
This is page i
Printer: Opaque this

Elementary Number Theory

William Stein

October 2005

ii

To my students and my wife, Clarita Lefthand.

This is page iii
Printer: Opaque this

Contents

Preface 3

1 Prime Numbers 5
1.1 Prime Factorization . 5
1.2 The Sequence of Prime Numbers 13
1.3 Exercises . 19

2 The Ring of Integers Modulo n 21
2.1 Congruences Modulo n . 21
2.2 The Chinese Remainder Theorem 27
2.3 Quickly Computing Inverses and Huge Powers 29
2.4 Finding Primes . 33
2.5 The Structure of (Z/pZ)∗ 34
2.6 Exercises . 38

3 Public-Key Cryptography 43
3.1 The Diffie-Hellman Key Exchange 46
3.2 The RSA Cryptosystem . 51
3.3 Attacking RSA . 54
3.4 Exercises . 58

4 Quadratic Reciprocity 59
4.1 Statement of the Quadratic Reciprocity Law 60
4.2 Euler’s Criterion . 62

Contents 1

4.3 First Proof of Quadratic Reciprocity 63
4.4 A Proof of Quadratic Reciprocity Using Gauss Sums 68
4.5 Finding Square Roots . 72
4.6 Exercises . 74

5 Continued Fractions 77
5.1 Finite Continued Fractions 78
5.2 Infinite Continued Fractions 83
5.3 The Continued Fraction of e 88
5.4 Quadratic Irrationals . 91
5.5 Recognizing Rational Numbers 96
5.6 Sums of Two Squares . 97
5.7 Exercises . 100

6 Elliptic Curves 103
6.1 The Definition . 103
6.2 The Group Structure on an Elliptic Curve 104
6.3 Integer Factorization Using Elliptic Curves 107
6.4 Elliptic Curve Cryptography 113
6.5 Elliptic Curves Over the Rational Numbers 117
6.6 Exercises . 121

7 Computational Number Theory 125
7.1 Prime Numbers . 127
7.2 The Ring of Integers Modulo n 133
7.3 Public-Key Cryptography 141
7.4 Quadratic Reciprocity . 147
7.5 Continued Fractions . 150
7.6 Elliptic Curves . 154
7.7 Exercises . 162

Answers and Hints 165

References 173

2 Contents

This is page 3
Printer: Opaque this

Preface

This is a textbook about prime numbers, congruences, basic public-key
cryptography, quadratic reciprocity, continued fractions, elliptic curves, and
number theory algorithms. We assume the reader has some familiarity with
groups, rings, and fields, and for Chapter 7 some programming experience.
This book grew out of an undergraduate course that the author taught at
Harvard University in 2001 and 2002.

Notation and Conventions. We let N = {1, 2, 3, . . .} denote the natural
numbers, and use the standard notation Z, Q, R, and C for the rings of
integer, rational, real, and complex numbers, respectively. In this book we
will use the words proposition, theorem, lemma, and corollary as follows.
Usually a proposition is a less important or less fundamental assertion, a
theorem a deeper culmination of ideas, a lemma something that we will
use later in this book to prove a proposition or theorem, and a corollary
an easy consequence of a proposition, theorem, or lemma.

Acknowledgements. Brian Conrad and Ken Ribet made a large number
of clarifying comments and suggestions throughout the book. Baurzhan
Bektemirov, Lawrence Cabusora, and Keith Conrad read drafts of this book
and made many comments. Frank Calegari used the course when teaching
Math 124 at Harvard, and he and his students provided much feedback.
Noam Elkies made comments and suggested Exercise 4.5. Seth Kleinerman
wrote a version of Section 5.3 as a class project. Samit Dasgupta, George
Stephanides, Kevin Stern, and Heidi Williams all suggested corrections. I

4 Contents

also benefited from conversations with Henry Cohn and David Savitt. I
used Emacs, LATEX, and Python in the preparation of this book.

This is page 5
Printer: Opaque this

1
Prime Numbers

In Section 1.1 we describe how the integers are built out of the prime
numbers 2, 3, 5, 7, 11, In Section 1.2 we discuss theorems about the set
of primes numbers, starting with Euclid’s proof that this set is infinite,
then explore the distribution of primes via the prime number theorem and
the Riemann Hypothesis (without proofs).

1.1 Prime Factorization

1.1.1 Primes

The set of natural numbers is

N = {1, 2, 3, 4, . . .},

and the set of integers is

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Definition 1.1.1 (Divides). If a, b ∈ Z we say that a divides b, written
a | b, if ac = b for some c ∈ Z. In this case we say a is a divisor of b. We say
that a does not divide b, written a ∤ b, if there is no c ∈ Z such that ac = b.

For example, we have 2 | 6 and −3 | 15. Also, all integers divide 0, and 0
divides only 0. However, 3 does not divide 7 in Z.

Remark 1.1.2. The notation b
.
: a for “b is divisible by a” is common in

Russian literature on number theory.

6 1. Prime Numbers

Definition 1.1.3 (Prime and Composite). An integer n > 1 is prime
if it the only positive divisors of n are 1 and n. We call n composite if n is
not prime.

The number 1 is neither prime nor composite. The first few primes of N
are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, . . . ,

and the first few composites are

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34,

Remark 1.1.4. J. H. Conway argues in [Con97, viii] that −1 should be
considered a prime, and in the 1914 table [Leh14], Lehmer considers 1 to
be a prime. In this book we consider neither −1 nor 1 to be prime.

Every natural number is built, in a unique way, out of prime numbers:

Theorem 1.1.5 (Fundamental Theorem of Arithmetic). Every nat-
ural number can be written as a product of primes uniquely up to order.

Note that primes are the products with only one factor and 1 is the
empty product.

Remark 1.1.6. Theorem 1.1.5, which we will prove in Section 1.1.4, is trick-
ier to prove than you might first think. For example, unique factorization
fails in the ring

Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} ⊂ C,

where 6 factors into irreducible elements in two different ways:

2 · 3 = 6 = (1 +
√
−5) · (1 −

√
−5).

1.1.2 The Greatest Common Divisor

We will use the notion of greatest common divisor of two integers to prove
that if p is a prime and p | ab, then p | a or p | b. Proving this is the key
step in our proof of Theorem 1.1.5.

Definition 1.1.7 (Greatest Common Divisor). Let

gcd(a, b) = max {d ∈ Z : d | a and d | b} ,

unless both a and b are 0 in which case gcd(0, 0) = 0.

For example, gcd(1, 2) = 1, gcd(6, 27) = 3, and for any a, gcd(0, a) =
gcd(a, 0) = a.

If a 6= 0, the greatest common divisor exists because if d | a then d ≤ a,
and there are only a positive integers ≤ a. Similarly, the gcd exists when
b 6= 0.

1.1 Prime Factorization 7

Lemma 1.1.8. For any integers a and b we have

gcd(a, b) = gcd(b, a) = gcd(±a,±b) = gcd(a, b − a) = gcd(a, b + a).

Proof. We only prove that gcd(a, b) = gcd(a, b − a), since the other cases
are proved in a similar way. Suppose d | a and d | b, so there exist integers
c1 and c2 such that dc1 = a and dc2 = b. Then b−a = dc2−dc1 = d(c2−c1),
so d | b − a. Thus gcd(a, b) ≤ gcd(a, b − a), since the set over which we are
taking the max for gcd(a, b) is a subset of the set for gcd(a, b − a). The
same argument with a replaced by −a and b replaced by b− a, shows that
gcd(a, b − a) = gcd(−a, b − a) ≤ gcd(−a, b) = gcd(a, b), which proves that
gcd(a, b) = gcd(a, b − a).

Lemma 1.1.9. Suppose a, b, n ∈ Z. Then gcd(a, b) = gcd(a, b − an).

Proof. By repeated application of Lemma 1.1.8, we have

gcd(a, b) = gcd(a, b − a) = gcd(a, b − 2a) = · · · = gcd(a, b − 2n).

Assume for the moment that we have already proved Theorem 1.1.5.
A natural (and naive!) way to compute gcd(a, b) is to factor a and b as
a product of primes using Theorem 1.1.5; then the prime factorization of
gcd(a, b) can read off from that of a and b. For example, if a = 2261 and
b = 1275, then a = 7 · 17 · 19 and b = 3 · 52 · 17, so gcd(a, b) = 17. It turns
out that the greatest common divisor of two integers, even huge numbers
(millions of digits), is surprisingly easy to compute using Algorithm 1.1.12
below, which computes gcd(a, b) without factoring a or b.

To motivate Algorithm 1.1.12, we compute gcd(2261, 1275) in a different
way. First, we recall a helpful fact.

Proposition 1.1.10. Suppose that a and b are integers with b 6= 0. Then
there exists unique integers q and r such that 0 ≤ r < |b| and a = bq + r.

Proof. For simplicity, assume that both a and b are positive (we leave the
general case to the reader). Let Q be the set of all nonnegative integers n
such that a− bn is nonnegative. Then Q is nonempty because 0 ∈ Q and Q
is bounded because a− bn < 0 for all n > a/b. Let q be the largest element
of Q. Then r = a − bq < b, otherwise q + 1 would also be in Q. Thus q
and r satisfy the existence conclusion.

To prove uniqueness, suppose for the sake of contradiction that q′ and
r′ = a − bq′ also satisfy the conclusion but that q′ 6= q. Then q′ ∈ Q since
r′ = a − bq′ ≥ 0, so q′ < q and we can write q′ = q − m for some m > 0.
But then r′ = a − bq′ = a − b(q − m) = a − bq + bm = r + bm > b since
r ≥ 0, a contradiction.

8 1. Prime Numbers

For us an algorithm is a finite sequence of instructions that can be fol-
lowed to perform a specific task, such as a sequence of instructions in a
computer program, which must terminate on any valid input. The word “al-
gorithm” is sometimes used more loosely (and sometimes more precisely)
than defined here, but this definition will suffice for us.

Algorithm 1.1.11 (Division Algorithm). Suppose a and b are integers
with b 6= 0. This algorithm computes integers q and r such that 0 ≤ r < |b|
and a = bq + r. We will not describe the actual steps of this algorithm, since
it is just the familiar long division algorithm.

We use the division algorithm repeatedly to compute gcd(2261, 1275).
Dividing 2261 by 1275 we find that

2261 = 1 · 1275 + 986,

so q = 1 and r = 986. Notice that if a natural number d divides both 2261
and 1275, then d divides their difference 986 and d still divides 1275. On
the other hand, if d divides both 1275 and 986, then it has to divide their
sum 2261 as well! We have made progress:

gcd(2261, 1275) = gcd(1275, 986).

This equality also follows by repeated application of Lemma 1.1.8. Repeat-
ing, we have

1275 = 1 · 986 + 289,

so gcd(1275, 986) = gcd(986, 289). Keep going:

986 = 3 · 289 + 119

289 = 2 · 119 + 51

119 = 2 · 51 + 17.

Thus gcd(2261, 1275) = · · · = gcd(51, 17), which is 17 because 17 | 51. Thus

gcd(2261, 1275) = 17.

Aside from some tedious arithmetic, that computation was systematic, and
it was not necessary to factor any integers (which is something we do not
know how to do quickly if the numbers involved have hundreds of digits).

Algorithm 1.1.12 (Greatest Common Division). Given integers a, b,
this algorithm computes gcd(a, b).

1. [Assume a > b ≥ 0] We have gcd(a, b) = gcd(|a|, |b|) = gcd(|b|, |a|),
so we may replace a and b by their absolute value and hence assume
a, b ≥ 0. If a = b output a and terminate. Swapping if necessary we
assume a > b.

1.1 Prime Factorization 9

2. [Quotient and Remainder] Using Algorithm 1.1.11, write a = bq+r, with
0 ≤ r < b and q ∈ Z.

3. [Finished?] If r = 0 then b | a, so we output b and terminate.

4. [Shift and Repeat] Set a ← b and b ← r, then go to step 2.

Proof. Lemmas 1.1.8–1.1.9 imply that gcd(a, b) = gcd(b, r) so the gcd does
not change in step 4. Since the remainders form a decreasing sequence of
nonnegative integers, the algorithm terminates.

See Section 7.1.1 for an implementation of Algorithm 1.1.12.

Example 1.1.13. Set a = 15 and b = 6.

15 = 6 · 2 + 3 gcd(15, 6) = gcd(6, 3)

6 = 3 · 2 + 0 gcd(6, 3) = gcd(3, 0) = 3

Note that we can just as easily do an example that is ten times as big, an
observation that will be important in the proof of Theorem 1.1.17 below.

Example 1.1.14. Set a = 150 and b = 60.

150 = 60 · 2 + 30 gcd(150, 60) = gcd(60, 30)

60 = 30 · 2 + 0 gcd(60, 30) = gcd(30, 0) = 30

Lemma 1.1.15. For any integers a, b, n, we have

gcd(an, bn) = gcd(a, b) · n.

Proof. The idea is to follow Example 1.1.14; we step through Euclid’s al-
gorithm for gcd(an, bn) and note that at every step the equation is the
equation from Euclid’s algorithm for gcd(a, b) but multiplied through by n.
For simplicity, assume that both a and b are positive. We will prove the
lemma by induction on a + b. The statement is true in the base case when
a + b = 2, since then a = b = 1. Now assume a, b are arbitrary with a ≤ b.
Let q and r be such that a = bq + r and 0 ≤ r < b. Then by Lemmas 1.1.8–
1.1.9, we have gcd(a, b) = gcd(b, r). Multiplying a = bq + r by n we see
that an = bnq + rn, so gcd(an, bn) = gcd(bn, rn). Then

b + r = b + (a − bq) = a − b(q − 1) ≤ a < a + b,

so by induction gcd(bn, rn) = gcd(b, r) · n. Since gcd(a, b) = gcd(b, r), this
proves the lemma.

Lemma 1.1.16. Suppose a, b, n ∈ Z are such that n | a and n | b. Then
n | gcd(a, b).

Proof. Since n | a and n | b, there are integers c1 and c2, such that a = nc1

and b = nc2. By Lemma 1.1.15, gcd(a, b) = gcd(nc1, nc2) = n gcd(c1, c2),
so n divides gcd(a, b).

10 1. Prime Numbers

At this point it would be natural to formally analyze the complexity of
Algorithm 1.1.12. We will not do this, because the main reason we intro-
duced Algorithm 1.1.12 is that it will allow us to prove Theorem 1.1.5,
and we have not chosen to formally analyze the complexity of the other
algorithms in this book. For an extensive analysis of the complexity of
Algorithm 1.1.12, see [Knu98, §4.5.3].

With Algorithm 1.1.12, we can prove that if a prime divides the product
of two numbers, then it has got to divide one of them. This result is the
key to proving that prime factorization is unique.

Theorem 1.1.17 (Euclid). Let p be a prime and a, b ∈ N. If p | ab then
p | a or p | b.

You might think this theorem is “intuitively obvious”, but that might be
because the fundamental theorem of arithmetic (Theorem 1.1.5) is deeply
ingrained in your intuition. Yet Theorem 1.1.17 will be needed in our proof
of the fundamental theorem of arithmetic.

Proof of Theorem 1.1.17. If p | a we are done. If p ∤ a then gcd(p, a) = 1,
since only 1 and p divide p. By Lemma 1.1.15, gcd(pb, ab) = b. Since p | pb
and, by hypothesis, p | ab, it follows from Lemma 1.1.15 that

p | gcd(pb, ab) = b.

1.1.3 Numbers Factor as Products of Primes

In this section, we prove that every natural number factors as a product
of primes. Then we discuss the difficulty of finding such a decomposition
in practice. We will wait until Section 1.1.4 to prove that factorization is
unique.

As a first example, let n = 1275. The sum of the digits of n is divisible
by 3, so n is divisible by 3 (see Proposition 2.1.3), and we have n = 3 · 425.
The number 425 is divisible by 5, since its last digit is 5, and we have
1275 = 3 · 5 · 85. Again, dividing 85 by 5, we have 1275 = 3 · 52 · 17,
which is the prime factorization of 1275. Generalizing this process proves
the following proposition:

Proposition 1.1.18. Every natural number is a product of primes.

Proof. Let n be a natural number. If n = 1, then n is the empty product
of primes. If n is prime, we are done. If n is composite, then n = ab with
a, b < n. By induction, a and b are products of primes, so n is also a product
of primes.

Two questions immediately arise: (1) is this factorization unique, and
(2) how quickly can we find such a factorization? Addressing (1), what if

1.1 Prime Factorization 11

we had done something differently when breaking apart 1275 as a product
of primes? Could the primes that show up be different? Let’s try: we have
1275 = 5 ·255. Now 255 = 5 ·51 and 51 = 17 ·3, and again the factorization
is the same, as asserted by Theorem 1.1.5 above. We will prove uniqueness
of the prime factorization of any integer in Section 1.1.4.

Regarding (2), there are algorithms for integer factorization; e.g., in Sec-
tions 6.3 and 7.1.3 we will study and implement some of them. It is a major
open problem to decide how fast integer factorization algorithms can be.

Open Problem 1.1.19. Is there an algorithm which can factor any inte-
ger n in polynomial time? (See below for the meaning of polynomial time.)

By polynomial time we mean that there is a polynomial f(x) such that
for any n the number of steps needed by the algorithm to factor n is less
than f(log10(n)). Note that log10(n) is an approximation for the number
of digits of the input n to the algorithm.

Peter Shor [Sho97] devised a polynomial time algorithm for factoring
integers on quantum computers. We will not discuss his algorithm further,
except to note that in 2001 IBM researchers built a quantum computer
that used Shor’s algorithm to factor 15 (see [LMG+01, IBM01]).

You can earn money by factoring certain large integers. Many cryptosys-
tems would be easily broken if factoring certain large integers were easy.
Since nobody has proven that factoring integers is difficult, one way to in-
crease confidence that factoring is difficult is to offer cash prizes for factor-
ing certain integers. For example, until recently there was a $10000 bounty
on factoring the following 174-digit integer (see [RSA]):

1881988129206079638386972394616504398071635633794173827007
6335642298885971523466548531906060650474304531738801130339
6716199692321205734031879550656996221305168759307650257059

This number is known as RSA-576 since it has 576 digits when written in
binary (see Section 2.3.2 for more on binary numbers). It was factored at the
German Federal Agency for Information Technology Security in December
2003 (see [Wei03]):

398075086424064937397125500550386491199064362342526708406
385189575946388957261768583317
×
472772146107435302536223071973048224632914695302097116459
852171130520711256363590397527

The previous RSA challenge was the 155-digit number

1094173864157052742180970732204035761200373294544920599091
3842131476349984288934784717997257891267332497625752899781
833797076537244027146743531593354333897.

12 1. Prime Numbers

It was factored on 22 August 1999 by a group of sixteen researchers in four
months on a cluster of 292 computers (see [ACD+99]). They found that
RSA-155 is the product of the following two 78-digit primes:

p = 10263959282974110577205419657399167590071656780803806

6803341933521790711307779

q = 10660348838016845482092722036001287867920795857598929

1522270608237193062808643.

The next RSA challenge is RSA-640:

31074182404900437213507500358885679300373460228427275457201619
48823206440518081504556346829671723286782437916272838033415471
07310850191954852900733772482278352574238645401469173660247765
2346609,

and its factorization is worth $20000.
These RSA numbers were factored using an algorithm called the number

field sieve (see [LL93]), which is the best-known general purpose factoriza-
tion algorithm. A description of how the number field sieve works is beyond
the scope of this book. However, the number field sieve makes extensive use
of the elliptic curve factorization method, which we will describe in Sec-
tion 6.3.

