parallel Computation in Support
of Research in Algebra, Geometry and Number Theory” [1], which he funded
using a grant from the National Geospatial Agency. Also he has employed Yi
Qiang for several months to design and implement functionality for coarse grained
parallelism that is tightly integrated with SAGE.

The PI also hopes to use this grant to fund work by SAGE developers to
create highly optimized new code for SAGE for basic arithmetic, number theory,
algebraic geometry, arithmetic geometry, cryptography, graph theory, numerical
computation, and group theory (see Sections 3.1–3.2).

2.2.3 Using Existing Mathematical Software from SAGE

The PI invented and implemented for SAGE a new way to create and work
with numbers, matrices, vectors, polynomials, graphs, functions, and all other
mathematical objects defined in other mathematical software, including Axiom,
Maple, Mathematica, Macaulay2, Magma, MATLAB, Octave, Maxima, Singular
and PARI. These interfaces are mostly implemented using pseudo-ttys and files,
so they can be created for any program with a command line interface, and it is
not necessary to make any changes to that program. A running instance of SAGE
can thus simultaneously orchestrate dozens of other mathematics programs. This
gives SAGE a rich range of features, and makes it possible for researchers to use

5

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

SAGE while still using the other systems they are accustomed to.
The PI would use support from this grant to hire graduate students to create

new SAGE interfaces to PHCpack, Bertini, 4ti2, REDUCE, CoCoA, and many
other significant pieces of mathematical software (both free and commercial).
Though each interface is initially fairly straightforward to write, it is crucial that
the author have intimate knowledge of the functionality and mathematics behind
the program being interfaced with, and students are often experts in them.

2.2.4 Support for Specialized Programs

An exciting aspect of SAGE is how it makes it easy to make use of small special
purpose programs for mathematical research as part of a larger project. For in-
stance, in low-dimensional topology, algebraic combinatorics, and number theory
(see [16]), there are numerous specialized programs which compute one or two
things. Often, research projects involve using several of these in conjunction with
larger software packages.

“A recent project used:
· Snap, a version of the 3-manifold SnapPea library with PARI,
· KhoHo, for computing Khovanov homology of links in S3,
· PHCpack, the polynomial equation solver, and
· Mathematica.

In the past, I’ve always done this with Python scripts, but there was
always a lot of overhead in translating back and forth between the var-
ious programs, and this was limiting in a lot of ways because Python
understands so little about mathematics. (Using e.g. Magma or Math-
ematica as the “core” program never seemed to work very well because
the file input/output functionality is poor, as well as the weakness of
custom data-structures.) SAGE makes this so much easier.”

— Nathan Dunfield, Caltech

The PI would use funds from this proposal to invite authors or major users of
some of these specialized programs as month-long visitors, during which time they
would turn the programs into integrated components of SAGE.

2.3 Independent Verification of Research Results

“One should always have at least two proofs of any result.”

– J-P. Serre (personal communication)

Many algorithms in number theory and cryptography, e.g., 3-descent on ellip-
tic curves, modular forms computation, quaternion algebras arithmetic, and fast

6

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

arithmetic on Jacobians of curves are implemented only in Magma. Having an in-
dependent implementation of these algorithms will help increase our confidence in
computational results. SAGE addresses Serre’s remark both by providing new im-
plementations of algorithms currently available in only one place, and by making
it easier to run a computation in more than one system and compare the results.

2.4 Free Open Source Software

“You can read Sylow’s Theorem and its proof in Huppert’s book in
the library [...] then you can use Sylow’s Theorem for the rest of your
life free of charge, but for many computer algebra systems license fees
have to be paid regularly [...]. You press buttons and you get answers
in the same way as you get the bright pictures from your television set
but you cannot control how they were made in either case.

With this situation two of the most basic rules of conduct in mathemat-
ics are violated: In mathematics information is passed on free of charge
and everything is laid open for checking. Not applying these rules to
computer algebra systems that are made for mathematical research [...]
means moving in a most undesirable direction. Most important: Can
we expect somebody to believe a result of a program that he is not
allowed to see?”

