Sage: Open Source Mathematical Software:
Symbolic Computation, Combinatorial Species,
Backtracking Algorithms, and Distributed Computation

William Stein, Gary Furnish, Mike Hansen, Robert Miller, and Yi Qiang

March 21, 2008

1 Introduction

Sage brings together Python and the best existing open source mathemat-
ical libraries and software to create a powerful alternative to commercial
mathematics software without reinventing the wheel. This is a proposal for
$18,000 (=%4,500 x 4) addressed to Chris DiBona at Google to fund work
by four students on Sage. Each of the four students (two graduate and two
undergraduate) have already contributed extensively to the Sage project,
and are very well respected in the Sage community.

2 Combinatorial Species — Mike Hansen (UCSD
Graduate Student in Mathematics)

Trees and tree-like structures play an important role in both computer sci-
ence and in mathematics. One example of a commonly used tree is a binary
search tree. As a simple example, we may consider rooted trees, which can
be defined recursively as follows: a rooted tree consists of a root node at-
tached to a (possibley empty) set of rooted trees. This is illustrated in the
diagram below.

Typical questions that one might ask about rooted trees include how
many labeled, rooted trees there are, how many labeled, unrooted trees there
are, and what are all of the distinct unlabeled rooted trees. These questions
often arise while considering the complexity analysis of algorithms.

The theory of combinatorial species provides an elegant algebraic frame-
work for answering these questions and is well-suited for computer imple-
mentation. When translated into the language of species, the recursive
definition of rooted trees X becomes

X =A- E(X)

where A is the species of singletons, and E is the species of sets. From
this one equation, one can efficiently count and generate all labeled and
unlabeled rooted trees.

The goal of this project is to provide an implementation of combinatorial
species in Sage. Once the species code is in place, one could run the following
Sage session:

sage: X = CombinatorialSpecies ()
sage: A = SingletonSpecies ()
sage: E = SetSpecies|()

sage: X.set(AxE(X))

sage: X.count_labeled (range(1,10))

[1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721]
sage: X.count_unlabeled (range(1,10))

1, 1, 2, 4, 9, 20, 48, 115, 286]

sage: 13 = X.list_labeled (3)

sage: u3 = X.list_unlabeled (3)

It would provide a backend to handle a wide range of new combinatorial
objects with minimal effort. Additionally, the core of the module could be
written in pure Python with no dependencies on Sage to allow it to be used
in a standalone manner from other Python programs.

3 Rewrite and Vastly Optimize Symbolic Compu-
tation — Gary Furnish (Utah, Undergraduate in
Physics)

Symbolic manipulations involving differentiation and integration are a key
part of computational calculus. Sage currently uses Maxima, which is the

best free symbolic computation package available. Maxima was created over
thirty years ago in Lisp before the advent of object oriented programming,
and also lacks useful documentation of its internals. Thus progress on open
source symbolic manipulation has largely stagnated.

The primary reason that Maxima has not been replaced before now was
the extensive work that has gone into it to perfect its ability to perform in-
tegration. However, compared to the modern capabilities of products such
as Mathematica, it is lacking significant features. It is not uncommon for
Maxima to be unable to perform relatively simple calculations due to flaws
in the way it treats variables. The most commonly used features of Math-
ematica are its integration and differential equation solvers, and yet these
are precisely where open source software is most lacking. Thus for the last
twenty years those who have wanted to perform symbolic manipulations
have been forced to pay over $2000 per seat, or $99 if they were a student.
It is critical that this gap in open source mathematics software be closed if
it is to be usable by most students, let alone professionals.

However, Sage does not just have a chance to equal commercial software
for symbolic manipulations. Because it was written using object oriented
Python, it is not limited to just numbers like Mathematica or Maple. By
writing the code to consider general classes (in the Python sense) of objects,
one may consider significantly more general forms of symbolic manipula-
tion that are used extensively in physics. In general relativity, for instance,
one often talks about space-time as a four dimensional object that exists
in its own right. One commonly wants to find the curvature of space (in
two dimensions, this would be the analogue of how far from flat a sheet is).
Current methods all involve complicated, non-intuitive additions to commer-
cial software, or the involve the creation of software explicitly for the task
being solved. However, by having Sage consider Python classes instead of
numbers, solving this problem becomes as easy as overriding a few function
calls. In quantum physics one often considers particles, such as electrons,
that can exist in two states (spin-up or spin-down). Problems that involve
such particles are normally solved with specialized software, or worse, by
hand. However, in this case the situation is even better. By leveraging ex-
isting code for groups in Sage, it will be possible to quickly write the code
necessary to consider these problems. A new symbolics implementation us-
ing Python will not only benefit simple calculus calculations but has the
potential to dramatically decrease the effort required to solve many physics
problems.

4 Backtracking Algorithms and Permutation Groups
— Robert Miller (UW Graduate Student in Math-
ematics)

Permutation groups provide a convenient representation for many abstract
groups, and they arise as the symmetry groups of many combinatorial and
geometric objects. Backtracking algorithms are a common technique, but
less known are the techniques involving successive refinement of ordered
partitions. This technique makes many computations involving permutation
groups feasible. It has been employed in the classification of graphs and
error-correcting codes, and in the searches for balanced incomplete block
designs on certain parameters. Recently, the classification of certain matrix
algebras has reached the point where these techniques could be put to good
use. They can also be employed to exhaustively generate isomorphism class
representatives of a wide class of mathematical objects.