1.1.4 The Fundamental Theorem of Arithmetic

We are ready to prove Theorem 1.1.5 using the following idea. Suppose
we have two factorizations of n. Using Theorem 1.1.17 we cancel common
primes from each factorization, one prime at a time. At the end, we dis-
cover that the factorizations must consist of exactly the same primes. The
technical details are given below.

Proof. If n = 1, then the only factorization is the empty product of primes,
so suppose n > 1.

By Proposition 1.1.18, there exist primes p1, . . . , pd such that

n = p1p2 · · · pd.

Suppose that
n = q1q2 · · · qm

is another expression of n as a product of primes. Since

p1 | n = q1(q2 · · · qm),

Euclid’s theorem implies that p1 = q1 or p1 | q2 · · · qm. By induction, we
see that p1 = qi for some i.

Now cancel p1 and qi, and repeat the above argument. Eventually, we
find that, up to order, the two factorizations are the same.

1.2 The Sequence of Prime Numbers 13

1.2 The Sequence of Prime Numbers

This section is concerned with three questions:

1. Are there infinitely many primes?

2. Given a, b ∈ Z, are there infinitely many primes of the form ax + b?

3. How are the primes spaced along the number line?

We first show that there are infinitely many primes, then state Dirichlet’s
theorem that if gcd(a, b) = 1, then ax + b is a prime for infinitely many
values of x. Finally, we discuss the Prime Number Theorem which asserts
that there are asymptotically x/ log(x) primes less than x, and we make a
connection between this asymptotic formula and the Riemann Hypothesis.

1.2.1 There Are Infinitely Many Primes

Each number on the left in the following table is prime. We will see soon
that this pattern does not continue indefinitely, but something similar
works.

3 = 2 + 1

7 = 2 · 3 + 1

31 = 2 · 3 · 5 + 1

211 = 2 · 3 · 5 · 7 + 1

2311 = 2 · 3 · 5 · 7 · 11 + 1

Theorem 1.2.1 (Euclid). There are infinitely many primes.

Proof. Suppose that p1, p2, . . . , pn are n distinct primes. We construct a
prime pn+1 not equal to any of p1, . . . , pn as follows. If

N = p1p2p3 · · · pn + 1, (1.2.1)

then by Proposition 1.1.18 there is a factorization

N = q1q2 · · · qm

with each qi prime and m ≥ 1. If q1 = pi for some i, then pi | N . Because
of (1.2.1), we also have pi | N − 1, so pi | 1 = N − (N − 1), which is a
contradiction. Thus the prime pn+1 = q1 is not in the list p1, . . . , pn, and
we have constructed our new prime.

For example,

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Multiplying together the first 6 primes and adding 1 doesn’t produce a
prime, but it produces an integer that is merely divisible by a new prime.

14 1. Prime Numbers

Joke 1.2.2 (Hendrik Lenstra). There are infinitely many composite
numbers. Proof. To obtain a new composite number, multiply together the
first n composite numbers and don’t add 1.

1.2.2 Enumerating Primes

The Sieve of Eratosthenes is an efficient way to enumerate all primes up
to n. The sieve works by first writing down all numbers up to n, noting
that 2 is prime, and crossing off all multiples of 2. Next, note that the first
number not crossed off is 3, which is prime, and cross off all multiples of 3,
etc. Repeating this process, we obtain a list of the primes up to n. Formally,
the algorithm is as follows:

Algorithm 1.2.3 (Sieve of Eratosthenes). Given a positive integer n,
this algorithm computes a list of the primes up to n.

1. [Initialize] Let X = [3, 5, . . .] be the list of all odd integers between 3
and n. Let P = [2] be the list of primes found so far.

2. [Finished?] Let p to be the first element of X. If p ≥ √
n, append each

element of X to P and terminate. Otherwise append p to P .

3. [Cross Off] Set X equal to the sublist of elements in X that are not
divisible by p. Go to step 2.

For example, to list the primes ≤ 40 using the sieve, we proceed as
follows. First P = [2] and

X = [3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39].

We append 3 to P and cross off all multiples of 3 to obtain the new list

X = [5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37].

Next we append 5 to P , obtaining P = [2, 3, 5], and cross off the multiples
of 5, to obtain X = [7, 11, 13, 17, 19, 23, 29, 31, 37]. Because 72 ≥ 40, we
append X to P and find that the primes less than 40 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

Proof of Algorithm 1.2.3. The part of the algorithm that is not clear is
that when the first element a of X satisfies a ≥ √

n, then each element of
X is prime. To see this, suppose m is in X, so

√
n ≤ m ≤ n and that m is

divisible by no prime that is ≤ √
n. Write m =

∏

pei

i with the pi distinct
primes and p1 < p2 < If pi >

√
n for each i and there is more than

one pi, then m > n, a contradiction. Thus some pi is less than
√

n, which
also contradicts out assumptions on m.

See Section 7.1.2 for an implementation of Algorithm 1.2.3.

1.2 The Sequence of Prime Numbers 15

1.2.3 The Largest Known Prime

Though Theorem 1.2.1 implies that there are infinitely many primes, it still
makes sense to ask the question “What is the largest known prime?”

A Mersenne prime is a prime of the form 2q − 1. According to [Cal] the
largest known prime as of July 2004 is the Mersenne prime

p = 224036583 − 1,

which has 7235733 decimal digits, so writing it out would fill over 10 books
the size if this book. Euclid’s theorem implies that there definitely is a prime
bigger than this 7.2 million digit p. Deciding whether or not a number is
prime is interesting, both as a motivating problem and for applications to
cryptography, as we will see in Section 2.4 and Chapter 3.

1.2.4 Primes of the Form ax + b

Next we turn to primes of the form ax+ b, where a and b are fixed integers
with a > 1 and x varies over the natural numbers N. We assume that
gcd(a, b) = 1, because otherwise there is no hope that ax + b is prime
infinitely often. For example, 2x + 2 = 2(x + 1) is only prime if x = 0, and
is not prime for any other x ∈ N.

Proposition 1.2.4. There are infinitely many primes of the form 4x− 1.

Why might this be true? We list numbers of the form 4x−1 and underline
those that are prime:

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, . . .

It is plausible that underlined numbers would continue to appear indefi-
nitely.

Proof. Suppose p1, p2, . . . , pn are distinct primes of the form 4x − 1. Con-
sider the number

N = 4p1p2 · · · pn − 1.

Then pi ∤ N for any i. Moreover, not every prime p | N is of the form
4x + 1; if they all were, then N would be of the form 4x + 1. Thus there is
a p | N that is of the form 4x − 1. Since p 6= pi for any i, we have found a
new prime of the form 4x − 1. We can repeat this process indefinitely, so
the set of primes of the form 4x − 1 cannot be finite.

Note that this proof does not work if 4x − 1 is replaced by 4x + 1, since
a product of primes of the form 4x − 1 can be of the form 4x + 1.

Example 1.2.5. Set p1 = 3, p2 = 7. Then

N = 4 · 3 · 7 − 1 = 83

16 1. Prime Numbers

is a prime of the form 4x − 1. Next

N = 4 · 3 · 7 · 83 − 1 = 6971,

which is again a prime of the form 4x − 1. Again:

N = 4 · 3 · 7 · 83 · 6971 − 1 = 48601811 = 61 · 796751.

This time 61 is a prime, but it is of the form 4x + 1 = 4 · 15 + 1. However,
796751 is prime and 796751 = 4 · 199188 − 1. We are unstoppable:

N = 4 · 3 · 7 · 83 · 6971 · 796751 − 1 = 5591 · 6926049421.

This time the small prime, 5591, is of the form 4x− 1 and the large one is
of the form 4x + 1.

Theorem 1.2.6 (Dirichlet). Let a and b be integers with gcd(a, b) = 1.
Then there are infinitely many primes of the form ax + b.

Proofs of this theorem typically use tools from advanced number theory,
and are beyond the scope of this book (see e.g., [FT93, §VIII.4]).

1.2.5 How Many Primes are There?

We saw in Section 1.2.1 that there are infinitely many primes. In order to
get a sense for just how many primes there are, we consider a few warm-up
questions. Then we consider some numerical evidence and state the prime
number theorem, which gives an asymptotic answer to our question, and
connect this theorem with a form of the Riemann Hypothesis. Our discus-
sion of counting primes in this section is very cursory; for more details,
read Crandall and Pomerance’s excellent book [CP01, §1.1.5].

The following vague discussion is meant to motivate a precise way to mea-
sure the number of primes. How many natural numbers are even? Answer:
Half of them. How many natural numbers are of the form 4x− 1? Answer:
One fourth of them. How many natural numbers are perfect squares? An-
swer: Zero percent of all natural numbers, in the sense that the limit of the
proportion of perfect squares to all natural numbers converges to 0. More
precisely,

lim
x→∞

#{n ∈ N : n ≤ x and n is a perfect square}
x

= 0,

since the numerator is roughly
√

x and limx→∞
√

x
x = 0. Likewise, it is an

easy consequence of Theorem 1.2.8 below that zero percent of all natural
numbers are prime (see Exercise 1.4).

We are thus led to ask another question: How many positive integers ≤ x
are perfect squares? Answer: roughly

√
x. In the context of primes, we ask,

1.2 The Sequence of Prime Numbers 17

TABLE 1.1. Values of π(x)

x 100 200 300 400 500 600 700 800 900 1000
π(x) 25 46 62 78 95 109 125 139 154 168

x

y

(100, 25)
(200, 46)

(900, 154)(1000, 168)180

100

900100

Graph of π(x)

FIGURE 1.1. Graph of π(x) for x < 1000

Question 1.2.7. How many natural numbers ≤ x are prime?

Let
π(x) = #{p ∈ N : p ≤ x is a prime}.

For example,
π(6) = #{2, 3, 5} = 3.

Some values of π(x) are given in Table 1.1, and Figures 1.1 and 1.2 contain
graphs of π(x). These graphs look like straight lines, which maybe bend
down slightly.

Gauss had a lifelong love of enumerating primes. Eventually he computed
π(3000000), though the author doesn’t know whether or not Gauss got the
right answer, which is 216816. Gauss conjectured the following asymptotic
formula for π(x), which was later proved independently by Hadamard and
Vallée Poussin in 1896 (but will not be proved in this book):

Theorem 1.2.8 (Prime Number Theorem). The function π(x) is
asymptotic to x/ log(x), in the sense that

lim
x→∞

π(x)

x/ log(x)
= 1.

We do nothing more here than motivate this deep theorem with a few
further numerical observations.

The theorem implies that

lim
x→∞

π(x)/x = lim
x→∞

1/ log(x) = 0,

so for any a,

lim
x→∞

π(x)

x/(log(x) − a)
= lim

x→∞

π(x)

x/ log(x)
− aπ(x)

x
= 1.

Thus x/(log(x)−a) is also asymptotic to π(x) for any a. See [CP01, §1.1.5]
for a discussion of why a = 1 is the best choice. Table 1.2 compares π(x)
and x/(log(x) − 1) for several x < 10000.

18 1. Prime Numbers

TABLE 1.2. Comparison of π(x) and x/(log(x)− 1)

x π(x) x/(log(x) − 1) (approx)

1000 168 169.2690290604408165186256278
2000 303 302.9888734545463878029800994
3000 430 428.1819317975237043747385740
4000 550 548.3922097278253264133400985
5000 669 665.1418784486502172369455815
6000 783 779.2698885854778626863677374
7000 900 891.3035657223339974352567759
8000 1007 1001.602962794770080754784281
9000 1117 1110.428422963188172310675011
10000 1229 1217.976301461550279200775705

x

π(x)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

650

x

π(x)

10000 20000 30000 40000 50000 60000 70000 80000 90000100000

4800

FIGURE 1.2. Graphs of π(x) for x < 10000 and x < 100000

1.3 Exercises 19

As of 2004, the record for counting primes appears to be

π(4 · 1022) = 783964159847056303858.

The computation of π(4 · 1022) reportedly took ten months on a 350 Mhz
Pentium II (see [GS02] for more details).

For the reader familiar with complex analysis, we mention a connection
between π(x) and the Riemann Hypothesis. The Riemann zeta function
ζ(s) is a complex analytic function on C \ {1} that extends the function
defined on a right half plane by

∑∞
n=1 n−s. The Riemann Hypothesis is

the conjecture that the zeros in C of ζ(s) with positive real part lie on the
line Re(s) = 1/2. This conjecture is one of the Clay Math Institute million
dollar millennium prize problems [Cla].

According to [CP01, §1.4.1], the Riemann Hypothesis is equivalent to the
conjecture that

Li(x) =

∫ x

2

1

log(t)
dt

is a “good” approximation to π(x), in the following precise sense:

Conjecture 1.2.9 (Equivalent to the Riemann Hypothesis).
For all x ≥ 2.01,

|π(x) − Li(x)| ≤
√

x log(x).

If x = 2, then π(2) = 1 and Li(2) = 0, but
√

2 log(2) = 0.9802 . . ., so the
inequality is not true for x ≥ 2, but 2.01 is big enough. We will do nothing
more to explain this conjecture, and settle for one numerical example.

Example 1.2.10. Let x = 4 · 1022. Then

π(x) = 783964159847056303858,

Li(x) = 783964159852157952242.7155276025801473 . . . ,

|π(x) − Li(x)| = 5101648384.71552760258014 . . . ,
√

x log(x) = 10408633281397.77913344605 . . . ,

x/(log(x) − 1) = 783650443647303761503.5237113087392967

One of the best popular article on the prime number theorem and the
Riemann hypothesis is [Zag75].

1.3 Exercises

1.1 Compute the greatest common divisor gcd(455, 1235) by hand.

1.2 Use the Sieve of Eratosthenes to make a list of all primes up to 100.

1.3 Prove that there are infinitely many primes of the form 6x − 1.

1.4 Use Theorem 1.2.8 to deduce that lim
x→∞

π(x)

x
= 0.

20 1. Prime Numbers

This is page 21
Printer: Opaque this

2
The Ring of Integers Modulo n

This chapter is about the ring Z/nZ of integers modulo n. First we discuss
when linear equations modulo n have a solution, then introduce the Euler ϕ
function and prove Fermat’s Little Theorem and Wilson’s theorem. Next
we prove the Chinese Remainer Theorem, which addresses simultaneous
solubility of several linear equations modulo coprime moduli. With these
theoretical foundations in place, in Section 2.3 we introduce algorithms
for doing interesting computations modulo n, including computing large
powers quickly, and solving linear equations. We finish with a very brief
discussion of finding prime numbers using arithmetic modulo n.

2.1 Congruences Modulo n

In this section we define the ring Z/nZ of integers modulo n, introduce
the Euler ϕ-function, and relate it to the multiplicative order of certain
elements of Z/nZ.

If a, b ∈ Z and n ∈ N, we say that a is congruent to b modulo n if n | a−b,
and write a ≡ b (mod n). Let nZ = (n) be the ideal of Z generated by n.

Definition 2.1.1 (Integers Modulo n). The ring of integers modulo n
is the quotient ring Z/nZ of equivalence classes of integers modulo n. It is
equipped with its natural ring structure:

(a + nZ) + (b + nZ) = (a + b) + nZ

(a + nZ) · (b + nZ) = (a · b) + nZ.

22 2. The Ring of Integers Modulo n

Example 2.1.2. For example,

Z/3Z = {{. . . ,−3, 0, 3, . . .}, {. . . ,−2, 1, 4, . . .}, {. . . ,−1, 2, 5, . . .}}

We use the notation Z/nZ because Z/nZ is the quotient of the ring Z
by the ideal nZ of multiples of n. Because Z/nZ is the quotient of a ring
by an ideal, the ring structure on Z induces a ring structure on Z/nZ. We
often let a or a (mod n) denote the equivalence class a + nZ of a. If p is a
prime, then Z/pZ is a field (see Exercise 2.11).

We call the natural reduction map Z → Z/nZ, which sends a to a + nZ,
reduction modulo n. We also say that a is a lift of a + nZ. Thus, e.g., 7 is
a lift of 1 mod 3, since 7 + 3Z = 1 + 3Z.

We can use that arithmetic in Z/nZ is well defined is to derive tests for
divisibility by n (see Exercise 2.7).

Proposition 2.1.3. A number n ∈ Z is divisible by 3 if and only if the
sum of the digits of n is divisible by 3.

Proof. Write
n = a + 10b + 100c + · · · ,

where the digits of n are a, b, c, etc. Since 10 ≡ 1 (mod 3),

n = a + 10b + 100c + · · · ≡ a + b + c + · · · (mod 3),

from which the proposition follows.

2.1.1 Linear Equations Modulo n

In this section, we are concerned with how to decide whether or not a linear
equation of the form ax ≡ b (mod n) has a solution modulo n. Algorithms
for computing solutions to ax ≡ b (mod n) are the topic of Section 2.3.

First we prove a proposition that gives a criterion under which one can
cancel a quantity from both sides of a congruence.

Proposition 2.1.4 (Cancellation). If gcd(c, n) = 1 and

ac ≡ bc (mod n),

then a ≡ b (mod n).

Proof. By definition
n | ac − bc = (a − b)c.

Since gcd(n, c) = 1, it follows from Theorem 1.1.5 that n | a − b, so

a ≡ b (mod n),

as claimed.

2.1 Congruences Modulo n 23

When a has a multiplicative inverse a′ in Z/nZ (i.e., aa′ ≡ 1 (mod n))
then the equation ax ≡ b (mod n) has a unique solution x ≡ a′b (mod n)
modulo n. Thus, it is of interest to determine the units in Z/nZ, i.e., the
elements which have a multiplicative inverse.

We will use complete sets of residues to prove that the units in Z/nZ
are exactly the a ∈ Z/nZ such that gcd(ã, n) = 1 for any lift ã of a to Z
(it doesn’t matter which lift).

Definition 2.1.5 (Complete Set of Residues). We call a subset R ⊂ Z
of size n whose reductions modulo n are pairwise distinct a complete set of
residues modulo n. In other words, a complete set of residues is a choice of
representative for each equivalence class in Z/nZ.

For example,
R = {0, 1, 2, . . . , n − 1}

is a complete set of residues modulo n. When n = 5, R = {0, 1,−1, 2,−2}
is a complete set of residues.

Lemma 2.1.6. If R is a complete set of residues modulo n and a ∈ Z with
gcd(a, n) = 1, then aR = {ax : x ∈ R} is also a complete set of residues
modulo n.

Proof. If ax ≡ ax′ (mod n) with x, x′ ∈ R, then Proposition 2.1.4 implies
that x ≡ x′ (mod n). Because R is a complete set of residues, this implies
that x = x′. Thus the elements of aR have distinct reductions modulo n. It
follows, since #aR = n, that aR is a complete set of residues modulo n.

Proposition 2.1.7 (Units). If gcd(a, n) = 1, then the equation ax ≡ b
(mod n) has a solution, and that solution is unique modulo n.

Proof. Let R be a complete set of residues modulo n, so there is a unique
element of R that is congruent to b modulo n. By Lemma 2.1.6, aR is also
a complete set of residues modulo n, so there is a unique element ax ∈ aR
that is congruent to b modulo n, and we have ax ≡ b (mod n).

Algebraically, this proposition asserts that if gcd(a, n) = 1, then the map
Z/nZ → Z/nZ given by left multiplication by a is a bijection.