– J. Neubüser [20]

Though the development of SAGE is very expensive, SAGE itself is freely
available, so researchers that have limited software budgets are guaranteed access
to SAGE. The source of SAGE and all dependencies are “laid open for checking”;
any part of SAGE may be inspected, modified, and redistributed.

Some non-free programs are partly implemented in an interpreted language,
and include this interpreted source code. Unfortunately, due to their commercial
nature, there are restrictions when viewing such source files. It may be illegal to
read the implementation of a function and use what is learned in ones research:

“Without the express written permission of Maplesoft, Licensee shall
not, and shall not permit any Third Party to:
(a) reproduce, transmit, modify, adapt, translate or create any deriva-

tive work of, any part of the Software, in whole or in part, [...]
(b) reverse engineer, disassemble, or decompile the Software, create

derivative works based on the Software, or otherwise attempt to
gain access to its method of operation or source code.”

— The Maple end user license agreement

7

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

2.5 The Development Community

SAGE development is driven by a strong spirit of altruism, openness, community,
cooperation, and collaboration. SAGE is a large project with over 30 developers:
five are undergraduate student employees, one is a full-time employee, many grad-
uate students work on the project (three supported by the PI’s startup money),
and there are numerous volunteers in the USA, Europe, and Australia. There
were 571 posts on the sage-devel mailing list during October 2006.

SAGE developers include Martin Albrecht (Bremen, Germany, grad student),
Tom Boothby (UW undergrad), Robert Bradshaw (UW grad student), Iftikhar
Burhanuddin (USC grad student), Craig Citro (UCLA grad student), Alex Cleme-
sha (UW employee), John Cremona (Nottingham), Didier Deshommes (North Car-
olina student), Jon Hanke (Duke University), William Hart (Warwick, UK), David
Harvey (Harvard grad student), David Joyner (US Naval Academy), Josh Kan-
tor (UW grad student), Emily Kirkman (UW undergrad), David Kohel (Univ.
of Sydney), Kevin McGown (UC San Diego), Bobby Moretti (UW undergrad),
Yi Qiang (UW undergrad), Naqi Jaffery (UCSD undergrad), Kiran Kedlaya (MIT
prof), Bill Page (top Axiom developer), David Roe (Harvard grad student), Steven
Sivek (Princeton grad student), Jaap Spies (The Netherlands), Gonzalo Tornaria
(Uruguay), Justin Walker (retired Apple OS X developer), Mark Watkins (Bris-
tol), Joe Wetherell (San Diego), and Gary Zablackis (high school teacher).

The wide range of backgrounds of the contributors helps ensure that SAGE is
relevant to a broad constituency of students and researchers.

2.5.1 Advisory Board

These people have agreed to serve on an advisory board, which will provide feed-
back before the PI allocates any funding from this grant:

· Tom Boothby (undergraduate, University of Washington)
· David Harvey (graduate student, Harvard University)
· Kiran Kedlaya (assistant professor, MIT)
· David Joyner (professor, US Naval Academy)

All have contributed substantial code to SAGE, and their range of backgrounds
and positions ensure that a wide range of SAGE users are represented.

2.5.2 Workshops

The PI organized SAGE Days 1 [10], which was a workshop at UC San Diego in
February 2006, which had about 40 participants and was funded by NSF grant
DMS-0555776. There were talks on a wide range of computer algebra systems and
software, ranging over pure and applied mathematics, along with coding sprints.

8

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

In June 2006, the PI ran a workshop [26] at UW for high school students, in
which they used SAGE to investigate the Birch and Swinnerton-Dyer conjecture.

In August 2006, the PI ran a two-week workshop at MSRI [30] in which 30 grad-
uate students, and 6 research mathematicians worked together to design and im-
plement a wide range of algorithms in SAGE for computing with modular curves,
modular forms, elliptic curves and related objects.