The concept of base and strong generating set was originally developed
by Sims (1971) to prune the tree searched during backtrack. The degree of
a permutation group, i.e. the number of points it permutes, is often restric-
tively large, and computing a base and strong generating set can greatly
reduce this restriction. For example, the Janko sporadic simple groups in
their representations of degrees 276, 100, and 6156 have bases of degree 3,
4 and 3 points respectively. The action of a permutation group element is
determined by its action on the base, so a reduction like this makes it much
more feasible to do computations in the group.

This notion is an implicit consequence of the work of McKay (1978),
which develops the idea of refinements of ordered partitions. This allows for
more extensive pruning of the search tree, resulting in a highly efficient algo-
rithm for, in McKay’s case, computing the automorphism group of a graph,
and producing a canonical representative for its isomorphism class. Unfortu-
nately, the software written by McKay to implement these ideas was never
released under a sufficiently open license, and those that have examined
the source code have reported that it is very difficult to understand. This
was the main motivation for my implementation of the algorithm (2007) in
Sage, which was released under the GPL, and is designed to be much more
understandable at a source code level.

Leon observed (1991) that these techniques could be substantially gen-
eralized to many general permutation group questions. These questions
include the graph-isomorphism complete questions of computing set sta-
bilizers, centralizers and normalizers of elements, upper central series and

intersections of groups. He very recently released the software he wrote
to implement these computations under GPL. During his development of
these programs, in his own words, he “didn’t always remember to change
the comments accordingly, so in some places comments appropriate to one
algorithm appear in the code for another.” Further, the code written was
written strictly for use in a standalone application that terminates on finish,
so memory management was essentially abandoned halfway through devel-
opment. Finally, again in his own words, by the time the code was signed
over to the Magma group, “the partition backtrack code had been patched
up many times by then, and I felt it needed to be reorganized and rewritten
from scratch. I started to do this on several occasions, but never had the
time to complete more than a small fraction of the task.”

The algorithms for graphs and binary codes have already been imple-
mented in Sage, and recently the last known bugs in the programs were
eliminated. The binary code case has tested faster than the analogous code
in Magma, which shows promise for the future work to be done. The goals
for this project are to generalize the algorithms to at least the level of gen-
erality of Leon’s work, to be well documented and understandable at the
source code level, and to revive the literature and code of partition back-
track algorithm to a modern setting. As in the case of symbolic calculus,
the object oriented, mathematically oriented setting of Sage is optimal for
implementing a general partition backtrack algorithm, so that even ques-
tions for which this may be an effective technique of which we are not yet
aware can be eventually implemented efficiently.

5 Distributed Computing with DSage — Yi Qiang
(UW Undergraduate in Mathematics)

Distributed computing is a method of computer processing in which dif-
ferent parts of a program run simultaneously on two or more computers
that are communicating with each other over a network. Google is certainly
no stranger to distributed computing and probably understands the power
and utility of it better than most. For Sage to be a viable competitor to
commercial offerings such as gridMathematica and Matlab’s Parallel Com-
puting Toolbox, we need to provide an easy to use, innovative and robust
alternative.

Today, the distributed computing options that are available for mathe-
maticians to use are either overly complex or are not integrated with any
mathematical software. While commercial solutions such as gridMathemat-

ica and Matlab’s Parallel Computing Toolbox exist, they are closed systems
and often times are prohibitively expensive for the average user. Because
DSage is written in Python and is distributed with Sage, it greatly reduces
the barrier of entry for mathematicians who want to use distributed com-
puting. Furthermore, it works just as well on a multi-core computer as it
does on a cluster, and thus provides one way to overcome the limitations of
Python’s Global Interpreter Lock.

While there is not a lack of problems for which DSage is the right choice,
namely those that can take advantage of coarse grained distributed com-
puting, there are two main concerns which are not currently adaquately
answered by DSage:

1. How does one easily split up the problem into discrete chunks?

2. How can the processing power of the limited computing resources avail-
able best be managed?

To effectively replace specialized systems currently used in parallel process-
ing, DSage must better address these question. First, DSage needs to pro-
vide better documentation and examples that enmulate those found in the
real world. For common scenerios, someone, someone should be able to
copy /paste existing example code and make minor modifications to adapt it
for usage. For more specialized scenerios, the examples may not be directly
related to the situation but should provide enough insight into how to use
DSage such that the person can easily write their own solution. Secondly,
DSage must be made easier to deploy on ad-hoc cluster of computers which
the person has access to. Possible scenarios such as using a departments
computer lab as a cluster overnight should be made possible and easy to
implement.

To achieve these goals, there are several specific areas where DSage needs
improvement:

1. Make DSage more robust by improving code coverage and doctests
2. Improve the web interface to DSage

3. Provide real world examples on how to use DSage

4. Develop and document deployment strategies for DSage workers which

include, among other features, automatic updating.

Each of these work items is achievable over the course of the summer,
and their completion is crucial in ensuring the success of DSage and Sage
as a viable alternative to specialized codebases and expensive commerical
offerings