Example 2.1.8. Consider the equation 2x ≡ 3 (mod 7), and the complete
set R = {0, 1, 2, 3, 4, 5, 6} of coset representatives. We have

2R = {0, 2, 4, 6, 8 ≡ 1, 10 ≡ 3, 12 ≡ 5},

so 2 · 5 ≡ 3 (mod 7).

When gcd(a, n) 6= 1, then the equation ax ≡ b (mod n) may or may
not have a solution. For example, 2x ≡ 1 (mod 4) has no solution, but
2x ≡ 2 (mod 4) does, and in fact it has more than one mod 4 (x = 1
and x = 3). Generalizing Proposition 2.1.7, we obtain the following more
general criterion for solvability.

24 2. The Ring of Integers Modulo n

Proposition 2.1.9 (Solvability). The equation ax ≡ b (mod n) has a
solution if and only if gcd(a, n) divides b.

Proof. Let g = gcd(a, n). If there is a solution x to the equation ax ≡ b
(mod n), then n | (ax − b). Since g | n and g | a, it follows that g | b.

Conversely, suppose that g | b. Then n | (ax − b) if and only if

n

g
|
(

a

g
x − b

g

)

.

Thus ax ≡ b (mod n) has a solution if and only if a
g x ≡ b

g (mod n
g) has

a solution. Since gcd(a/g, n/g) = 1, Proposition 2.1.7 implies this latter
equation does have a solution.

In Chapter 4 we will study quadratic reciprocity, which gives a nice
criterion for whether or not a quadratic equation modulo n has a solution.

2.1.2 Fermat’s Little Theorem

The group of units (Z/nZ)∗ of the ring Z/nZ will be of great interest
to us. Each element of this group has an order, and Lagrange’s theorem
from group theory implies that each element of (Z/nZ)∗ has order that
divides the order of (Z/nZ)∗. In elementary number theory this fact goes
by the monicker “Fermat’s Little Theorem”, and we reprove it from basic
principles in this section.

Definition 2.1.10 (Order of an Element). Let n ∈ N and x ∈ Z and
suppose that gcd(x, n) = 1. The order of x modulo n is the smallest m ∈ N
such that

xm ≡ 1 (mod n).

To show that the definition makes sense, we verify that such an m exists.
Consider x, x2, x3, . . . modulo n. There are only finitely many residue classes
modulo n, so we must eventually find two integers i, j with i < j such that

xj ≡ xi (mod n).

Since gcd(x, n) = 1, Proposition 2.1.4 implies that we can cancel x’s and
conclude that

xj−i ≡ 1 (mod n).

Definition 2.1.11 (Euler’s phi-function). For n ∈ N, let

ϕ(n) = #{a ∈ N : a ≤ n and gcd(a, n) = 1}.

2.1 Congruences Modulo n 25

For example,

ϕ(1) = #{1} = 1,

ϕ(2) = #{1} = 1,

ϕ(5) = #{1, 2, 3, 4} = 4,

ϕ(12) = #{1, 5, 7, 11} = 4.

Also, if p is any prime number then

ϕ(p) = #{1, 2, . . . , p − 1} = p − 1.

In Section 2.2.1, we will prove that ϕ is a multiplicative function. This will
yield an easy way to compute ϕ(n) in terms of the prime factorization of n.

Theorem 2.1.12 (Fermat’s Little Theorem). If gcd(x, n) = 1, then

xϕ(n) ≡ 1 (mod n).

Proof. As mentioned above, Fermat’s Little Theorem has the following
group-theoretic interpretation. The set of units in Z/nZ is a group

(Z/nZ)∗ = {a ∈ Z/nZ : gcd(a, n) = 1}.

which has order ϕ(n). The theorem then asserts that the order of an element
of (Z/nZ)∗ divides the order ϕ(n) of (Z/nZ)∗. This is a special case of the
more general fact (Lagrange’s theorem) that if G is a finite group and
g ∈ G, then the order of g divides the cardinality of G.

We now give an elementary proof of the theorem. Let

P = {a : 1 ≤ a ≤ n and gcd(a, n) = 1}.

In the same way that we proved Lemma 2.1.6, we see that the reductions
modulo n of the elements of xP are the same as the reductions of the
elements of P . Thus

∏

a∈P

(xa) ≡
∏

a∈P

a (mod n),

since the products are over the same numbers modulo n. Now cancel the
a’s on both sides to get

x#P ≡ 1 (mod n),

as claimed.

26 2. The Ring of Integers Modulo n

2.1.3 Wilson’s Theorem

The following characterization of prime numbers, from the 1770s, is called
“Wilson’s Theorem”, though it was first proved by Lagrange.

Proposition 2.1.13 (Wilson’s Theorem). An integer p > 1 is prime if
and only if (p − 1)! ≡ −1 (mod p).

For example, if p = 3, then (p − 1)! = 2 ≡ −1 (mod 3). If p = 17, then

(p − 1)! = 20922789888000 ≡ −1 (mod 17).

But if p = 15, then

(p − 1)! = 87178291200 ≡ 0 (mod 15),

so 15 is composite. Thus Wilson’s theorem could be viewed as a primality
test, though, from a computational point of view, it is probably the least
efficient primality test since computing (n − 1)! takes so many steps.

Proof. The statement is clear when p = 2, so henceforth we assume that
p > 2. We first assume that p is prime and prove that (p − 1)! ≡ −1
(mod p). If a ∈ {1, 2, . . . , p − 1} then the equation

ax ≡ 1 (mod p)

has a unique solution a′ ∈ {1, 2, . . . , p− 1}. If a = a′, then a2 ≡ 1 (mod p),
so p | a2−1 = (a−1)(a+1), so p | (a−1) or p | (a+1), so a ∈ {1, p−1}. We
can thus pair off the elements of {2, 3, . . . , p − 2}, each with their inverse.
Thus

2 · 3 · · · · · (p − 2) ≡ 1 (mod p).

Multiplying both sides by p − 1 proves that (p − 1)! ≡ −1 (mod p).
Next we assume that (p − 1)! ≡ −1 (mod p) and prove that p must be

prime. Suppose not, so that p ≥ 4 is a composite number. Let ℓ be a prime
divisor of p. Then ℓ < p, so ℓ | (p − 1)!. Also, by assumption,

ℓ | p | ((p − 1)! + 1).

This is a contradiction, because a prime can not divide a number a and
also divide a + 1, since it would then have to divide (a + 1) − a = 1.

Example 2.1.14. We illustrate the key step in the above proof in the case
p = 17. We have

2·3 · · · 15 = (2·9)·(3·6)·(4·13)·(5·7)·(8·15)·(10·12)·(14·11) ≡ 1 (mod 17),

where we have paired up the numbers a, b for which ab ≡ 1 (mod 17).

2.2 The Chinese Remainder Theorem 27

2.2 The Chinese Remainder Theorem

In this section we prove the Chinese Remainder Theorem, which gives con-
ditions under which a system of linear equations is guaranteed to have a
solution. In the 4th century a Chinese mathematician asked the following:

Question 2.2.1. There is a quantity whose number is unknown. Repeat-
edly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the
remainder is 2. What is the quantity?

In modern notation, Question 2.2.1 asks us to find a positive integer
solution to the following system of three equations:

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

The Chinese Remainder Theorem asserts that a solution exists, and the
proof gives a method to find one. (See Section 2.3 for the necessary algo-
rithms.)

Theorem 2.2.2 (Chinese Remainder Theorem). Let a, b ∈ Z and
n,m ∈ N such that gcd(n,m) = 1. Then there exists x ∈ Z such that

x ≡ a (mod m),

x ≡ b (mod n).

Moreover x is unique modulo mn.

Proof. If we can solve for t in the equation

a + tm ≡ b (mod n),

then x = a + tm will satisfy both congruences. To see that we can solve,
subtract a from both sides and use Proposition 2.1.7 together with our
assumption that gcd(n,m) = 1 to see that there is a solution.

For uniqueness, suppose that x and y solve both congruences. Then z =
x−y satisfies z ≡ 0 (mod m) and z ≡ 0 (mod n), so m | z and n | z. Since
gcd(n,m) = 1, it follows that nm | z, so x ≡ y (mod nm).

Algorithm 2.2.3 (Chinese Remainder Theorem). Given coprime in-
tegers m and n and integers a and b, this algorithm find an integer x such
that x ≡ a (mod m) and x ≡ b (mod n).

1. [Extended GCD] Use Algorithm 2.3.3 below to find integers c, d such
that cm + dn = 1.

2. [Answer] Output x = a + (b − a)cm and terminate.

28 2. The Ring of Integers Modulo n

Proof. Since c ∈ Z, we have x ≡ a (mod m), and using that cm + dn = 1,
we have a + (b − a)cm ≡ a + (b − a) ≡ b (mod n).

Now we can answer Question 2.2.1. First, we use Theorem 2.2.2 to find
a solution to the pair of equations

x ≡ 2 (mod 3),

x ≡ 3 (mod 5).

Set a = 2, b = 3, m = 3, n = 5. Step 1 is to find a solution to t · 3 ≡ 3 − 2
(mod 5). A solution is t = 2. Then x = a + tm = 2 + 2 · 3 = 8. Since any x′

with x′ ≡ x (mod 15) is also a solution to those two equations, we can
solve all three equations by finding a solution to the pair of equations

x ≡ 8 (mod 15)

x ≡ 2 (mod 7).

Again, we find a solution to t · 15 ≡ 2 − 8 (mod 7). A solution is t = 1, so

x = a + tm = 8 + 15 = 23.

Note that there are other solutions. Any x′ ≡ x (mod 3 · 5 · 7) is also a
solution; e.g., 23 + 3 · 5 · 7 = 128.

2.2.1 Multiplicative Functions

Definition 2.2.4 (Multiplicative Function). A function f : N → Z is
multiplicative if, whenever m,n ∈ N and gcd(m,n) = 1, we have

f(mn) = f(m) · f(n).

Recall from Definition 2.1.11 that the Euler ϕ-function is

ϕ(n) = #{a : 1 ≤ a ≤ n and gcd(a, n) = 1}.
Lemma 2.2.5. Suppose that m,n ∈ N and gcd(m,n) = 1. Then the map

ψ : (Z/mnZ)∗ → (Z/mZ)∗ × (Z/nZ)∗. (2.2.1)

defined by
ψ(c) = (c mod m, c mod n)

is a bijection.

Proof. We first show that ψ is injective. If ψ(c) = ψ(c′), then m | c−c′ and
n | c − c′, so nm | c − c′ because gcd(n,m) = 1. Thus c = c′ as elements of
(Z/mnZ)∗.

Next we show that ψ is surjective. Given a and b with gcd(a,m) = 1
and gcd(b, n) = 1, Theorem 2.2.2 implies that there exists c with c ≡ a
(mod m) and c ≡ b (mod n). We may assume that 1 ≤ c ≤ nm, and
since gcd(a,m) = 1 and gcd(b, n) = 1, we must have gcd(c, nm) = 1. Thus
ψ(c) = (a, b).

2.3 Quickly Computing Inverses and Huge Powers 29

Proposition 2.2.6 (Multiplicativity of ϕ). The function ϕ is multi-
plicative.

Proof. The map ψ of Lemma 2.2.5 is a bijection, so the set on the left in
(2.2.1) has the same size as the product set on the right in (2.2.1). Thus

ϕ(mn) = ϕ(m) · ϕ(n).

The proposition is helpful in computing ϕ(n), at least if we assume we can
compute the factorization of n (see Section 3.3.1 for a connection between
factoring n and computing ϕ(n)). For example,

ϕ(12) = ϕ(22) · ϕ(3) = 2 · 2 = 4.

Also, for n ≥ 1, we have

ϕ(pn) = pn − pn

p
= pn − pn−1 = pn−1(p − 1), (2.2.2)

since ϕ(pn) is the number of numbers less than pn minus the number of
those that are divisible by p. Thus, e.g.,

ϕ(389 · 112) = 388 · (112 − 11) = 388 · 110 = 42680.

2.3 Quickly Computing Inverses and Huge Powers

This section is about how to solve the equation ax ≡ 1 (mod n) when
we know it has a solution, and how to efficiently compute am (mod n).
We also discuss a simple probabilistic primality test that relies on our
ability to compute am (mod n) quickly. All three of these algorithms are
of fundamental importance to the cryptography algorithms of Chapter 3.

2.3.1 How to Solve ax ≡ 1 (mod n)

Suppose a, n ∈ N with gcd(a, n) = 1. Then by Proposition 2.1.7 the equa-
tion ax ≡ 1 (mod n) has a unique solution. How can we find it?

Proposition 2.3.1 (Extended Euclidean representation). Suppose
a, b ∈ Z and let g = gcd(a, b). Then there exists x, y ∈ Z such that

ax + by = g.

Remark 2.3.2. If e = cg is a multiple of g, then cax + cby = cg = e, so
e = (cx)a + (cy)b can also be written in terms of a and b.

30 2. The Ring of Integers Modulo n

Proof of Proposition 2.3.1. Let g = gcd(a, b). Then gcd(a/d, b/d) = 1, so
by Proposition 2.1.9 the equation

a

g
· x ≡ 1

(

mod
b

g

)

(2.3.1)

has a solution x ∈ Z. Multiplying (2.3.1) through by g yields ax ≡ g
(mod b), so there exists y such that b · (−y) = ax − g. Then ax + by = g,
as required.

Given a, b and g = gcd(a, b), our proof of Proposition 2.3.1 gives a way to
explicitly find x, y such that ax+by = g, assuming one knows an algorithm
to solve linear equations modulo n. Since we do not know such an algorithm,
we now discuss a way to explicitly find x and y. This algorithm will in fact
enable us to solve linear equations modulo n—to solve ax ≡ 1 (mod n)
when gcd(a, n) = 1, use the algorithm below to find x and y such that
ax + ny = 1. Then ax ≡ 1 (mod n).

Suppose a = 5 and b = 7. The steps of Algorithm 1.1.12 to compute
gcd(5, 7) are, as follows. Here we underlying, because it clarifies the subse-
quent back substitution we will use to find x and y.

7 = 1 · 5 + 2 so 2 = 7 − 5

5 = 2 · 2 + 1 so 1 = 5 − 2 · 2 = 5 − 2(7 − 5) = 3 · 5 − 2 · 7

On the right, we have back-substituted in order to write each partial re-
mainder as a linear combination of a and b. In the last step, we obtain
gcd(a, b) as a linear combination of a and b, as desired.

That example was not too complicated, so we try another one. Let a =
130 and b = 61. We have

130 = 2 · 61 + 8 8 = 130 − 2 · 61

61 = 7 · 8 + 5 5 = −7 · 130 + 15 · 61

8 = 1 · 5 + 3 3 = 8 · 130 − 17 · 61

5 = 1 · 3 + 2 2 = −15 · 130 + 32 · 61

3 = 1 · 2 + 1 1 = 23 · 130 − 49 · 61

Thus x = 23 and y = −49 is a solution to 130x + 61y = 1.

Algorithm 2.3.3 (Extended Euclidean Algorithm). Suppose a and b
are integers and let g = gcd(a, b). This algorithm finds d, x and y such that
ax + by = g. We describe only the steps when a > b ≥ 0, since one can easily
reduce to this case.

1. [Initialize] Set x = 1, y = 0, r = 0, s = 1.

2. [Finished?] If b = 0, set g = a and terminate.

2.3 Quickly Computing Inverses and Huge Powers 31

3. [Quotient and Remainder] Use Algorithm 1.1.11 to write a = qb+c with
0 ≤ c < b.

4. [Shift] Set (a, b, r, s, x, y) = (b, c, x − qr, y − qs, r, s) and go to step 2.

Proof. This algorithm is the same as Algorithm 1.1.12, except that we keep
track of extra variables x, y, r, s, so it terminates and when it terminates
d = gcd(a, b). We omit the rest of the inductive proof that the algorithm
is correct, and instead refer the reader to [Knu97, §1.2.1] which contains a
detailed proof in the context of a discussion of how one writes mathematical
proofs.

Algorithm 2.3.4 (Inverse Modulo n). Suppose a and n are integers and
gcd(a, n) = 1. This algorithm finds an x such that ax ≡ 1 (mod n).

1. [Compute Extended GCD] Use Algorithm 2.3.3 to compute integers x, y
such that ax + ny = gcd(a, n) = 1.

2. [Finished] Output x.

Proof. Reduce ax+ny = 1 modulo n to see that x satisfies ax ≡ 1 (mod n).

See Section 7.2.1 for implementations of Algorithms 2.3.3 and 2.3.4.

Example 2.3.5. Solve 17x ≡ 1 (mod 61). First, we use Algorithm 2.3.3 to
find x, y such that 17x + 61y = 1:

61 = 3 · 17 + 10 10 = 61 − 3 · 17

17 = 1 · 10 + 7 7 = −61 + 4 · 17

10 = 1 · 7 + 3 3 = 2 · 61 − 7 · 17

3 = 2 · 3 + 1 1 = −5 · 61 + 18 · 17

Thus 17 · 18 + 61 · (−5) = 1 so x = 18 is a solution to 17x ≡ 1 (mod 61).

2.3.2 How to Compute am (mod n)

Let a and n be integers, and m a nonnegative integer. In this section we de-
scribe an efficient algorithm to compute am (mod n). For the cryptography
applications in Chapter 3, m will have hundreds of digits.

The naive approach to computing am (mod n) is to simply compute
am = a ·a · · · a (mod n) by repeatedly multiplying by a and reducing mod-
ulo m. Note that after each arithmetic operation is completed, we reduce
the result modulo n so that the sizes of the numbers involved do not get
too large. Nonetheless, this algorithm is horribly inefficient because it takes
m − 1 multiplications, which is huge if m has hundreds of digits.

A much more efficient algorithm for computing am (mod n) involves

writing m in binary, then expressing am as a product of expressions a2i

, for

32 2. The Ring of Integers Modulo n

various i. These latter expressions can be computed by repeatedly squaring
a2i

. This more clever algorithm is not “simpler”, but it is vastly more
efficient since the number of operations needed grows with the number of
binary digits of m, whereas with the naive algorithm above the number of
operations is m − 1.

Algorithm 2.3.6 (Write a number in binary). Let m be a nonnegative
integer. This algorithm writes m in binary, so it finds εi ∈ {0, 1} such that
m =

∑r
i=0 εi2

i with each εi ∈ {0, 1}.
1. [Initialize] Set i = 0.

2. [Finished?] If m = 0, terminate.

3. [Digit] If m is odd, set εi = 1, otherwise εi = 0. Increment i.

4. [Divide by 2] Set m =
⌊

m
2

⌋

, the greatest integer ≤ m/2. Goto step 2.

Algorithm 2.3.7 (Compute Power). Let a and n be integers and m a
nonnegative integer. This algorithm computes am modulo n.

1. [Write in Binary] Write m in binary using Algorithm 2.3.6, so am =
∏

εi=1 a2i

(mod n).

2. [Compute Powers] Compute a, a2, a22

= (a2)2, a23

= (a22

)2, etc., up
to a2r

, where r + 1 is the number of binary digits of m.

3. [Multiply Powers] Multiply together the a2i

such that εi = 1, always
working modulo n.