In October 2006, the PI ran SAGE Days 2 [11] at UW, which had about 40
participants, and was funded by NSF grant DMS-0555776. The main topic of the
workshop was improving the speed and robustness of SAGE. There were 2 days
of talks and 3 days of coding sprints, which initiated numerous projects.

The PI has secured funding for four upcoming SAGE-related workshops: the
parallel computation workshop [1] at MSRI in January 2007, Sage Days 3 [31] at
IPAM in February 2007, a Banff workshop on computing modular forms in June
2007 [2], and an AIM workshop on databases of modular forms in July 2007 [12].

These workshops have been pivotal in the development of SAGE, so securing
funding for them is crucial. The PI hopes to run four SAGE Days workshops per
year, and is requesting funding from the NSF for one of these workshops each year.

3 Specific Goals

In this section we outline some specific projects that this proposal would fund.
These include designing and coding fast core algorithms for exact arithmetic,
creating and implementing a wide range of algorithms for number theory and
cryptography research, and improving SAGE’s visualization capabilities.

3.1 Fast Core Arithmetic Algorithms

3.1.1 Support for Optimized Compiled Code

To implement a state-of-the-art mathematics software system, it is crucial to have
an easy-to-use language for writing optimized compiled code, which integrates well
with the high-level interpreter. SAGE accomplishes this using SageX, which is a
customized version of Pyrex [5]. Using SageX, one can write compiled programs,
which are easy to use from SAGE. Programs written in SageX are converted to C,
compiled, and loaded at runtime. The SageX language is similar to Python, and
provides easy access to both Python objects and arbitrary C and C++ functions.
The PI has done much to make SageX easier to use in the context of SAGE, and
intends to write more documentation and implement new features. This proposal
would fund work by one computer science graduate student who is an expert in
compilers for one quarter to greatly improve the quality of SageX.

SageX supports compilation during runtime, which can provide huge speed
gains to interactive users. For example, Tom Boothby implemented a program so

9

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

that when a polynomial will be evaluated repeatedly, it can be converted to an
optimized SageX representation that is compiled and made available to the user,
all from the interpreter—this can speed up evaluation by a factor of over 1000.

3.1.2 A New Fast C Library for Number Theory

Much of the arithmetic in SAGE for number theory is currently based on the
NTL and PARI libraries. However, neither library is fast enough to satisfy the
PI’s goals for SAGE. To address this problem, two SAGE developers, William Hart
and David Harvey, are creating FLINT, which is a library written in C for number
theory applications. The PI is requesting funds to support work on FLINT, and
for William Hart to visit UW for at least one quarter to work full time on FLINT.

Currently available libraries for arithmetic are not fast enough for SAGE. In
some cases the algorithms are not asymptotically fast or their implementation is
not sufficiently optimized. PARI’s integer factorization is only slightly better than
Magma’s on some platforms and well behind the state of the art on all platforms.
It also does not have the latest algorithms in many cases. For example it does not
have an asymptotically fast Schoenhage-Strassen implementation for multiplying
polynomials. NTL is a well written package, having set numerous world records.
However its implementation strategy makes it difficult to get maximum perfor-
mance from the GMP library, and in some cases Magma contains much faster
implementations of core algorithms (see Table 3).

Neither PARI nor NTL support fine-grained parallel computation, which is a
severe limitation as multicore multi-processor machines are becoming common.

FLINT includes routines for integer factorization. See Table 2 for how long it
takes a 1.8GHz Opteron to factor the 61-digit number pq, where p is the next
prime after 1029 and q the next prime after 1031. (These programs implement
roughly the same algorithms; but some implementations are clearly much more
optimized than others.) FLINT also contains an optimized Schoenhage-Strassen
polynomial multiplication implementation, whose speed is illustrated in Table 3.