See Section 7.2.2 for an implementation of Algorithms 2.3.6 and 2.3.7.
We can compute the last 2 digits of 691, by finding 691 (mod 100). Make a

table whose first column, labeled i, contains 0, 1, 2, etc. The second column,
labeled m, is got by dividing the entry above it by 2 and taking the integer
part of the result. The third column, labeled εi, records whether or not the
second column is odd. The fourth column is computed by squaring, modulo
n = 100, the entry above it.

i m εi 62i

mod 100

0 91 1 6

1 45 1 36

2 22 0 96
3 11 1 16

4 5 1 56

5 2 0 36
6 1 1 96

We have

691 ≡ 626 · 624 · 623 · 62 · 6 ≡ 96 · 56 · 16 · 36 · 6 ≡ 56 (mod 100).

That is easier than multiplying 6 by itself 91 times.

2.4 Finding Primes 33

Remark 2.3.8. Alternatively, we could simplify the computation using The-
orem 2.1.12. By that theorem, 6ϕ(100) ≡ 1 (mod 100), so since ϕ(100) =
ϕ(22 · 52) = (22 − 2) · (52 − 5) = 40, we have 691 ≡ 611 (mod 100).

2.4 Finding Primes

Theorem 2.4.1 (Pseudoprimality). An integer p > 1 is prime if and
only if for every a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof. If p is prime, then the statement follows from Proposition 2.1.13.
If p is composite, then there is a divisor a of p with a 6= 1, p. If ap−1 ≡ 1
(mod p), then p | ap−1 − 1. Since a | p, we have a | ap−1 − 1 hence a | 1, a
contradiction.

Suppose n ∈ N. Using this theorem and Algorithm 2.3.7, we can either
quickly prove that n is not prime, or convince ourselves that n is likely
prime (but not quickly prove that n is prime). For example, if 2n−1 6≡ 1
(mod n), then we have proved that n is not prime. On the other hand,
if an−1 ≡ 1 (mod n) for a few a, it “seems likely” that n is prime, and
we loosely refer to such a number that seems prime for several bases as a
pseudoprime.

There are composite numbers n (called Carmichael numbers) with the
amazing property that an−1 ≡ 1 (mod n) for all a with gcd(a, n) = 1. The
first Carmichael number is 561, and it is a theorem that there are infinitely
many such numbers ([AGP94]).

Example 2.4.2. Is p = 323 prime? We compute 2322 (mod 323). Making a
table as above, we have

i m εi 22i

mod 323

0 322 0 2

1 161 1 4
2 80 0 16

3 40 0 256

4 20 0 290
5 10 0 120

6 5 1 188

7 2 0 137

8 1 1 35

Thus
2322 ≡ 4 · 188 · 35 ≡ 157 (mod 323),

so 323 is not prime, though this computation gives no information about
323 factors as a product of primes. In fact, one finds that 323 = 17 · 19.

34 2. The Ring of Integers Modulo n

It’s possible to easily prove that a large number is composite, but the
proof does not easily yield a factorization. For example if

n = 95468093486093450983409583409850934850938459083,

then 2n−1 6≡ 1 (mod n), so n is composite.
Another practical primality test is the Miller-Rabin test, which has the

property that each time it is run on a number n it either correctly asserts
that the number is definitely not prime, or that it is probably prime, and
the probability of correctness goes up with each successive call. For a pre-
cise statement and implementation of Miller-Rabin, along with proof of
correctness, see Section 7.2.4. If Miller-Rabin is called m times on n and
in each case claims that n is probably prime, then one can in a precise
sense bound the probability that n is composite in terms of m. For an
implementation of Miller-Rabin, see Listing 7.2.9 in Chapter 7.

Until recently it was an open problem to give an algorithm (with proof)
that decides whether or not any integer is prime in time bounded by a poly-
nomial in the number of digits of the integer. Agrawal, Kayal, and Saxena
recently found the first polynomial-time primality test (see [AKS02]). We
will not discuss their algorithm further, because for our applications to
cryptography Miller-Rabin or pseudoprimality tests will be sufficient.

2.5 The Structure of (Z/pZ)∗

This section is about the structure of the group (Z/pZ)∗ of units modulo
a prime number p. The main result is that this group is always cyclic. We
will use this result later in Chapter 4 in our proof of quadratic reciprocity.

Definition 2.5.1 (Primitive root). A primitive root modulo an integer n
is an element of (Z/nZ)∗ of order ϕ(n).

We will prove that there is a primitive root modulo every prime p. Since
the unit group (Z/pZ)∗ has order p−1, this implies that (Z/pZ)∗ is a cyclic
group, a fact this will be extremely useful, since it completely determines
the structure of (Z/pZ)∗ as an abelian group.

If n is an odd prime power, then there is a primitive root modulo n (see
Exercise 2.25), but there is no primitive root modulo the prime power 23,
and hence none mod 2n for n ≥ 3 (see Exercise 2.24).

Section 2.5.1 is the key input to our proof that (Z/pZ)∗ is cyclic; here
we show that for every divisor d of p − 1 there are exactly d elements of
(Z/pZ)∗ whose order divides d. We then use this result in Section 2.5.2 to
produce an element of (Z/pZ)∗ of order qr when qr is a prime power that
exactly divides p− 1 (i.e., qr divides p− 1, but qr+1 does not divide p− 1),
and multiply together these elements to obtain an element of (Z/pZ)∗ of
order p − 1.

2.5 The Structure of (Z/pZ)∗ 35

2.5.1 Polynomials over Z/pZ

The polynomials x2 − 1 has four roots in Z/8Z, namely 1, 3, 5, and 7.
In contrast, the following proposition shows that a polynomial of degree d
over a field, such as Z/pZ, can have at most d roots.

Proposition 2.5.2 (Root Bound). Let f ∈ k[x] be a nonzero polynomial
over a field k. Then there are at most deg(f) elements α ∈ k such that
f(α) = 0.

Proof. We prove the proposition by induction on deg(f). The cases in which
deg(f) ≤ 1 are clear. Write f = anxn + · · · a1x + a0. If f(α) = 0 then

f(x) = f(x) − f(α)

= an(xn − αn) + · · · a1(x − α) + a0(1 − 1)

= (x − α)(an(xn−1 + · · · + αn−1) + · · · + a2(x + α) + a1)

= (x − α)g(x),

for some polynomial g(x) ∈ k[x]. Next suppose that f(β) = 0 with β 6= α.
Then (β − α)g(β) = 0, so, since β − α 6= 0, we have g(β) = 0. By our
inductive hypothesis, g has at most n− 1 roots, so there are at most n− 1
possibilities for β. It follows that f has at most n roots.

Proposition 2.5.3. Let p be a prime number and let d be a divisor of
p − 1. Then f = xd − 1 ∈ (Z/pZ)[x] has exactly d roots in Z/pZ.

Proof. Let e = (p − 1)/d. We have

xp−1 − 1 = (xd)e − 1

= (xd − 1)((xd)e−1 + (xd)e−2 + · · · + 1)

= (xd − 1)g(x),

where g ∈ (Z/pZ)[x] and deg(g) = de − d = p − 1 − d. Theorem 2.1.12
implies that xp−1 − 1 has exactly p− 1 roots in Z/pZ, since every nonzero
element of Z/pZ is a root! By Proposition 2.5.2, g has at most p − 1 − d
roots and xd − 1 has at most d roots. Since a root of (xd − 1)g(x) is a root
of either xd − 1 or g(x) and xp−1 − 1 has p − 1 roots, g must have exactly
p − 1 − d roots and xd − 1 must have exactly d roots, as claimed.

We pause to reemphasize that the analogue of Proposition 2.5.3 is false
when p is replaced by a composite integer n, since a root mod n of a
product of two polynomials need not be a root of either factor. For example,
f = x2 − 1 ∈ Z/15Z[x] has the four roots 1, 4, 11, and 14.

36 2. The Ring of Integers Modulo n

2.5.2 Existence of Primitive Roots

Recall from Section 2.1.2 that the order of an element x in a finite group
is the smallest m ≥ 1 such that xm = 1. In this section, we prove that
(Z/pZ)∗ is cyclic by using the results of Section 2.5.1 to produce an element
of (Z/pZ)∗ of order d for each prime power divisor d of p− 1, and then we
multiply these together to obtain an element of order p − 1.

We will use the following lemma to assemble elements of each order
dividing p − 1 to produce an element of order p − 1.

Lemma 2.5.4. Suppose a, b ∈ (Z/nZ)∗ have orders r and s, respectively,
and that gcd(r, s) = 1. Then ab has order rs.

Proof. This is a general fact about commuting elements of any group; our
proof only uses that ab = ba and nothing special about (Z/nZ)∗. Since

(ab)rs = arsbrs = 1,

the order of ab is a divisor of rs. Write this divisor as r1s1 where r1 | r and
s1 | s. Raise both sides of the equation

ar1s1br1s1 = (ab)r1s1 = 1.

to the power r2 = r/r1 to obtain

ar1r2s1br1r2s1 = 1.

Since ar1r2s1 = (ar1r2)s1 = 1, we have

br1r2s1 = 1,

so s | r1r2s1. Since gcd(s, r1r2) = gcd(s, r) = 1, it follows that s = s1.
Similarly r = r1, so the order of ab is rs.

Theorem 2.5.5 (Primitive Roots). There is a primitive root modulo
any prime p. In particular, the group (Z/pZ)∗ is cyclic.

Proof. The theorem is true if p = 2, since 1 is a primitive root, so we may
assume p > 2. Write p − 1 as a product of distinct prime powers qni

i :

p − 1 = qn1
1 qn2

2 · · · qnr

r .

By Proposition 2.5.3, the polynomial xq
ni
i − 1 has exactly qni

i roots, and

the polynomial xq
ni−1

i − 1 has exactly qni−1
i roots. There are qni

i − qni−1
i =

qni−1
i (qi − 1) elements a ∈ Z/pZ such that aq

ni
i = 1 but aq

ni−1

i 6= 1; each
of these elements has order qni

i . Thus for each i = 1, . . . , r, we can choose
an ai of order qni

i . Then, using Lemma 2.5.4 repeatedly, we see that

a = a1a2 · · · ar

has order qn1
1 · · · qnr

r = p − 1, so a is a primitive root modulo p.

2.5 The Structure of (Z/pZ)∗ 37

Example 2.5.6. We illustrate the proof of Theorem 2.5.5 when p = 13. We
have

p − 1 = 12 = 22 · 3.

The polynomial x4 − 1 has roots {1, 5, 8, 12} and x2 − 1 has roots {1, 12},
so we may take a1 = 5. The polynomial x3 − 1 has roots {1, 3, 9}, and we
set a2 = 3. Then a = 5 · 3 = 15 ≡ 2 is a primitive root. To verify this, note
that the successive powers of 2 (mod 13) are

2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1.

Example 2.5.7. Theorem 2.5.5 is false if, e.g., p is replaced by a power of 2
bigger than 4. For example, the four elements of (Z/8Z)∗ each have order
dividing 2, but ϕ(8) = 4.

Theorem 2.5.8 (Primitive Roots mod pn). Let pn be a power of an
odd prime. Then there is a primitive root modulo pn.

The proof is left as Exercise 2.25.

Proposition 2.5.9 (Number of primitive roots). If there is a primitive
root modulo n, then there are exactly ϕ(ϕ(n)) primitive roots modulo n.

Proof. The primitive roots modulo n are the generators of (Z/nZ)∗, which
by assumption is cyclic of order ϕ(n). Thus they are in bijection with the
generators of any cyclic group of order ϕ(n). In particular, the number of
primitive roots modulo n is the same as the number of elements of Z/ϕ(n)Z
with additive order ϕ(n). An element of Z/ϕ(n)Z has additive order ϕ(n)
if and only if it is coprime to ϕ(n). There are ϕ(ϕ(n)) such elements, as
claimed.

Example 2.5.10. For example, there are ϕ(ϕ(17)) = ϕ(16) = 24 − 23 =
8 primitive roots mod 17, namely 3, 5, 6, 7, 10, 11, 12, 14. The ϕ(ϕ(9)) =
ϕ(6) = 2 primitive roots modulo 9 are 2 and 5. There are no primitive
roots modulo 8, even though ϕ(ϕ(8)) = ϕ(4) = 2 > 0.

2.5.3 Artin’s Conjecture

Conjecture 2.5.11 (Emil Artin). Suppose a ∈ Z is not −1 or a perfect
square. Then there are infinitely many primes p such that a is a primitive
root modulo p.

There is no single integer a such that Artin’s conjecture is known to
be true. For any given a, Pieter [Mor93] proved that there are infinitely
many p such that the order of a is divisible by the largest prime factor
of p − 1. Hooley [Hoo67] proved that something called the Generalized
Riemann Hypothesis implies Conjecture 2.5.11.

38 2. The Ring of Integers Modulo n

Remark 2.5.12. Artin conjectured more precisely that if N(x, a) is the
number of primes p ≤ x such that a is a primitive root modulo p, then
N(x, a) is asymptotic to C(a)π(x), where C(a) is a positive constant that
depends only on a and π(x) is the number of primes up to x.

2.5.4 Computing Primitive Roots

Theorem 2.5.5 does not suggest an efficient algorithm for finding primitive
roots. To actually find a primitive root mod p in practice, we try a = 2,
then a = 3, etc., until we find an a that has order p − 1. Computing the
order of an element of (Z/pZ)∗ requires factoring p − 1, which we do not
know how to do quickly in general, so finding a primitive root modulo p
for large p seems to be a difficult problem.

See Section 7.2.3 for an implementation of this algorithm for finding a
primitive root.

Algorithm 2.5.13 (Primitive Root). Given a prime p this algorithm
computes the smallest positive integer a that generates (Z/pZ)∗.

1. [p = 2?] If p = 2 output 1 and terminate. Otherwise set a = 2.

2. [Prime Divisors] Compute the prime divisors p1, . . . , pr of p − 1 (see
Section 7.1.3).

3. [Generator?] If for every pi, we have a(p−1)/pi 6≡ 1 (mod p), then a is a
generator of (Z/pZ)∗, so output a and terminate.

4. [Try next] Set a = a + 1 and go to step 3.

Proof. Let a ∈ (Z/pZ)∗. The order of a is a divisor d of the order p − 1 of
the group (Z/pZ)∗. Write d = (p− 1)/n, for some divisor n of p− 1. If a is
not a generator of (Z/pZ)∗, then since n | (p − 1), there is a prime divisor
pi of p − 1 such that pi | n. Then

a(p−1)/pi = (a(p−1)/n)n/pi ≡ 1 (mod p).

Conversely, if a is a generator, then a(p−1)/pi 6≡ 1 (mod p) for any pi. Thus
the algorithm terminates with step 3 if and only if the a under consideration
is a primitive root. By Theorem 2.5.5 there is at least one primitive root,
so the algorithm terminates.

We implement Algorithm 2.5.13 in Section 7.2.3.

2.6 Exercises

2.1 Compute the following gcd’s using Algorithm 1.1.12:

gcd(15, 35), gcd(247, 299), gcd(51, 897), gcd(136, 304)

2.6 Exercises 39

2.2 Use Algorithm 2.3.3 to find x, y ∈ Z such that 2261x + 1275y = 17.

2.3 Prove that if a and b are integers and p is a prime, then (a + b)p ≡
ap + bp (mod p). You may assume that the binomial coefficient

p!

r!(p − r)!

is an integer.

2.4 (a) Prove that if x, y is a solution to ax+ by = d, then for all c ∈ Z,

x′ = x + c · b

d
, y′ = y − c · a

d
(2.6.1)

is also a solution to ax + by = d.

(b) Find two distinct solutions to 2261x + 1275y = 17.

(c) Prove that all solutions are of the form (2.6.1) for some c.

2.5 Let f(x) = x2 + ax + b ∈ Z[x] be a quadratic polynomial with inte-
ger coefficients and positive leading coefficients, e.g., f(x) = x2 +
x + 6. Formulate a conjecture about when the set {f(n) : n ∈
Z and f(n) is prime} is infinite. Give numerical evidence that sup-
ports your conjecture.

2.6 Find four complete sets of residues modulo 7, where the ith set sat-
isfies the ith condition: (1) nonnegative, (2) odd, (3) even, (4) prime.

2.7 Find rules in the spirit of Proposition 2.1.3 for divisibility of an integer
by 5, 9, and 11, and prove each of these rules using arithmetic modulo
a suitable n.

2.8 (*) The following problem is from the 1998 Putnam Competition.
Define a sequence of decimal integers an as follows: a1 = 0, a2 =
1, and an+2 is obtained by writing the digits of an+1 immediately
followed by those of an. For example, a3 = 10, a4 = 101, and a5 =
10110. Determine the n such that an a multiple of 11, as follows:

(a) Find the smallest integer n > 1 such that an is divisible by 11.

(b) Prove that an is divisible by 11 if and only if n ≡ 1 (mod 6).

2.9 Find an integer x such that 37x ≡ 1 (mod 101).

2.10 What is the order of 2 modulo 17?

2.11 Let p be a prime. Prove that Z/pZ is a field.

2.12 Find an x ∈ Z such that x ≡ −4 (mod 17) and x ≡ 3 (mod 23).

40 2. The Ring of Integers Modulo n

2.13 Prove that if n > 4 is composite then

(n − 1)! ≡ 0 (mod n).

2.14 For what values of n is ϕ(n) odd?

2.15 (a) Prove that ϕ is multiplicative as follows. Suppose m,n are pos-
itive integers and gcd(m,n) = 1. Show that the natural map
ψ : Z/mnZ → Z/mZ × Z/nZ is an injective homomorphism of
rings, hence bijective by counting, then look at unit groups.

(b) Prove conversely that if gcd(m,n) > 1 then the natural map
ψ : Z/mnZ → Z/mZ × Z/nZ is not an isomorphism.

2.16 Seven competitive math students try to share a huge hoard of stolen
math books equally between themselves. Unfortunately, six books are
left over, and in the fight over them, one math student is expelled.
The remaining six math students, still unable to share the math books
equally since two are left over, again fight, and another is expelled.
When the remaining five share the books, one book is left over, and
it is only after yet another math student is expelled that an equal
sharing is possible. What is the minimum number of books which
allow this to happen?

2.17 Show that if p is a positive integer such that both p and p2 + 2 are
prime, then p = 3.

2.18 Let ϕ : N → N be the Euler ϕ function.

(a) Find all natural numbers n such that ϕ(n) = 1.

(b) Do there exist natural numbers m and n such that ϕ(mn) 6=
ϕ(m) · ϕ(n)?

2.19 Find a formula for ϕ(n) directly in terms of the prime factorization
of n.

2.20 Find all four solutions to the equation

x2 − 1 ≡ 0 (mod 35).

2.21 Prove that for any positive integer n the fraction (12n+1)/(30n+2)
is in reduced form.

2.22 Suppose a and b are positive integers.

(a) Prove that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

(b) Does it matter if 2 is replaced by an arbitrary prime p?

(c) What if 2 is replaced by an arbitrary positive integer n?

2.6 Exercises 41

2.23 For every positive integer b, show that there exists a positive integer
n such that the polynomial x2 − 1 ∈ (Z/nZ)[x] has at least b roots.

2.24 (a) Prove that there is no primitive root modulo 2n for any n ≥ 3.

(b) (*) Prove that (Z/2nZ)∗ is generated by −1 and 5.

2.25 Let p be an odd prime.

(a) (*) Prove that there is a primitive root modulo p2. (Hint: Use
that if a, b have orders n,m, with gcd(n,m) = 1, then ab has
order nm.)

(b) Prove that for any n, there is a primitive root modulo pn.

(c) Explicitly find a primitive root modulo 125.

2.26 (*) In terms of the prime factorization of n, characterize the integers n
such that there is a primitive root modulo n.

42 2. The Ring of Integers Modulo n

This is page 43
Printer: Opaque this

3
Public-Key Cryptography

The author recently watched a TV show (not
movie!) called La Femme Nikita about a woman
named Nikita who is forced to be an agent for a
shady anti-terrorist organization called Section
One. Nikita has strong feelings for fellow agent
Michael, and she most trusts Walter, Section
One’s ex-biker gadgets and explosives expert.
Often Nikita’s worst enemies are her superiors
and coworkers at Section One.

A synopsis for a season three episode is as follows:

PLAYING WITH FIRE

On a mission to secure detonation chips from a terrorist or-
ganization’s heavily armed base camp, Nikita is captured as a
hostage by the enemy. Or so it is made to look. Michael and
Nikita have actually created the scenario in order to secretly
rendezvous with each other. The ruse works, but when Birkoff
[Section One’s master hacker] accidentally discovers encrypted
messages between Michael and Nikita sent with Walter’s help,
Birkoff is forced to tell Madeline. Suspecting that Michael and
Nikita may be planning a coup d’état, Operations and Madeline
use a second team of operatives to track Michael and Nikita’s
next secret rendezvous... killing them if necessary.

44 3. Public-Key Cryptography

FIGURE 3.1. Diffie and Hellman (photos from [Sin99])

What sort of encryption might Walter have helped them to use? I let my
imagination run free, and this is what I came up with. After being captured
at the base camp, Nikita is given a phone by her captors, in hopes that she’ll
use it and they’ll be able to figure out what she is really up to. Everyone
is eagerly listening in on her calls.

Remark 3.0.1. In this book we will assume available a method for producing
random integers. Methods for generating random integers are involved and
interesting, but we will not discuss them in this book. For an in depth
treatment of random numbers, see [Knu98, Ch. 3].

Nikita remembers a conversation with Walter about a public-key cryp-
tosystem called the “Diffie-Hellman key exchange”. She remembers that it
allows two people to agree on a secret key in the presence of eavesdrop-
pers. Moreover, Walter mentioned that though Diffie-Hellman was the first
ever public-key exchange system, it is still in common use today (e.g., in
OpenSSH protocol version 2, see http://www.openssh.com/).

Nikita pulls out her handheld computer and phone, calls up Michael, and
they do the following, which is wrong (try to figure out what is wrong as
you read it).

1. Together they choose a big prime number p and a number g with
1 < g < p.

2. Nikita secretly chooses an integer n.

3. Michael secretly chooses an integer m.

4. Nikita tells Michael ng (mod p).

5. Michael tells mg (mod p) to Nikita.

6. The “secret key” is s = nmg (mod p), which both Nikita and Michael
can easily compute.

3. Public-Key Cryptography 45

Nikita

Michael

Nikita’s captors

Section One

Here’s a very simple example with small numbers that illustrates what
Michael and Nikita do. (They really used much larger numbers.)

1. p = 97, g = 5

2. n = 31

3. m = 95

4. ng ≡ 58 (mod 97)

5. mg ≡ 87 (mod 97)

6. s = nmg = 78 (mod 97)

Nikita and Michael are foiled because everyone easily figures out s:

1. Everyone knows p, g, ng (mod p), and mg (mod p).

2. Using Algorithm 2.3.3, anyone can easily find a, b ∈ Z such that
ag + bp = 1, which exist because gcd(g, p) = 1.

3. Then ang ≡ n (mod p), so everyone knows Nikita’s secret key n, and
hence can easily compute the shared secret s.

To taunt her, Nikita’s captors give her a paragraph from a review of Diffie
and Hellman’s 1976 paper “New Directions in Cryptography” [DH76]:

“The authors discuss some recent results in communications
theory [...] The first [method] has the feature that an unautho-
rized ‘eavesdropper’ will find it computationally infeasible to de-
cipher the message [...] They propose a couple of techniques for
implementing the system, but the reviewer was unconvinced.”

46 3. Public-Key Cryptography

3.1 The Diffie-Hellman Key Exchange

As night darkens Nikita’s cell, she reflects on what has happened. Upon re-
alizing that she mis-remembered how the system works, she phones Michael
and they do the following:

1. Together Michael and Nikita choose a 200-digit integer p that is likely
to be prime (see Section 2.4), and choose a number g with 1 < g < p.

2. Nikita secretly chooses an integer n.

3. Michael secretly chooses an integer m.

4. Nikita computes gn (mod p) on her handheld computer and tells
Michael the resulting number over the phone.

5. Michael tells Nikita gm (mod p).

6. The shared secret key is then

s ≡ (gn)m ≡ (gm)n ≡ gnm (mod p),

which both Nikita and Michael can compute.

Here is a simplified example that illustrates what they did, that involves
only relatively simple arithmetic.

1. p = 97, g = 5

2. n = 31

3. m = 95

4. gn ≡ 7 (mod p)

5. gm ≡ 39 (mod p)

6. s ≡ (gn)m ≡ 14 (mod p)

3.1.1 The Discrete Log Problem

Nikita communicates with Michael by encrypting everything using their
agreed upon secret key. In order to understand the conversation, the eaves-
dropper needs s, but it takes a long time to compute s given only p, g, gn,
and gm. One way would be to compute n from knowledge of g and gn; this
is possible, but appears to be “computationally infeasible”, in the sense
that it would take too long to be practical.

3.1 The Diffie-Hellman Key Exchange 47

Let a, b, and n be real numbers with a, b > 0 and n ≥ 0. Recall that the
“log to the base b” function characterized by

logb(a) = n if and only if a = bn.

We use the logb function in algebra to solve the following problem: Given
a base b and a power a of b, find an exponent n such that

a = bn.

That is, given a = bn and b, find n.

Example 3.1.1. The number a = 19683 is the nth power of b = 3 for some n.
With a calculator we quickly find that

n = log3(19683) = log(19683)/ log(3) = 9.

A calculator can quickly compute an approximation for log(x) by com-
puting a partial sum of an appropriate rapidly-converging infinite series (at
least for x in a certain range).

The discrete log problem is the analogue of this problem but in a finite
group:

Problem 3.1.2 (Discrete Log Problem). Let G be a finite abelian
group, e.g., G = (Z/pZ)∗. Given b ∈ G and a power a of b, find a positive
integer n such that bn = a.

As far as we know, finding discrete logarithms when p is large is difficult
in practice. Over the years, many people have been very motivated to try.
For example, if Nikita’s captors could efficiently solve Problem 3.1.2, then
they could read the messages she exchanges with Michael. Unfortunately,
we have no formal proof that computing discrete logarithms on a classical
computer is difficult. Also, Peter Shor [Sho97] showed that if one could build
a sufficiently complicated quantum computer, it could solve the discrete
logarithm problem in time bounded by a polynomial function of the number
of digits of #G.

It is easy to give an inefficient algorithm that solves the discrete log
problem. Simply try b1, b2, b3, etc., until we find an exponent n such that
bn = a. For example, suppose a = 18, b = 5, and p = 23. Working modulo
23 we have

b1 = 5, b2 = 2, b3 = 10, . . . , b12 = 18,

so n = 12. When p is large, computing the discrete log this way soon be-
comes impractical, because increasing the number of digits of the modulus
makes the computation take vastly longer.

Perhaps part of the reason that computing discrete logarithms is difficult,
is that the logarithm in the real numbers is continuous, but the (minimum)
logarithm of a number mod n bounces around at random. We illustrate this
exotic behavior in Figure 3.2.

48 3. Public-Key Cryptography

x

y

1 2 3 4 5 6 7 8 9 10

-3

-2

-1

1

x

y

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

FIGURE 3.2. Graphs of the continuous log and of the discrete log modulo 97.
Which looks easier to compute?

3.1 The Diffie-Hellman Key Exchange 49

3.1.2 Realistic Diffie-Hellman Example

In this section we present an example that uses bigger numbers. First we
prove a proposition that we can use to choose a prime p in such a way that
it is easy to find a g ∈ (Z/pZ)∗ with order p − 1. We have already seen in
Section 2.5 that for every prime p there exists an element g of order p− 1,
and we gave Algorithm 2.5.13 for finding a primitive root for any prime.
The significance of the proposition below is that it suggests an algorithm
for finding a primitive root that is easier to use in practice when p is large,
because it does not require factoring p−1. Of course, one could also just use
a random g for Diffie-Hellman; it is not essential that g generates (Z/pZ)∗.

Proposition 3.1.3. Suppose p is a prime such that (p−1)/2 is also prime.
Then the elements of (Z/pZ)∗ have order either 1, 2, (p − 1)/2, or p − 1.

Proof. Since p is prime, the group (Z/pZ)∗ has order p−1. By assumption,
the prime factorization of p − 1 is 2 · ((p − 1)/2). Let a ∈ (Z/pZ)∗. Then
by Theorem 2.1.12, ap−1 = 1, so the order of a is a divisor of p − 1, which
proves the proposition.

Given a prime p with (p − 1)/2 prime, find an element of order p − 1 as
follows. If 2 has order p− 1 we are done. If not, 2 has order (p− 1)/2 since
2 doesn’t have order either 1 or 2. Then −2 has order p − 1.

Let p = 93450983094850938450983409611. Then p is prime, but (p −
1)/2 is not. So we keep adding 2 to p and testing pseudoprimality using
Section 2.4 until we find that the next pseudoprime after p is

q = 93450983094850938450983409623.

It turns out that q pseudoprime and (q − 1)/2 is also pseudoprime. We
find that 2 has order (q − 1)/2, so g = −2 has order q − 1 and is hence a
generator of (Z/qZ)∗, at least assuming that q is really prime.

The secret random numbers generated by Nikita and Michael are

n = 18319922375531859171613379181

and
m = 82335836243866695680141440300.

Nikita sends

gn = 45416776270485369791375944998 ∈ (Z/pZ)∗

to Michael, and Michael sends

gm = 15048074151770884271824225393 ∈ (Z/pZ)∗

to Nikita. They agree on the secret key

gnm = 85771409470770521212346739540 ∈ (Z/pZ)∗.

Remark 3.1.4. See Section 7.3.1 for a computer implementation of the
Diffie-Hellman key exchange.

50 3. Public-Key Cryptography

Michael

Nikita

The Man
gnt (mod p)

gnt (mod p)

gmt (mod p)

gmt (mod p)

FIGURE 3.3. The Man in the Middle Attack

3.1.3 The Man in the Middle Attack

After their first system was broken, instead of talking on the phone, Michael
and Nikita can now only communicate via text messages. One of her cap-
tors, The Man, is watching each of the transmissions; moreover, he can
intercept messages and send false messages. When Nikita sends a mes-
sage to Michael announcing gn (mod p), The Man intercepts this message,
and sends his own number gt (mod p) to Michael. Eventually, Michael and
The Man agree on the secret key gtm (mod p), and Nikita and The Man
agree on the key gtn (mod p). When Nikita sends a message to Michael she
unwittingly uses the secret key gtn (mod p); The Man then intercepts it,
decrypts it, changes it, and re-encrypts it using the key gtm (mod p), and
sends it on to Michael. This is bad because now The Man can read every
message sent between Michael and Nikita, and moreover, he can change
them in transmission in subtle ways.

One way to get around this attack is to use a digital signature scheme
based on the RSA cryptosystem. We will not discuss digital signatures
further in this book, but will discuss RSA in the next section.

3.2 The RSA Cryptosystem 51

3.2 The RSA Cryptosystem

The Diffie-Hellman key exchange has drawbacks. As discussed in Section
3.1.3, it is susceptible to the man in the middle attack. This section is
about the RSA public-key cryptosystem of Rivest, Shamir, and Adleman
[RSA78], which is an alternative to Diffie-Hellman that is more flexible in
some ways.

We first describe the RSA cryptosystem, then discuss several ways to
attack it. It is important to be aware of such weaknesses, in order to avoid
foolish mistakes when implementing RSA. We barely scratched the surface
here of the many possible attacks on specific implementations of RSA or
other cryptosystems.

3.2.1 How RSA works

The fundamental idea behind RSA is to try to construct a trap-door or
one-way function on a set X, that is, an invertible function

E : X → X

such that it is easy for Nikita to compute E−1, but extremely difficult for
anybody else to do so.

Here is how Nikita makes a one-way function E on the set of integers
modulo n.

1. Using a method hinted at in Section 2.4, Nikita picks two large
primes p and q, and lets n = pq.

2. It is then easy for Nikita to compute

ϕ(n) = ϕ(p) · ϕ(q) = (p − 1) · (q − 1).

3. Nikita next chooses a random integer e with

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.

4. Nikita uses the algorithm from Section 2.3.2 to find a solution x = d
to the equation

ex ≡ 1 (mod ϕ(n)).

5. Finally, Nikita defines a function E : Z/nZ → Z/nZ by

E(x) = xe ∈ Z/nZ.

Anybody can compute E fairly quickly using the repeated-squaring
algorithm from Section 2.3.2.

52 3. Public-Key Cryptography

Nikita’s public key is the pair of integers (n, e), which is just enough
information for people to easily compute E. Nikita knows a number d such
that ed ≡ 1 (mod ϕ(n)), so, as we will see, she can quickly compute E−1.

To send Nikita a message, proceed as follows. Encode your message, in
some way, as a sequence of numbers modulo n (see Section 3.2.2)

m1, . . . ,mr ∈ Z/nZ,

then send
E(m1), . . . , E(mr)

to Nikita. (Recall that E(m) = me for m ∈ Z/nZ.)
When Nikita receives E(mi), she finds each mi by using that E−1(m) =

md, a fact that follows from the following proposition.

Proposition 3.2.1 (Decryption key). Let n be an integer that is a
product of distinct primes and let d, e ∈ N be such that p − 1 | de − 1 for
each prime p | n. Then ade ≡ a (mod n) for all a ∈ Z.

Proof. Since n | ade − a if and only if p | ade − a for each prime divisor p
of n, it suffices to prove that ade ≡ a (mod p) for each prime divisor p of n.
If gcd(a, p) 6= 0, then a ≡ 0 (mod p), so ade ≡ a (mod p). If gcd(a, p) = 1,
then Theorem 2.1.12 asserts that ap−1 ≡ 1 (mod p). Since p − 1 | de − 1,
we have ade−1 ≡ 1 (mod p) as well. Multiplying both sides by a shows that
ade ≡ a (mod p).

Thus to decrypt E(mi) Nikita computes

E(mi)
d = (me

i)
d = mi.

For an implementation of RSA see Section 7.3.3.

3.2.2 Encoding a Phrase in a Number

In order to use the RSA cryptosystem to encrypt messages, it is necessary
to encode them as a sequence of numbers of size less than n = pq. We now
describe a simple way to do this. For an implementation of a slightly more
general encoding that includes extra randomness so that plain text encodes
differently each time, see Section 7.3.2.

Suppose s is a sequence of capital letters and spaces, and that s does not
begin with a space. We encode s as a number in base 27 as follows: a single
space corresponds to 0, the letter A to 1, B to 2, . . ., Z to 26. Thus “RUN
NIKITA” is a number written in base 27:

RUN NIKITA ↔ 279 · 18 + 278 · 21 + 277 · 14 + 276 · 0 + 275 · 14

+ 274 · 9 + 273 · 11 + 272 · 9 + 27 · 20 + 1

= 143338425831991 (in decimal).

3.2 The RSA Cryptosystem 53

To recover the letters from the decimal number, repeatedly divide by 27
and read off the letter corresponding to each remainder:

143338425831991 = 5308830586370 · 27 + 1 “A”
5308830586370 = 196623355050 · 27 + 20 “T”
196623355050 = 7282346483 · 27 + 9 “I”

7282346483 = 269716536 · 27 + 11 “K”
269716536 = 9989501 · 27 + 9 “I”

9989501 = 369981 · 27 + 14 “N”
369981 = 13703 · 27 + 0 “ ”
13703 = 507 · 27 + 14 “N”

507 = 18 · 27 + 21 “U”
18 = 0 · 27 + 18 “R”

If 27k ≤ n, then any sequence of k letters can be encoded as above using
a positive integer ≤ n. Thus if we use can encrypt integers of size at most n,
then we must break our message up into blocks of size at most log27(n).

3.2.3 Examples

So the arithmetic is easy to follow, we use small primes p and q and encrypt
the single letter “X” using the RSA cryptosystem.

1. Choose p and q: Let p = 17, q = 19, so n = pq = 323.

2. Compute ϕ(n):

ϕ(n) = ϕ(p · q) = ϕ(p) · ϕ(q) = (p − 1)(q − 1)

= pq − p − q + 1 = 323 − 17 − 19 + 1 = 288.

3. Randomly choose an e < 288: We choose e = 95.

4. Solve

95x ≡ 1 (mod 288).

Using the GCD algorithm, we find that d = 191 solves the equation.

The public key is (323, 95), so the encryption function is

E(x) = x95,

and the decryption function is D(x) = x191.
Next, we encrypt the letter “X”. It is encoded as the number 24, since X

is the 24th letter of the alphabet. We have

E(24) = 2495 = 294 ∈ Z/323Z.

54 3. Public-Key Cryptography

To decrypt, we compute E−1:

E−1(294) = 294191 = 24 ∈ Z/323Z.

This next example illustrates RSA but with bigger numbers. Let

p = 738873402423833494183027176953, q = 3787776806865662882378273.

Then

n = p · q = 2798687536910915970127263606347911460948554197853542169

and

ϕ(n) = (p − 1)(q − 1)

= 2798687536910915970127262867470721260308194351943986944.

Using a pseudo-random number generator on a computer, the author ran-
domly chose the integer

e = 1483959194866204179348536010284716655442139024915720699.

Then

d = 2113367928496305469541348387088632973457802358781610803

Since log27(n) ≈ 38.04, we can encode then encrypt single blocks of
up to 38 letters. Let’s encrypt “RUN NIKITA”, which encodes as m =
143338425831991. We have

E(m) = me

= 1504554432996568133393088878600948101773726800878873990.

Remark 3.2.2. In practice one usually choses e to be small, since that does
not seem to reduce the security of RSA, and makes the key size smaller. For
example, in the OpenSSL documentation (see http://www.openssl.org/)
about their implementation of RSA it states that “The exponent is an odd
number, typically 3, 17 or 65537.”

3.3 Attacking RSA

Suppose Nikita’s public key is (n, e) and her decryption key is d, so ed ≡ 1
(mod ϕ(n)). If somehow we compute the factorization n = pq, then we can
compute ϕ(n) = (p−1)(q−1) and hence compute d. Thus if we can factor n
then we can break the corresponding RSA public-key cryptosystem.

3.3 Attacking RSA 55

3.3.1 Factoring n Given ϕ(n)

Suppose n = pq. Given ϕ(n), it is very easy to compute p and q. We have

ϕ(n) = (p − 1)(q − 1) = pq − (p + q) + 1,

so we know both pq = n and p + q = n + 1 − ϕ(n). Thus we know the
polynomial

x2 − (p + q)x + pq = (x − p)(x − q)

whose roots are p and q. These roots can be found using the quadratic
formula.

Example 3.3.1. The number n = pq = 31615577110997599711 is a product
of two primes, and ϕ(n) = 31615577098574867424. We have

f = x2 − (n + 1 − ϕ(n))x + n

= x2 − 12422732288x + 31615577110997599711

= (x − 3572144239)(x − 8850588049),

where the factorization step is easily accomplished using the quadratic
formula:

−b +
√

b2 − 4ac

2a

=
12422732288 +

√
124227322882 − 4 · 31615577110997599711

2
= 8850588049.