Table 2: Time to factor a 61-digit number with two large factors

Software Time (seconds)
SAGE (FLINT) 16s
PARI 2.3.1 54s
MAGMA 2.13 63s
Mathematica 5.2 (FactorInteger) 299s
Maple 10 (ifactor) 715s

3.1.3 Groebner Bases

Groebner bases are central in commutative algebra, just as echelon forms are
central in exact linear algebra. SAGE currently computes Groebner bases using

10

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

Table 3: 10000 multiplies of two degree 255 polynomials with 1000 bit coefficients

Software Time (seconds)
FLINT 23s
MAGMA 2.13 28s
NTL-5.4 136s
PARI 2.3.1 295s
SINGULAR 3-0-2 839s
Maple 10 2100s
Mathematica 5.2 2075s
GAP 4.4.8 2846s

either Singular or (optionally) Macaulay2 or Magma (if available). Magma is
substantially faster at computing Groebner bases in many cases than anything
else available (in particular, Singular, Macaulay2 and CoCoA). One of the SAGE
developers, Martin Albrecht, has implemented Faugere’s F4 algorithm for SAGE in
some cases, and achieved impressive results. The PI is requesting student support
for Martin Albrecht to refine his F4 implementation into what might become the
first complete free optimized implementation of F4, since the other two complete
implementations, Faugere’s and Magma’s, are closed source and non-free.

3.1.4 Asymptotically Fast Exact Linear Algebra

Sparse and dense exact linear algebra is the bottleneck in many algorithms in
graph theory, group theory, combinatorics, number theory, and other areas. Un-
fortunately, no existing free libraries meet the quality, speed and functionality
requirements for SAGE (none approach the speed or functionality of Magma over-
all), so we propose to put substantial effort into optimized asymptotically fast
sparse and dense exact linear algebra. The PI, David Harvey and Robert Brad-
shaw have designed and implemented asymptotically fast block echelon and matrix
multiplication algorithms, but much optimization work remains to be done. The
PI is requesting funding for graduate students to further optimize the implemen-
tation, add sparse and dense support for many rings and fields, and design and
implement new multimodular linear algebra algorithms over cyclotomic fields.

3.1.5 Numerical Computation

Support in SAGE for numerical computation is crucial. Computation of special
functions, Fourier transforms, and numerical linear algebra all play a role in num-
ber theoretic computations. Efficient algorithms for computing exact algebraic

11

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

objects, e.g., Bernoulli numbers and models for curves, often proceed by comput-
ing numerical approximations, and algebraic problems can sometimes be solved
(with proof) more efficiently via numerical methods. Support for numerical com-
putation also expands the range of people who can benefit from SAGE.

SAGE includes numpy [21], which is a mature and well supported Python
library for numerical matrix computations. SAGE also includes the GNU Scientific
Library [8], which is a C library that provides a wide range of numerical algorithms.
The PI is requesting funding to hire a graduate student to design and implement
substantial new algorithms and code for SAGE to make it easier to use numpy,
scipy [25], and GSL to support algebraic computation.

3.2 Advanced Number Theory Algorithms

3.2.1 Modular Forms and Modular Abelian Varieties

The PI has done much work on modular forms computations in his thesis and
for Magma and published a book on computing with modular forms [29]. The
PI proposes to create an optimized, flexible package in SAGE for computing with
modular forms for general congruence subgroups of SL2(Z). He would also like
to create a package for computing with half-integral weight and weight 1 modular
forms that uses a combination of Gabor Weise’s new algorithm and Tate’s classi-
cal algorithm. Jointly with Lassina Dembele and David Kohel, the PI intends to
implement algorithms of John Voight and others for computing with quaternion
algebras that will be used to compute both classical and Hilbert modular forms.
With Robert Pollack, the PI intends to implement algorithms for computing with
p-adic modular forms and p-adic L-functions, especially algorithms building on
Glenn Steven’s work on p-adic modular symbols. The PI would also like to imple-
ment a range of trace formula algorithms for investigating p-adic modular forms.
The PI would use funds from this proposal to invite John Voight, Lassine Dembele,
David Kohel, and others to UW to help with implementations.

The PI has done work on explicit computations with modular abelian va-
rieties, including creating a package for computing with them that is included
with Magma. Working with Jordi Quer (of Barcelona), he intends to implement
in SAGE a package for computing with modular abelian varieties over Q and
over number fields. This involves decomposition into simple factors, computation
of endomorphism rings, isomorphism testing, computation of period lattices and
defining equations (Jacobians, low genus), and special values of L-functions.