We conclude that n = 3572144239 · 8850588049.

3.3.2 When p and q are Close

Suppose that p and q are “close” to each other. Then it is easy to factor n
using a factorization method of Fermat.

Suppose n = pq with p > q, say. Then

n =

(

p + q

2

)2

−
(

p − q

2

)2

.

Since p and q are “close”,

s =
p − q

2
is small,

t =
p + q

2

is only slightly larger than
√

n, and t2 − n = s2 is a perfect square. So we
just try

t = ⌈
√

n⌉, t = ⌈
√

n⌉ + 1, t = ⌈
√

n⌉ + 2, . . .

56 3. Public-Key Cryptography

until t2−n is a perfect square s2. (Here ⌈x⌉ denotes the least integer n ≥ x.)
Then

p = t + s, q = t − s.

Example 3.3.2. Suppose n = 23360947609. Then

√
n = 152842.88

If t = 152843, then
√

t2 − n = 187.18
If t = 152844, then

√
t2 − n = 583.71

If t = 152845, then
√

t2 − n = 804 ∈ Z.
Thus s = 804. We find that p = t + s = 153649 and q = t − s = 152041.

3.3.3 Factoring n Given d

In this section, we show that finding the decryption key d for an RSA
cryptosystem is, in practice, at least as difficult as factoring n. We give a
probabilistic algorithm that given a decryption key determines the factor-
ization of n.

Consider an RSA cryptosystem with modulus n and encryption key e.
Suppose we somehow finding an integer d such that

aed ≡ a (mod n)

for all a. Then m = ed − 1 satisfies am ≡ 1 (mod n) for all a that are
coprime to n. As we saw in Section 3.3.1, knowing ϕ(n) leads directly to a
factorization of n. Unfortunately, knowing d does not seem to lead easily to
a factorization of n. However, there is a probabilistic procedure that, given
an m such that am ≡ 1 (mod n), will find a factorization of n with “high
probability” (we will not analyze the probability here).

Algorithm 3.3.3 (Probabilistic Algorithm to Factor n). Let n = pq
be the product of two distinct odd primes, and suppose m is an integer such
that am ≡ 1 (mod n) for all a coprime to n. This probabilistic algorithm
factors n with “high probability”. In the steps below, a always denotes an
integer coprime to n = pq.

1. [Divide out powers of 2] If am/2 ≡ 1 (mod n) for several randomly
chosen a, set m = m/2, and go to step 1, otherwise let a be such that
am/2 6≡ 1 (mod n).

2. [Compute GCD’s] Compute g = gcd(am/2 − 1, n).

3. [Terminate?] If g is a proper divisor of n, output g and terminate. Oth-
erwise go to step 1 and choose a different a.

In step 1, note that m is even since (−1)m ≡ 1 (mod n), so it makes sense
to consider m/2. It is not practical to determine whether or not am/2 ≡ 1
(mod n) for all a, because it would require doing a computation for too

3.3 Attacking RSA 57

many a. Instead, we try a few random a; if am/2 ≡ 1 (mod n) for the a
we check, we divide m by 2. Also note that if there exists even a single a
such that am/2 6≡ 1 (mod n), then half the a have this property, since then
a 7→ am/2 is a surjective homomorphism (Z/nZ)∗ → {±1} and the kernel
has index 2.

Proposition 2.5.2 implies that if x2 ≡ 1 (mod p) then x = ±1 (mod p).
In step 2, since (am/2)2 ≡ 1 (mod n), we also have (am/2)2 ≡ 1 (mod p)
and (am/2)2 ≡ 1 (mod q), so am/2 ≡ ±1 (mod p) and am/2 ≡ ±1 (mod q).
Since am/2 6≡ 1 (mod n), there are three possibilities for these signs, so with
probability 2/3, one of the following two possibilities occurs:

1. am/2 ≡ +1 (mod p) and am/2 ≡ −1 (mod q)

2. am/2 ≡ −1 (mod p) and am/2 ≡ +1 (mod q).

The only other possibility is that both signs are −1. In the first case,

p | am/2 − 1 but q ∤ am/2 − 1,

so gcd(am/2 − 1, pq) = p, and we have factored n. Similarly, in the second
case, gcd(am/2 − 1, pq) = q, and we again factor n.

Example 3.3.4. Somehow we discover that the RSA cryptosystem with

n = 32295194023343 and e = 29468811804857

has decryption key d = 11127763319273. We use this information and Al-
gorithm 3.3.3 to factor n. If

m = ed − 1 = 327921963064646896263108960,

then ϕ(pq) | m, so am ≡ 1 (mod n) for all a coprime to n. For each a ≤ 20
we find that am/2 ≡ 1 (mod n), so we replace m by

m

2
= 163960981532323448131554480.

Again, we find with this new m that for each a ≤ 20, am/2 ≡ 1 (mod n), so
we replace m by 81980490766161724065777240. Yet again, for each a ≤ 20,
am/2 ≡ 1 (mod n), so we replace m by 40990245383080862032888620. This
is enough, since 2m/2 ≡ 4015382800099 (mod n). Then

gcd(2m/2 − 1, n) = gcd(4015382800098, 32295194023343) = 737531,

and we have found a factor of n. Dividing, we find that

n = 737531 · 43788253.

58 3. Public-Key Cryptography

3.3.4 Further Remarks

If one were to implement an actual RSA cryptosystem, there are many ad-
ditional tricks and ideas to keep in mind. For example, one can add some
extra random letters to each block of text, so that a given string will en-
crypt differently each time it is encrypted. This makes it more difficult for
an attacker who knows the encrypted and plaintext versions of one message
to gain information about subsequent encrypted messages. For an example
implementation that incorporates this randomness, see Listing 7.3.4. In any
particular implementation, there might be attacks that would be devastat-
ing in practice, but which wouldn’t require factoring the RSA modulus.

RSA is in common use, e.g., it is used in OpenSSH protocol version 1
(see http://www.openssh.com/).

We will consider the ElGamal cryptosystem in Sections 6.4.2. It has a
similar flavor to RSA, but is more flexible in some ways.

3.4 Exercises

3.1 This problem concerns encoding phrases using numbers using the
encoding of Section 3.2.2. What is the longest that an arbitrary se-
quence of letters (no spaces) can be if it must fit in a number that is
less than 1020?

3.2 Suppose Michael creates an RSA cryptosystem with a very large mod-
ulus n for which the factorization of n cannot be found in a reasonable
amount of time. Suppose that Nikita sends messages to Michael by
representing each alphabetic character as an integer between 0 and 26
(A corresponds to 1, B to 2, etc., and a space Ã to 0), then encrypts
each number separately using Michael’s RSA cryptosystem. Is this
method secure? Explain your answer.

3.3 For any n ∈ N, let σ(n) be the sum of the divisors of n; for example,
σ(6) = 1 + 2 + 3 + 6 = 12 and σ(10) = 1 + 2 + 5 + 10 = 18. Suppose
that n = pqr with p, q, and r distinct primes. Devise an “efficient”
algorithm that given n, ϕ(n) and σ(n), computes the factorization
of n. For example, if n = 105, then p = 3, q = 5, and r = 7, so the
input to the algorithm would be

n = 105, ϕ(n) = 48, and σ(n) = 192,

and the output would be 3, 5, and 7.

For computational exercises about cryptosystems, see the exercises for
Chapter 7.

This is page 59
Printer: Opaque this

4
Quadratic Reciprocity

The linear equation
ax ≡ b (mod n)

has a solution if and only if gcd(a, n) divides b (see Proposition 2.1.9). This
chapter is about some amazing mathematics motivated by the search for a
criterion for whether or not a quadratic equation

ax2 + bx + c ≡ 0 (mod n)

has a solution. In many cases, the Chinese Remainder Theorem and the
quadratic formula reduce this question to the key question of whether a
given integer a is a perfect square modulo a prime p.

The quadratic reciprocity law of Gauss provides a precise answer to the
following question: For which primes p is the image of a in (Z/pZ)∗ a
perfect square? Amazingly, the answer depends only on the reduction of p
modulo 4a.

There are over a hundred proofs of the quadratic reciprocity law (see
[Lem] for a long list). We give two proofs. The first, which we give in Sec-
tion 4.3, is completely elementary and involves keeping track of integer
points in intervals. It is satisfying because one can understand every detail
without much abstraction, but it is unsatisfying because it is difficult to
conceptualize what is going on. In sharp contrast, our second proof, which
we we give in Section 4.4, in more abstract and uses a conceptual develop-
ment of properties of Gauss sums. You should read Sections 4.1 and 4.2,
then at least one of Section 4.3 or Section 4.4, depending on your taste and
how much abstract algebra you know.

60 4. Quadratic Reciprocity

In Section 4.5, we return to the computational question of actually find-
ing square roots and solving quadratic equations in practice.

4.1 Statement of the Quadratic Reciprocity Law

In this section we state the quadratic reciprocity law.

Definition 4.1.1 (Quadratic Residue). Fix a prime p. An integer a
not divisible by p is quadratic residue modulo p if a is a square modulo p;
otherwise, a is a quadratic nonresidue.

The quadratic reciprocity theorem connects the question of whether or
not a is a quadratic residue modulo p to the question of whether p is a
quadratic residue modulo each of the prime divisors of a. To express it
precisely, we introduce some new notation.

Definition 4.1.2 (Legendre Symbol). Let p be an odd prime and let a
be an integer coprime to p. Set

(

a

p

)

=

{

+1 if a is a quadratic residue, and

−1 otherwise.

We call this symbol the Legendre Symbol.

This notation is well entrenched in the literature, even though it is also
the notation for “a divided by p”; be careful not to confuse the two.

Since
(

a
p

)

only depends on a (mod p), it makes sense to define
(

a
p

)

for

a ∈ Z/pZ to be
(

ã
p

)

for any lift ã of a to Z.

Lemma 4.1.3. The map ψ : (Z/pZ)∗ → {±1} given by ψ(a) =
(

a
p

)

is a

surjective group homomorphism.

Proof. By Theorem 2.5.5, G = (Z/pZ)∗ is a cyclic group of order p −
1. Because p is odd, G has even order, so the subgroup H of squares of

elements of G has index 2 in G. Since
(

a
p

)

= 1 if and only if a ∈ H, we

see that ψ is the composition G → G/H ∼= {±1}, where we identify the
nontrivial element of G/H with −1.

Remark 4.1.4. We could also prove that ψ is surjective without using that
(Z/pZ)∗ is cyclic, as follows. If a ∈ (Z/pZ)∗ is a square, say a ≡ b2 (mod p),
then a(p−1)/2 = bp−1 ≡ 1 (mod p), so a is a root of f = x(p−1)/2 − 1. By
Proposition 2.5.2, the polynomial f has at most (p−1)/2 roots. Thus there
must be an a ∈ (Z/pZ)∗ that is not a root of f , and for that a, we have

ψ(a) =
(

a
p

)

= −1, and trivially ψ(1) = 1, so the map ψ is surjective. Note

4.1 Statement of the Quadratic Reciprocity Law 61

TABLE 4.1. When is 5 a square modulo p?

p
(

5
p

)

p mod 5

7 −1 2
11 1 1
13 −1 3
17 −1 2
19 1 4
23 −1 3

p
(

5
p

)

p mod 5

29 1 4
31 1 1
37 −1 2
41 1 1
43 −1 3
47 −1 2

that this argument does not prove that ψ is a homomorphism, though it
can be extended to one that does.

The symbol
(

a
p

)

only depends on the residue class of a modulo p, so

making a table of values
(

a
5

)

for many values of a would be easy. Would

it be easy to make a table of
(

5
p

)

for many p? Probably, since there is

a simple pattern in Table 4.1. It appears that
(

5
p

)

depends only on the

congruence class of p modulo 5. More precisely,
(

5
p

)

= 1 if and only if

p ≡ 1, 4 (mod 5), i.e.,
(

5
p

)

= 1 if and only if p is a square modulo 5.

Based on similar observations, in the 18th century various mathemati-
cians found a conjectural explanation for the mystery suggested by Ta-
ble 4.1. Finally, on April 8, 1796, at the age of 19, Gauss proved the fol-
lowing theorem.

Theorem 4.1.5 (Gauss’s Quadratic Reciprocity Law). Suppose p
and q are distinct odd primes. Then

(

p

q

)

= (−1)
p−1
2 · q−1

2

(

q

p

)

.

Also

(−1

p

)

= (−1)(p−1)/2 and

(

2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

We will give two proofs of Gauss’s formula relating
(

p
q

)

to
(

q
p

)

. The first

elementary proof is in Section 4.3, and the second more algebraic proof is
in Section 4.4.

In our example Gauss’s theorem implies that

(

5

p

)

= (−1)2·
p−1
2

(p

5

)

=
(p

5

)

=

{

+1 if p ≡ 1, 4 (mod 5)

−1 if p ≡ 2, 3 (mod 5).

62 4. Quadratic Reciprocity

As an application, the following example illustrates how to answer ques-
tions like “is a a square modulo b” using Theorem 4.1.5.

Example 4.1.6. Is 69 a square modulo the prime 389? We have
(

69

389

)

=

(

3 · 23

389

)

=

(

3

389

)

·
(

23

389

)

= (−1) · (−1) = 1.

Here
(

3

389

)

=

(

389

3

)

=

(

2

3

)

= −1,

and
(

23

389

)

=

(

389

23

)

=

(

21

23

)

=

(−2

23

)

=

(−1

23

)(

2

23

)

= (−1)
23−1

2 · 1 = −1.

Thus 69 is a square modulo 389.
Though we know that 69 is a square modulo 389, we don’t know an

explicit x such that x2 ≡ 69 (mod 389)! This is reminiscent of how we could
prove using Theorem 2.1.12 that certain numbers are composite without
knowing a factorization.

Remark 4.1.7. The Jacobi symbol is an extension of the Legendre symbol
to composite moduli. For more details, see Exercise 4.8.

4.2 Euler’s Criterion

Let p be an odd prime and a an integer not divisible by p. Euler used

the existence of primitive roots to show that
(

a
p

)

is congruent to a(p−1)/2

modulo p. We will use this fact repeatedly below in both proofs of Theo-
rem 4.1.5.

Proposition 4.2.1 (Euler’s Criterion). We have
(

a
p

)

= 1 if and only

if
a(p−1)/2 ≡ 1 (mod p).

Proof. The map ϕ : (Z/pZ)∗ → (Z/pZ)∗ given by ϕ(a) = a(p−1)/2 is
a group homomorphism, since powering is a group homomorphism of any

abelian group. Let ψ : (Z/pZ)∗ → {±1} be the homomorphism ψ(a) =
(

a
p

)

of Lemma 4.1.3. If a ∈ ker(ψ), then a = b2 for some b ∈ Z/pZ, so

ϕ(a) = a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1.

Thus ker(ψ) ⊂ ker(ϕ). By Lemma 4.1.3, ker(ψ) has index 2 in (Z/pZ)∗,
so either ker(ϕ) = ker(ψ) or ϕ = 1. If ϕ = 1, the polynomial x(p−1)/2 − 1

4.3 First Proof of Quadratic Reciprocity 63

has p − 1 roots in the field Z/pZ, which contradicts Proposition 2.5.2, so
ker(ϕ) = ker(ψ), which proves the proposition.

From a computational point of view, Corollary 4.2.2 provides a conve-

nient way to compute
(

a
p

)

. See Section 7.4.1 for an implementation.

Corollary 4.2.2. The equation x2 ≡ a (mod p) has no solution if and

only if a(p−1)/2 ≡ −1 (mod p). Thus
(

a
p

)

≡ a(p−1)/2 (mod p).

Proof. This follows from Proposition 4.2.1 and the fact that the polyno-
mial x2 − 1 has no roots besides +1 and −1 (which follows from Proposi-
tion 2.5.3).

As additional computational motivation for the value of Corollary 4.2.2,

note that to evaluate
(

a
p

)

using Theorem 4.1.5 would not be practical

if a and p both very large, because it would require factoring a. However,

Corollary 4.2.2 provides a method for evaluating
(

a
p

)

without factoring a.

Example 4.2.3. Suppose p = 11. By squaring each element of (Z/11Z)∗, we
see that the squares modulo 11 are {1, 3, 4, 5, 9}. We compute a(p−1)/2 = a5

for each a ∈ (Z/11Z)∗ and get

15 = 1, 25 = −1, 35 = 1, 45 = 1, 55 = 1,

65 = −1, 75 = −1, 85 = −1, 95 = 1, 105 = −1.

Thus the a with a5 = 1 are {1, 3, 4, 5, 9}, just as Proposition 4.2.1 predicts.

Example 4.2.4. We determine whether or not 3 is a square modulo the
prime p = 726377359. Using a computer we find that

3(p−1)/2 ≡ −1 (mod 726377359).

Thus 3 is not a square modulo p. This computation wasn’t difficult, but it
would have been tedious by hand. The law of quadratic reciprocity provides
a way to answer this question, which could easily be carried out by hand:

(

3

726377359

)

= (−1)(3−1)/2·(726377359−1)/2

(

726377359

3

)

= (−1) ·
(

1

3

)

= −1.

4.3 First Proof of Quadratic Reciprocity

Our first proof of quadratic reciprocity is elementary. The proof involves
keeping track of integer points in intervals. Proving Gauss’s lemma is the

64 4. Quadratic Reciprocity

first step; this lemma computes
(

a
p

)

in terms of the number of integers of

a certain type that lie in a certain interval. Next we prove Lemma 4.3.2,
which controls how the parity of the number of integer points in an interval
changes when an endpoint of the interval is changed. Then we prove that
(

a
p

)

depends only on p modulo 4a by applying Gauss’s lemma and keep-

ing careful track of intervals as they are rescaled and their endpoints are
changed. Finally, in Section 4.3.2 we use some basic algebra to deduce the
quadratic reciprocity law using the tools we’ve just developed. Our proof
follows the one given in [Dav99] closely.

Lemma 4.3.1 (Gauss’s Lemma). Let p be an odd prime and let a be an
integer 6≡ 0 (mod p). Form the numbers

a, 2a, 3a, . . . ,
p − 1

2
a

and reduce them modulo p to lie in the interval (−p
2 , p

2). Let ν be the
number of negative numbers in the resulting set. Then

(

a

p

)

= (−1)ν .

Proof. In defining ν, we expressed each number in

S =

{

a, 2a, . . . ,
p − 1

2
a

}

as congruent to a number in the set
{

1,−1, 2,−2, . . . ,
p − 1

2
,−p − 1

2

}

.

No number 1, 2, . . . , p−1
2 appears more than once, with either choice of sign,

because if it did then either two elements of S are congruent modulo p or
0 is the sum of two elements of S, and both events are impossible. Thus
the resulting set must be of the form

T =

{

ε1 · 1, ε2 · 2, . . . , ε(p−1)/2 ·
p − 1

2

}

,

where each εi is either +1 or −1. Multiplying together the elements of S
and of T , we see that

(1a) · (2a) · (3a) · · ·
(

p − 1

2
a

)

≡

(ε1 · 1) · (ε2 · 2) · · ·
(

ε(p−1)/2 ·
p − 1

2

)

(mod p),

so
a(p−1)/2 ≡ ε1 · ε2 · · · ε(p−1)/2 (mod p).

The lemma then follows from Proposition 4.2.1, since
(

a
p

)

= a(p−1)/2.

4.3 First Proof of Quadratic Reciprocity 65

4.3.1 Euler’s Proposition

For rational numbers a, b ∈ Q, let

(a, b) ∩ Z = {x ∈ Z : a ≤ x ≤ b}

be the set of integers between a and b. The following lemma will help us to
keep track of how many integers lie in certain intervals.

Lemma 4.3.2. Let a, b ∈ Q. Then for any integer n,

#((a, b) ∩ Z) ≡ #((a, b + 2n) ∩ Z) (mod 2)

and
#((a, b) ∩ Z) ≡ #((a − 2n, b) ∩ Z) (mod 2),

provided that each interval involved in the congruence is nonempty.

Note that if one of the intervals is empty, then the statement may be
false; e.g., if (a, b) = (−1/2, 1/2) and n = −1 then #((a, b) ∩ Z) = 1 but
#(a, b − 2) ∩ Z = 0.

Proof. Let ⌈x⌉ denotes the least integer ≥ x. Since n > 0,

(a, b + 2n) = (a, b) ∪ [b, b + 2n),

where the union is disjoint. There are 2n integers,

⌈b⌉, ⌈b⌉ + 1, . . . , ⌈b⌉ + 2n − 1,

in the interval [b, b + 2n), so the first congruence of the lemma is true in
this case. We also have

(a, b − 2n) = (a, b) minus [b − 2n, b)

and [b−2n, b) contains exactly 2n integers, so the lemma is also true when n
is negative. The statement about # ((a − 2n, b) ∩ Z) is proved in a similar
manner.

Once we have proved the following proposition, it will be easy to deduce
the quadratic reciprocity law.

Proposition 4.3.3 (Euler). Let p be an odd prime and let a be a positive

integer with p ∤ a. If q is a prime with q ≡ ±p (mod 4a), then
(

a
p

)

=
(

a
q

)

.

Proof. We will apply Lemma 4.3.1 to compute
(

a
p

)

. Let

S =

{

a, 2a, 3a, . . . ,
p − 1

2
a

}

66 4. Quadratic Reciprocity

and

I =

(

1

2
p, p

)

∪
(

3

2
p, 2p

)

∪ · · · ∪
((

b − 1

2

)

p, bp

)

,

where b = 1
2a or 1

2 (a − 1), whichever is an integer. We check that every
element of S that reduces to something in the interval (−p

2 , 0) lies in I.

This is clear if b = 1
2a < p−1

2 a. If b = 1
2 (a − 1), then bp + p

2 > p−1
2 a, so

((b − 1
2)p, bp) is the last interval that could contain an element of S that

reduces to (−p
2 , 0). Note that the integer endpoints of I are not in S, since

those endpoints are divisible by p, but no element of S is divisible by p.
Thus, by Lemma 4.3.1,

(

a

p

)

= (−1)#(S∩I).

To compute #(S ∩ I), first rescale by a to see that

#(S ∩ I) = #

(

Z ∩ 1

a
I

)

,

where

1

a
I =

(

(p

2a
,
p

a

)

∪
(

3p

2a
,
2p

a

)

∪ · · · ∪
(

(2b − 1)p

2a
,
bp

a

))

.

Write p = 4ac + r, and let

J =

(

(r

2a
,
r

a

)

∪
(

3r

2a
,
2r

a

)

∪ · · · ∪
(

(2b − 1)r

2a
,
br

a

))

.

The only difference between I and J is that the endpoints of intervals are
changed by addition of an even integer. By Lemma 4.3.2,

ν = #

(

Z ∩ 1

a
I

)

≡ #(Z ∩ J) (mod 2).

Thus
(

a
p

)

= (−1)ν depends only on r, i.e., only on p modulo 4a. Thus if

q ≡ p (mod 4a), then
(

a
p

)

=
(

a
q

)

.

If q ≡ −p (mod 4a), then the only change in the above computation is
that r is replaced by 4a − r. This changes 1

aI into

K =
(

2 − r

2a
, 4 − r

a

)

∪
(

6 − 3r

2a
, 8 − 2r

a

)

∪ · · ·

∪
(

4b − 2 − (2b − 1)r

2a
, 4b − br

a

)

.

4.3 First Proof of Quadratic Reciprocity 67

Thus K is the same as − 1
aI, except even integers have been added to the

endpoints. By Lemma 4.3.2,

#(K ∩ Z) ≡ #

((

1

a
I

)

∩ Z

)

(mod 2),

so
(

a
p

)

=
(

a
q

)

, which completes the proof.

The following more careful analysis in the special case when a = 2 helps
illustrate the proof of the above lemma, and the result is frequently useful in
computations. For an alternative proof of the proposition, see Exercise 4.5.

Proposition 4.3.4 (Legendre symbol of 2). Let p be an odd prime.
Then

(

2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

Proof. When a = 2, the set S = {a, 2a, . . . , 2 · p−1
2 } is

{2, 4, 6, . . . , p − 1}.

We must count the parity of the number of elements of S that lie in the
interval I = (p

2 , p). Writing p = 8c + r, we have

(I ∩ S) =

(

1

2
I ∩ Z

)

= #
((p

4
,
p

2

)

∩ Z
)

= #
((

2c +
r

4
, 4c +

r

2

)

∩ Z
)

≡ #
((r

4
,
r

2

)

∩ Z
)

(mod 2),

where the last equality comes from Lemma 4.3.2. The possibilities for r are
1, 3, 5, 7. When r = 1, the cardinality is 0, when r = 3, 5 it is 1, and when
r = 7 it is 2.

4.3.2 Proof of Quadratic Reciprocity

It is now straightforward to deduce the quadratic reciprocity law.

First Proof of Theorem 4.1.5. First suppose that p ≡ q (mod 4). By swap-
ping p and q if necessary, we may assume that p > q, and write p− q = 4a.
Since p = 4a + q,

(

p

q

)

=

(

4a + q

q

)

=

(

4a

q

)

=

(

4

q

) (

a

q

)

=

(

a

q

)

,

and
(

q

p

)

=

(

p − 4a

p

)

=

(−4a

p

)

=

(−1

p

)

·
(

a

p

)

.

68 4. Quadratic Reciprocity

Proposition 4.3.3 implies that
(

a
q

)

=
(

a
p

)

, since p ≡ q (mod 4a). Thus

(

p

q

)

·
(

q

p

)

=

(−1

p

)

= (−1)
p−1
2 = (−1)

p−1
2 · q−1

2 ,

where the last equality is because p−1
2 is even if and only if q−1

2 is even.
Next suppose that p 6≡ q (mod 4), so p ≡ −q (mod 4). Write p+ q = 4a.

We have
(

p

q

)

=

(

4a − q

q

)

=

(

a

q

)

, and

(

q

p

)

=

(

4a − p

p

)

=

(

a

p

)

.

Since p ≡ −q (mod 4a), Proposition 4.3.3 implies that
(

p
q

)

=
(

q
p

)

. Since

(−1)
p−1
2 · q−1

2 = 1, the proof is complete.

4.4 A Proof of Quadratic Reciprocity Using Gauss
Sums

In this section we present a beautiful proof of Theorem 4.1.5 using algebraic
identities satisfied by sums of “roots of unity”. The objects we introduce
in the proof are of independent interest, and provide a powerful tool to
prove higher-degree analogues of quadratic reciprocity. (For more on higher
reciprocity see [IR90]. See also Section 6 of [IR90] on which the proof below
is modeled.)

Definition 4.4.1 (Root of Unity). An nth root of unity is a complex
number ζ such that ζn = 1. A root of unity ζ is a primitive nth root of
unity if n is the smallest positive integer such that ζn = 1.

For example, −1 is a primitive second root of unity, and ζ =
√
−3−1
2 is

a primitive cube root of unity. More generally, for any n ∈ N the complex
number

ζn = cos(2π/n) + i sin(2π/n)

is a primitive nth root of unity (this follows from the identity eiθ = cos(θ)+
i sin(θ)). For the rest of this section, we fix an odd prime p and the primitive
pth root ζ = ζp of unity.

Definition 4.4.2 (Gauss Sum). Fix an odd prime p. The Gauss sum
associated to an integer a is

ga =

p−1
∑

n=0

(

n

p

)

ζan,

where ζ = ζp = cos(2π/p) + i sin(2π/p).

4.4 A Proof of Quadratic Reciprocity Using Gauss Sums 69

−1

+1

+1

−1

ζ = e2πi/5

ζ2

ζ3

ζ4

g2 =
(

0
5

)

+
(

1
5

)

ζ2 +
(

2
5

)

ζ4 +
(

3
5

)

ζ +
(

4
5

)

ζ3 = −
√

5

g2
2 = 5

1 2 3 4 5−3 −2

FIGURE 4.1. Gauss sum g2 for p = 5

Note that p is implicit in the definition of ga. If we were to change p,
then the Gauss sum ga associated to a would be different. The definition
of ga also depends on our choice of ζ; we’ve chosen ζ = ζp, but could have
chosen a different ζ and then ga could be different.

Figure 4.1 illustrates the Gauss sum g2 for p = 5. The Gauss sum is
obtained by adding the points on the unit circle, with signs as indicated,
to obtain the real number −

√
5. This suggests the following proposition,

whose proof will require some work.

Proposition 4.4.3 (Gauss sum). For any a not divisible by p,

g2
a = (−1)(p−1)/2p.

In order to prove the proposition, we introduce a few lemmas.

Lemma 4.4.4. For any integer a,

p−1
∑

n=0

ζan =

{

p if a ≡ 0 (mod p),

0 otherwise.

Proof. If a ≡ 0 (mod p), then ζa = 1, so the sum equals the number of
summands, which is p. If a 6≡ 0 (mod p), then we use then identity

xp − 1 = (x − 1)(xp−1 + · · · + x + 1)

with x = ζa. We have ζa 6= 1, so ζa − 1 6= 0 and

p−1
∑

n=0

ζan =
ζap − 1

ζa − 1
=

1 − 1

ζa − 1
= 0.

Lemma 4.4.5. If x and y are arbitrary integers, then

p−1
∑

n=0

ζ(x−y)n =

{

p if x ≡ y (mod p),

0 otherwise.

70 4. Quadratic Reciprocity

Proof. This follows from Lemma 4.4.4 by setting a = x − y.

Lemma 4.4.6. We have g0 = 0.

Proof. By definition

g0 =

p−1
∑

n=0

(

n

p

)

. (4.4.1)

By Lemma 4.1.3, the map

(·
p

)

: (Z/pZ)∗ → {±1}

is a surjective homomorphism of groups. Thus half the elements of (Z/pZ)∗

map to +1 and half map to −1 (the subgroup that maps to +1 has index

2). Since
(

0
p

)

= 0, the sum (4.4.1) is 0.

Lemma 4.4.7. For any integer a,

ga =

(

a

p

)

g1.

Proof. When a ≡ 0 (mod p) the lemma follows from Lemma 4.4.6, so sup-
pose that a 6≡ 0 (mod p). Then

(

a

p

)

ga =

(

a

p

) p−1
∑

n=0

(

n

p

)

ζan =

p−1
∑

n=0

(

an

p

)

ζan =

p−1
∑

m=0

(

m

p

)

ζm = g1.

Here we use that multiplication by a is an automorphism of Z/pZ. Finally,

multiply both sides by
(

a
p

)

and use that
(

a
p

)2

= 1.

We have enough lemmas to prove Proposition 4.4.3.

Proof of Proposition 4.4.3. We evaluate the sum
∑p−1

a=0 gag−a in two dif-
ferent ways. By Lemma 4.4.7, since a 6≡ 0 (mod p) we have

gag−a =

(

a

p

)

g1

(−a

p

)

g1 =

(−1

p

)(

a

p

)2

g2
1 = (−1)(p−1)/2g2

1 ,

where the last step follows from Proposition 4.2.1 and that
(

a
p

)

∈ {±1}.
Thus

p−1
∑

a=0

gag−a = (p − 1)(−1)(p−1)/2g2
1 . (4.4.2)

4.4 A Proof of Quadratic Reciprocity Using Gauss Sums 71

On the other hand, by definition

gag−a =

p−1
∑

n=0

(

n

p

)

ζan ·
p−1
∑

m=0

(

m

p

)

ζ−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

) (

m

p

)

ζanζ−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

) (

m

p

)

ζan−am.

Let δ(n,m) = 1 if n ≡ m (mod p) and 0 otherwise. By Lemma 4.4.5,

p−1
∑

a=0

gag−a =

p−1
∑

a=0

p−1
∑

n=0

p−1
∑

m=0

(

n

p

) (

m

p

)

ζan−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

) p−1
∑

a=0

ζan−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

)

pδ(n,m)

=

p−1
∑

n=0

(

n

p

)2

p

= p(p − 1).

Equate (4.4.2) and the above equality, then cancel (p − 1) to see that

g2
1 = (−1)(p−1)/2p.

Since a 6≡ 0 (mod p), we have
(

a
p

)2

= 1, so by Lemma 4.4.7,

g2
a =

(

a

p

)2

g2
1 = g2

1 ,

and the proposition is proved.

4.4.1 Proof of Quadratic Reciprocity

We are now ready to prove Theorem 4.1.5 using Gauss sums.

Proof. Let q be an odd prime with q 6= p. Set p∗ = (−1)(p−1)/2p and recall

that Proposition 4.4.3 asserts that p∗ = g2, where g = g1 =
∑p−1

n=0

(

n
p

)

ζn.

72 4. Quadratic Reciprocity

Proposition 4.2.1 implies that

(p∗)(q−1)/2 ≡
(

p∗

q

)

(mod q).

We have gq−1 = (g2)(q−1)/2 = (p∗)(q−1)/2, so multiplying both sides of the
displayed equation by g yields a congruence

gq ≡ g

(

p∗

q

)

(mod q). (4.4.3)

But wait, what does this congruence mean, given that gq is not an in-

teger? It means that the difference gq − g
(

p∗

q

)

lies in the ideal (q) in the

ring Z[ζ] of all polynomials in ζ with coefficients in Z.
The ring Z[ζ]/(q) has characteristic q, so if x, y ∈ Z[ζ], then (x + y)q ≡

xq + yq (mod q). Applying this to (4.4.3), we see that

gq =

(

p−1
∑

n=0

(

n

p

)

ζn

)q

≡
p−1
∑

n=0

(

n

p

)q

ζnq ≡
p−1
∑

n=0

(

n

p

)

ζnq ≡ gq (mod q).

By Lemma 4.4.7,

gq ≡ gq ≡
(

q

p

)

g (mod q).

Combining this with (4.4.3) yields

(

q

p

)

g ≡
(

p∗

q

)

g (mod q).

Since g2 = p∗ and p 6= q, we can cancel g from both sides to find that
(

q
p

)

≡
(

p∗

q

)

(mod q). Since both residue symbols are ±1 and q is odd, it

follows that
(

q
p

)

=
(

p∗

q

)

. Finally, we note using Proposition 4.2.1 that

(

p∗

q

)

=

(

(−1)(p−1)/2p

q

)

=

(−1

q

)(p−1)/2 (

p

q

)

= (−1)
q−1
2 · p−1

2 ·
(

p

q

)

.

4.5 Finding Square Roots

[[something about schoof polynomial time algo!!!]] We return in this
section to the question of computing square roots. If K is a field in which

4.5 Finding Square Roots 73

2 6= 0, and a, b, c ∈ K, with a 6= 0, then the solutions to the quadratic
equation ax2 + bx + c = 0 are

x =
−b ±

√
b2 − 4ac

2a
.

Now assume K = Z/pZ, with p an odd prime. Using Theorem 4.1.5, we
can decide whether or not b2 − 4ac is a perfect square in Z/pZ, and hence
whether or not ax2 + bx + c = 0 has a solution in Z/pZ. However Theo-
rem 4.1.5 says nothing about how to actually find a solution when there is
one. Also, note that for this problem we do not need the full quadratic reci-
procity law; in practice to decide whether an element of Z/pZ is a perfect
square Proposition 4.2.1 is quite fast, in view of Section 2.3.

Suppose a ∈ Z/pZ is a nonzero quadratic residue. If p ≡ 3 (mod 4) then

b = a
p+1
4 is a square root of a because

b2 = a
p+1
2 = a

p−1
2 +1 = a

p−1
2 · a =

(

a

p

)

· a = a.

We can compute b in time polynomial in the number of digits of p using
the powering algorithm of Section 2.3.

We do not know a deterministic polynomial-time algorithm to compute
a square root of a when p ≡ 1 (mod 4). The following is a standard prob-
abilistic algorithm to compute a square root of a, which works well in
practice. Consider the quotient ring

R = (Z/pZ)[x]/(x2 − a),

by which we mean the following. We have

R = {u + vα : u, v ∈ Z/pZ}

with multiplication defined by

(u + vα)(z + wα) = (uz + awv) + (uw + vz)α.

Here α corresponds to the class of x in the quotient ring. Let b and c be
the square roots of a in Z/pZ (though we cannot easily compute b and c
yet, we can consider them in order to deduce an algorithm to find them).
We have ring homomorphisms f : R → Z/pZ and g : R → Z/pZ given by
f(u + vα) = u + vb and g(u + vα) = u + vc. Together these define a ring
isomorphism

ϕ : R −→ Z/pZ × Z/pZ

given by ϕ(u + vα) = (u + vb, u + vc). Choose in some way a random
element z of (Z/pZ)∗, and define u, v ∈ Z/pZ by

u + vα = (1 + zα)
p−1
2 ,

74 4. Quadratic Reciprocity

where we compute (1 + zα)
p−1
2 quickly using an analogue of the binary

powering algorithm of Section 2.3.2. If v = 0 we try again with another
random z. If v 6= 0 we can quickly find the desired square roots b and c
as follows. The quantity u + vb is a (p − 1)/2 power in Z/pZ, so it equals
either 0, 1, or −1, so b = −u/v, (1−u)/v, or (−1−u)/v, respectively. Since
we know u and v we can try each of −u/v, (1− u)/v, and (−1− u)/v and
see which is a square root of a.

We implement this algorithm in Section 7.4.2.

Example 4.5.1. Continuing Example 4.1.6, we find a square root of 69
modulo 389. We apply the algorithm described above in the case p ≡ 1
(mod 4). We first choose the random z = 24 and find that (1 + 24α)194 =
−1. The coefficient of α in the power is 0, and we try again with z = 51.
This time we have (1 + 51α)194 = 239α = u + vα. The inverse of 239 in
Z/389Z is 153, so we consider the following three possibilities for a square
root of 69:

−u

v
= 0

1 − u

v
= 153 − 1 − u

v
= −153.

Thus 153 and −153 are the square roots of 69 in Z/389Z.

4.6 Exercises

4.1 Calculate the following by hand:
(

3
97

)

,
(

3
389

)

,
(

22
11

)

, and
(

5!
7

)

.

4.2 Use Theorem 4.1.5 to show that for p ≥ 5 prime,

(

3

p

)

=

{

1 if p ≡ 1, 11 (mod 12),

−1 if p ≡ 5, 7 (mod 12).

4.3 (*) Use that (Z/pZ)∗ is cyclic to give a direct proof that
(

−3
p

)

= 1

when p ≡ 1 (mod 3). (Hint: There is an c ∈ (Z/pZ)∗ of order 3. Show
that (2c + 1)2 = −3.)

4.4 (*) If p ≡ 1 (mod 5), show directly that
(

5
p

)

= 1 by the method of

Exercise 4.3. (Hint: Let c ∈ (Z/pZ)∗ be an element of order 5. Show
that (c + c4)2 + (c + c4) − 1 = 0, etc.)

4.5 (*) Let p be an odd prime. In this exercise you will prove that
(

2
p

)

= 1

if and only if p ≡ ±1 (mod 8).