3.2.2 Elliptic and Hyperelliptic Curves

The arithmetic of elliptic curves is a rich central area of number theory. SAGE
currently includes a wide range of functionality, and we hope to add more, and
improve the quality of what is there now. SAGE includes Denis Simon’s pro-

12

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

gram for algebraic 2-descents, but does not take full advantage of its functionality
yet. Cremona’s mwrank program [3] is also included in SAGE, but some of its
functionality has not been exposed to the SAGE interpreter.

There has been a major thrust to use 3, 4, and even 12 descents to compute
Mordell-Weil groups of elliptic curves. All current implementations of these meth-
ods are part of Magma—there are no independent or free implementations, though
the algorithms are published in recent Ph.D. theses and papers. The PI would use
money from this proposal to fund SAGE implementations of these algorithms.

For cryptographic applications, SAGE requires optimized implementations of
algorithms for computing with Jacobians of hyperelliptic curves. David Kohel
has implemented preliminary algorithms in this direction for SAGE, and the PI
intends to optimize these so that they are useful for serious research.

3.2.3 Databases

Though SAGE already has many databases, including Sloane’s tables [28] of inte-
ger sequences and Cremona’s tables [4] of elliptic curves, the PI intends to greatly
expand the range of databases available in SAGE. This will mainly involve cre-
ating new databases related to the PI’s research, including databases of modular
forms, elliptic curves, modular abelian varieties, and special values of L-functions.

3.3 The SAGE Notebook: Graphics and Visualization

The SAGE notebook is implemented as a Python-based web server that inter-
acts with numerous SAGE instances (one for each running worksheet). The user
interface to the notebook is implemented using Javascript in a web browser.

There are three categories of graphics and visualization that must be addressed
for SAGE: static graphics embedded in the notebook, dynamic graphics in the
notebook, and dynamic local graphics that do not use the notebook.

Matplotlib [9], which is included with SAGE, provides 2d graphics with an
interface very similar to MATLAB’s. Alex Clemesha, a full time employee doing
SAGE development, has used matplotlib to implement static 2d graphics with a
Mathematica-like interface, which embed nicely in the notebook. For example,
the PI used this package to illustrate Mazur’s recent Nature article [19].

There is some support for 3d rendering in matplotlib, and Clemesha intends
to create a similar Mathematica-like interface for 3d graphics. For high quality
static rendering of 3d images, SAGE includes a multi-threaded 3d ray tracer [32],
which produces beautiful 3d images with shadows, transparency, and reflections.

For dynamic graphics in the notebook, the PI intends to either find or hire a
student to write a free open source Java applet that can display a scene involving
mathematical primitives, and allows for dynamic rotation and scaling. For inter-
active local graphics not using the notebook, Mayavi [24] is an excellent solution.

13

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

4 Justification for Funding

The primary goal of SAGE is to make a wide range of modern research-level algo-
rithms available in a high quality, easy-to-use, integrated package with a graphical
interface. Tables 2–3 and the discussion of advanced research algorithms above
illustrate that this has not yet been achieved by any free or commercial software.
The commercial programs have several million dollar per year revenues, but do not
address the research needs of our community; for SAGE to achieve similar quality
while serving the needs of researchers requires significant funding, and until SAGE
is much more established, grant funding is the primary source.

The PI hopes that in three years SAGE will be sufficiently pervasive that
SAGE development can be funded by a foundation that receives donations and
support contracts. Until then NSF funding is critical.

References

[1] I. Burhanuddin, J. Demmel, E. Goins, E. Kaltofen, F. Perez, W. Stein, H. Ver-
rill, and J. Weening, Workshop: Interactive Parallel Computation in Support
of Research in Algebra, Geometry and Number Theory, (Jan. 29–Feb. 2, 2007),
http://modular.math.washington.edu/msri07/.

[2] J. Cremona, H. Darmon, K. Ribet, R. Sharifi, and W. Stein, Banff workshop
on Modular Forms, (June 3–June 8, 2007).

[3] J. E. Cremona, mwrank (computer software),
http://www.maths.nott.ac.uk/personal/jec/ftp/progs/.

[4] , Tables of Elliptic Curves,
http://www.maths.nott.ac.uk/personal/jec/ftp/data/.

[5] G. Ewing, A Language for Writing Python Extension Modules, http://www.
cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

[6] GAP, Groups, algorithms, programming—a system for computational discrete
algebra, http://www-gap.mcs.st-and.ac.uk/.

[7] D. Grayson and M. Stillman, Macaulay2: A software system devoted to
supporting research in algebraic geometry and commutative algebra, http:
//www.math.uiuc.edu/Macaulay2/.

[8] GSL, GNU Scientific Library, http://www.gnu.org/software/gsl/.
[9] John Hunter, Matplotlib: Python software for drawing graphs,

http://matplotlib.sourceforge.net/ (2005).
[10] D. Joyner and W. Stein, Workshop: SAGE Days 1, UC San Diego (February

2006), http://sage.math.washington.edu/sage/days1/.
[11] , Workshop: SAGE Days 2, University of Washington (October 2006),

http://sage.math.washington.edu/sage/days2/.
[12] K. Kedlaya, M. Rubinstein, N. Ryan, N.P. Skoruppa, and W. Stein, Work-

14

William A. Stein Project Description
(858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

shop: L-functions and modular forms, (July 30–Aug 3, 2007), http://
aimath.org/ARCC/workshops/lfunctionsandmf.html.

[13] Magma, High performance software for Algebra, Number Theory, and Geom-
etry, http://magma.maths.usyd.edu.au/.

[14] Maple, http://www.maplesoft.com/.
[15] Mathematica, http://www.wolfram.com/.
[16] K. Mathews, Number theory ftp sites/calculator programs/archives, http:

//www.numbertheory.org/ntw/N1.html.
[17] MATLAB, http://www.mathworks.com/.
[18] Maxima, A GPL CAS based on DOE-MACSYMA, http://maxima.

sourceforge.net/.
[19] B. Mazur, Controlling our errors, Nature 443 (7 September 2006).
[20] J. Neubüser, An Invitation to Computational Group Theory, London Math.

Soc. Lecture Notes Ser. 212 (1995), 457–475, Cambridge University Press.
[21] T. Oliphant, The fundamental package for scientific computing with Python,

http://numpy.scipy.org/.
[22] PARI, A computer algebra system designed for fast computations in number

theory, http://pari.math.u-bordeaux.fr/.
[23] F. Perez, An Enhanced Python Shell, http://ipython.scipy.org/moin/.
[24] P. Ramachandran, Mayavi, http://mayavi.sourceforge.net/.
[25] SciPy, Scientific Tools for Python, http://www.scipy.org/.
[26] SIMUW, Workshop: Summer Institute of Mathematics at University of

Washington (the PI led 1 of 6 high-school student workshops), (June 27—
July 8, 2006), http://sage.math.washington.edu/simuw/.

[27] Singular, A computer algebra system for polynomial computations, http://
www.singular.uni-kl.de/.

[28] N. J. Sloane, The Online Encyclopedia of Integer Sequences, http://www.
research.att.com/~njas/sequences/index.html.

[29] W. Stein, Explicitly Computing Modular Forms, Graduate Studies in Math-
ematics, vol. 79, American Math. Society, 2007, With an appendix by Paul
Gunnells.

[30] W Stein, Workshop: Computing with modular forms, (August, 2006), http:
//modular.math.washington.edu/msri06.

[31] W. Stein, Workshop: SAGE Days 3, IPAM (February 2007).
[32] J. E. Stone, The Tachyon Multiprocessor Ray Tracer, http://jedi.ks.

uiuc.edu/~johns/raytracer/.
[33] Twisted, A framework for networked applications, http://twistedmatrix.

com/trac/.

15