(a) Prove that

x =
1 − t2

1 + t2
, y =

2t

1 + t2

4.6 Exercises 75

is a parameterization of the set of solutions to x2 + y2 ≡ 1
(mod p), in the sense that the solutions (x, y) ∈ Z/pZ are in
bijection with the t ∈ Z/pZ∪{∞} such that 1+t2 6≡ 0 (mod p).
Here t = ∞ corresponds to the point (−1, 0). (Hint: if (x1, y1)
is a solution, consider the line y = t(x + 1) through (x1, y1) and
(−1, 0), and solve for x1, y1 in terms of t.)

(b) Prove that the number of solutions to x2 + y2 ≡ 1 (mod p) is
p + 1 if p ≡ 3 (mod 4) and p − 1 if p ≡ 1 (mod 4).

(c) Consider the set S of pairs (a, b) ∈ (Z/pZ)∗×(Z/pZ)∗ such that

a + b = 1 and
(

a
p

)

=
(

b
p

)

= 1. Prove that #S = (p + 1 − 4)/4

if p ≡ 3 (mod 4) and #S = (p − 1 − 4)/4 if p ≡ 1 (mod 4).
Conclude that #S is odd if and only if p ≡ ±1 (mod 8)

(d) The map σ(a, b) = (b, a) that swaps coordinates is a bijection of
the set S. It has exactly one fixed point if and only if there is

an a ∈ Z/pZ such that 2a = 1 and
(

a
p

)

= 1. Also, prove that

2a = 1 has a solution a ∈ Z/pZ with
(

a
p

)

= 1 if and only if
(

2
p

)

= 1.

(e) Finish by showing that σ has exactly one fixed point if and only
if #S is odd, i.e., if and only if p ≡ ±1 (mod 8).

Remark: The method of proof of this exercise can be generalized to
give a proof of the full quadratic reciprocity law.

4.6 How many natural numbers x < 213 satisfy the equation

x2 ≡ 5 (mod 213 − 1)?

You may assume that 213 − 1 is prime.

4.7 Find the natural number x < 97 such that x ≡ 448 (mod 97). Note
that 97 is prime.

4.8 In this problem we will formulate an analogue of quadratic reciprocity

for a symbol like
(

a
q

)

, but without the restriction that q be a prime.

Suppose n is a positive integer, which we factor as
∏k

i=1 pei

i . We define
the Jacobi symbol

(

a
n

)

as follows:

(a

n

)

=

k
∏

i=1

(

a

pi

)ei

.

(a) Give an example to show that
(

a
n

)

= 1 need not imply that a is
a perfect square modulo n.

76 4. Quadratic Reciprocity

(b) (*) Let n be odd and a and b be integers. Prove that the following
holds:

i.
(

a
n

) (

b
n

)

=
(

ab
n

)

. (Thus a 7→
(

a
n

)

induces a homomorphism
from (Z/nZ)∗ to {±1}.)

ii.
(−1

n

)

≡ n (mod 4).

iii.
(

2
n

)

= 1 if n ≡ ±1 (mod 8) and −1 otherwise.

iv.
(

a
n

)

= (−1)
a−1
2 ·n−1

2

(

n
a

)

4.9 (*) Prove that for any n ∈ Z the integer n2 +n+1 does not have any
divisors of the form 6k − 1.

This is page 77
Printer: Opaque this

5
Continued Fractions

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · · .

In this book we will assume that the ai are real numbers and ai > 0 for
i ≥ 1, and the expression may or may not go on indefinitely. More general
notions of continued fractions have been extensively studied, but they are
beyond the scope of this book. We will be most interested in the case when
the ai are all integers.

We denote the continued fraction displayed above by

[a0, a1, a2, . . .].

For example,

[1, 2] = 1 +
1

2
=

3

2
,

[3, 7, 15, 1, 292] = 3 +
1

7 +
1

15 +
1

1 +
1

292

=
103993

33102
= 3.14159265301190260407 . . . ,

78 5. Continued Fractions

and

[2, 1, 2, 1, 1, 4, 1, 1, 6] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6

=
1264

465
= 2.7182795698924731182795698 . . .

The second two examples were chosen to foreshadow that continued frac-
tions can be used to obtain good rational approximations to irrational
numbers. Note that the first approximates π and the second e.

Continued fractions have many applications. For example, they provide
an algorithmic way to recognize a decimal approximation to a rational
number. Continued fractions also suggest a sense in which e might be “less
complicated” than π (see Example 5.2.3 and Section 5.3).

In Section 5.1 we study continued fractions [a0, a1, . . . , an] of finite length
and lay the foundations for our later investigations. In Section 5.2 we give
the continued fraction procedure, which associates to a real number x a
sequence a0, a1, . . . of integers such that x = limn→∞[a0, a1, . . . , an]. We
also prove that if a0, a1, . . . is any infinite sequence of positive integers, then
the sequence cn = [a0, a1, . . . , an] converges; more generally, we prove that
if the an are arbitrary positive real numbers and

∑∞
n=0 an diverges then (cn)

converges. In Section 5.4, we prove that a continued fraction with ai ∈ N
is (eventually) periodic if and only if its value is a non-rational root of a
quadratic polynomial, then discuss open questions concerning continued
fractions of roots of irreducible polynomials of degree greater than 2. We
conclude the chapter with applications of continued fractions to recognizing
approximations to rational numbers (Section 5.5) and writing integers as
sums of two squares (Section 5.6).

The reader is encouraged to read more about continued fractions in
[HW79, Ch. X], [Khi63], [Bur89, §13.3], and [NZM91, Ch. 7].

5.1 Finite Continued Fractions

This section is about continued fractions of the form [a0, a1, . . . , am] for
some m ≥ 0. We give an inductive definition of numbers pn and qn such

5.1 Finite Continued Fractions 79

that for all n ≤ m

[a0, a1, . . . , an] =
pn

qn
. (5.1.1)

We then give related formulas for the determinants of the 2 × 2 matrices
(pn pn−1

qn qn−1

)

and
(pn pn−2

qn qn−2

)

. which we will repeatedly use to deduce prop-
erties of the sequence of partial convergents [a0, . . . , ak]. We will use Al-
gorithm 1.1.12 to prove that every rational number is represented by a
continued fraction, as in (5.1.1).

Definition 5.1.1 (Finite Continued Fraction). A finite continued frac-
tion is an expression

a0 +
1

a1 +
1

a2 +
1

· · · + 1
an

,

where each am is a real number and am > 0 for all m ≥ 1.

Definition 5.1.2 (Simple Continued Fraction). A simple continued
fraction is a finite or infinite continued fraction in which the ai are all
integers.

To get a feeling for continued fractions, observe that

[a0] = a0,

[a0, a1] = a0 +
1

a1
=

a0a1 + 1

a1
,

[a0, a1, a2] = a0 +
1

a1 +
1

a2

=
a0a1a2 + a0 + a2

a1a2 + 1
.

Also,

[a0, a1, . . . , an−1, an] =

[

a0, a1, . . . , an−2, an−1 +
1

an

]

= a0 +
1

[a1, . . . , an]

= [a0, [a1, . . . , an]].

5.1.1 Partial Convergents

Fix a finite continued fraction [a0, . . . , am]. We do not assume at this point
that the ai are integers.

Definition 5.1.3 (Partial convergents). For 0 ≤ n ≤ m, the nth con-
vergent of the continued fraction [a0, . . . , am] is [a0, . . . , an]. These conver-
gents for n < m are also called partial convergents.

80 5. Continued Fractions

For each n with −2 ≤ n ≤ m, define real numbers pn and qn as follows:

p−2 = 0, p−1 = 1, p0 = a0, · · · pn = anpn−1 + pn−2 · · · ,
q−2 = 1, q−1 = 0, q0 = 1, · · · qn = anqn−1 + qn−2 · · · .

Proposition 5.1.4 (Partial Convergents). For n ≥ 0 we have

[a0, . . . , an] =
pn

qn
.

Proof. We use induction. The assertion is obvious when n = 0, 1. Suppose
the proposition is true for all continued fractions of length n − 1. Then

[a0, . . . , an] = [a0, . . . , an−2, an−1 +
1

an
]

=

(

an−1 + 1
an

)

pn−2 + pn−3
(

an−1 + 1
an

)

qn−2 + qn−3

=
(an−1an + 1)pn−2 + anpn−3

(an−1an + 1)qn−2 + anqn−3

=
an(an−1pn−2 + pn−3) + pn−2

an(an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2

anqn−1 + qn−2

=
pn

qn
.

Proposition 5.1.5. For n ≥ 0 we have

pnqn−1 − qnpn−1 = (−1)n−1 (5.1.2)

and
pnqn−2 − qnpn−2 = (−1)nan. (5.1.3)

Equivalently,
pn

qn
− pn−1

qn−1
= (−1)n−1 · 1

qnqn−1

and
pn

qn
− pn−2

qn−2
= (−1)n · an

qnqn−2
.

Proof. The case for n = 0 is obvious from the definitions. Now suppose
n > 0 and the statement is true for n − 1. Then

pnqn−1 − qnpn−1 = (anpn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1

= pn−2qn−1 − qn−2pn−1

= −(pn−1qn−2 − pn−2qn−1)

= −(−1)n−2 = (−1)n−1.

5.1 Finite Continued Fractions 81

This completes the proof of (5.1.2). For (5.1.3), we have

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)

= an(pn−1qn−2 − pn−2qn−1)

= (−1)nan.

Remark 5.1.6. Expressed in terms of matrices, the proposition asserts that
the determinant of

(pn pn−1
qn qn−1

)

is (−1)n−1, and of
(pn pn−2

qn qn−2

)

is (−1)nan.

Corollary 5.1.7 (Convergents in lowest terms). If [a0, a1, . . . , am] is
a simple continued fraction, so each ai is an integer, then the pn and qn

are integers and the fraction pn/qn is in lowest terms.

Proof. It is clear that the pn and qn are integers, from the formula that
defines them. If d is a positive divisor of both pn and qn, then d | (−1)n−1,
so d = 1.

5.1.2 The Sequence of Partial Convergents

Let [a0, . . . , am] be a continued fraction and for n ≤ m let

cn = [a0, . . . , an] =
pn

qn

denote the nth convergent. Recall that by definition of continued frac-
tion, an > 0 for n > 0, which gives the partial convergents of a contin-
ued fraction additional structure. For example, the partial convergents of
[2, 1, 2, 1, 1, 4, 1, 1, 6] are

2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465.

To make the size of these numbers clearer, we approximate them using
decimals. We also underline every other number, to illustrate some extra
structure.

2, 3, 2.66667, 2.75000, 2.71429, 2.71875, 2.71795, 2.71831, 2.71828

The underlined numbers are smaller than all of the non-underlined num-
bers, and the sequence of underlined numbers is strictly increasing, whereas
the non-underlined numbers strictly decrease. We next prove that this extra
structure is a general phenomenon.

Proposition 5.1.8 (How convergents converge). The even indexed
convergents c2n increase strictly with n, and the odd indexed convergents
c2n+1 decrease strictly with n. Also, the odd indexed convergents c2n+1 are
greater than all of the even indexed convergents c2m.

82 5. Continued Fractions

Proof. The an are positive for n ≥ 1, so the qn are positive. By Proposi-
tion 5.1.5, for n ≥ 2,

cn − cn−2 = (−1)n · an

qnqn−2
,

which proves the first claim.
Suppose for the sake of contradiction that there exist integers r,m such

that c2m+1 < c2r. Proposition 5.1.5 implies that for n ≥ 1,

cn − cn−1 = (−1)n−1 · 1

qnqn−1

has sign (−1)n−1, so for all s ≥ 0 we have c2s+1 > c2s. Thus it is impossible
that r = m. If r < m, then by what we proved in the first paragraph,
c2m+1 < c2r < c2m, a contradiction (with s = m). If r > m, then c2r+1 <
c2m+1 < c2r, which is also a contradiction (with s = r).

5.1.3 Every Rational Number is Represented

Proposition 5.1.9 (Rational continued fractions). Every nonzero ra-
tional number can be represented by a simple continued fraction.

Proof. Without loss of generality we may assume that the rational number
is a/b, with b ≥ 1 and gcd(a, b) = 1. Algorithm 1.1.12 gives:

a = b · a0 + r1, 0 < r1 < b

b = r1 · a1 + r2, 0 < r2 < r1

· · ·
rn−2 = rn−1 · an−1 + rn, 0 < rn < rn−1

rn−1 = rn · an + 0.

Note that ai > 0 for i > 0 (also rn = 1 since gcd(a, b) = 1). Rewrite the
equations as follows:

a/b = a0 + r1/b = a0 + 1/(b/r1),

b/r1 = a1 + r2/r1 = a1 + 1/(r1/r2),

r1/r2 = a2 + r3/r2 = a2 + 1/(r2/r3),

· · ·
rn−1/rn = an.

It follows that
a

b
= [a0, a1, . . . , an].

5.2 Infinite Continued Fractions 83

The proof of Proposition 5.1.9 leads to an algorithm for computing the
continued fraction of a rational number. See Section 7.5 for an implemen-
tation.

A nonzero rational number can be represented in exactly two ways; for
example, 2 = [1, 1] = [2] (see Exercise 5.2).

5.2 Infinite Continued Fractions

This section begins with the continued fraction procedure, which associates
to a real number x a sequence a0, a1, . . . of integers. After giving several
examples, we prove that x = limn→∞[a0, a1, . . . , an] by proving that the
odd and even partial convergents become arbitrarily close to each other.
We also show that if a0, a1, . . . is any infinite sequence of positive integers,
then the sequence of cn = [a0, a1, . . . , an] converges, and, more generally,
if an is an arbitrary sequence of positive reals such that

∑∞
n=0 an diverges

then (cn) converges.

5.2.1 The Continued Fraction Procedure

Let x ∈ R and write
x = a0 + t0

with a0 ∈ Z and 0 ≤ t0 < 1. We call the number a0 the floor of x, and we
also sometimes write a0 = ⌊x⌋. If t0 6= 0, write

1

t0
= a1 + t1

with a1 ∈ N and 0 ≤ t1 < 1. Thus t0 = 1
a1+t1

= [0, a1 + t1], which is a
(non-simple) continued fraction expansion of t0. Continue in this manner
so long as tn 6= 0 writing

1

tn
= an+1 + tn+1

with an+1 ∈ N and 0 ≤ tn+1 < 1. We call this procedure, which associates
to a real number x the sequence of integers a0, a1, a2, . . ., the continued
fraction process. We implement it in on a computer in Section 7.5.

Example 5.2.1. Let x = 8
3 . Then x = 2 + 2

3 , so a0 = 2 and t0 = 2
3 . Then

1
t0

= 3
2 = 1 + 1

2 , so a1 = 1 and t1 = 1
2 . Then 1

t1
= 2, so a2 = 2, t2 = 0, and

the sequence terminates. Notice that

8

3
= [2, 1, 2],

so the continued fraction procedure produces the continued fraction of 8
3 .

84 5. Continued Fractions

Example 5.2.2. Let x = 1+
√

5
2 . Then

x = 1 +
−1 +

√
5

2
,

so a0 = 1 and t0 = −1+
√

5
2 . We have

1

t0
=

2

−1 +
√

5
=

−2 − 2
√

5

−4
=

1 +
√

5

2

so again a1 = 1 and t1 = −1+
√

5
2 . Likewise, an = 1 for all n. As we will see

below, the following exciting equality makes sense.

1 +
√

5

2
= 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·
Example 5.2.3. Suppose x = e = 2.71828182 Using the continued frac-
tion procedure, we find that

a0, a1, a2, . . . = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .

For example, a0 = 2 is the floor of 2. Subtracting 2 and inverting, we
obtain 1/0.718 . . . = 1.3922 . . ., so a1 = 1. Subtracting 1 and inverting
yields 1/0.3922 . . . = 2.5496 . . ., so a2 = 2. We will prove in Section 5.3
that the continued fraction of e obeys a simple pattern.

The 5th partial convergent of the continued fraction of e is

[a0, a1, a2, a3, a4, a5] =
87

32
= 2.71875,

which is a good rational approximation to e, in the sense that
∣

∣

∣

∣

87

32
− e

∣

∣

∣

∣

= 0.000468

Note that 0.000468 . . . < 1/322 = 0.000976 . . ., which illustrates the bound
in Corollary 5.2.10 below.

Let’s do the same thing with π = 3.14159265358979 . . .: Applying the
continued fraction procedure, we find that the continued fraction of π is

a0, a1, a2, . . . = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .

The first few partial convergents are

3,
22

7
,
333

106
,
355

113
,
103993

33102
, · · ·

5.2 Infinite Continued Fractions 85

These are good rational approximations to π; for example,

103993

33102
= 3.14159265301

Notice that the continued fraction of e exhibits a nice pattern (see Sec-
tion 5.3 for a proof), whereas the continued fraction of π exhibits no pattern
that is obvious to the author. The continued fraction of π has been exten-
sively studied, and over 20 million terms have been computed. The data
suggests that every integers appears infinitely often as a partial convergent.
For much more about the continued fraction of π or of any other sequence
in this book, type the first few terms of the sequence into [Slo].

5.2.2 Convergence of Infinite Continued Fractions

Lemma 5.2.4. For every n such that an is defined, we have

x = [a0, a1, . . . , an + tn],

and if tn 6= 0 then x = [a0, a1, . . . , an, 1
tn

].

Proof. We use induction. The statements are both true when n = 0. If the
second statement is true for n − 1, then

x =

[

a0, a1, . . . , an−1,
1

tn−1

]

= [a0, a1, . . . , an−1, an + tn]

=

[

a0, a1, . . . , an−1, an,
1

tn

]

.

Similarly, the first statement is true for n if it is true for n − 1.

Theorem 5.2.5 (Continued Fraction Limit). Let a0, a1, . . . be a se-
quence of integers such that an > 0 for all n ≥ 1, and for each n ≥ 0, set
cn = [a0, a1, . . . an]. Then lim

n→∞
cn exists.

Proof. For any m ≥ n, the number cn is a partial convergent of [a0, . . . , am].
By Proposition 5.1.8 the even convergents c2n form a strictly increasing
sequence and the odd convergents c2n+1 form a strictly decreasing sequence.
Moreover, the even convergents are all ≤ c1 and the odd convergents are
all ≥ c0. Hence α0 = limn→∞ c2n and α1 = limn→∞ c2n+1 both exist and
α0 ≤ α1. Finally, by Proposition 5.1.5

|c2n − c2n−1| =
1

q2n · q2n−1
≤ 1

2n(2n − 1)
→ 0,

so α0 = α1.

86 5. Continued Fractions

We define
[a0, a1, . . .] = lim

n→∞
cn.

Example 5.2.6. We illustrate the theorem with x = π. As in the proof of
Theorem 5.2.5, let cn be the nth partial convergent to π. The cn with n
odd converge down to π

c1 = 3.1428571 . . . , c3 = 3.1415929 . . . , c5 = 3.1415926 . . .

whereas the cn with n even converge up to π

c2 = 3.1415094 . . . , c4 = 3.1415926 . . . , c6 = 3.1415926

Theorem 5.2.7. Let a0, a1, a2, . . . be a sequence of real numbers such that
an > 0 for all n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then
lim

n→∞
cn exists if and only if the sum

∑∞
n=0 an diverges.

Proof. We only prove that if
∑

an diverges then limn→∞ cn exists. A proof
of the converse can be found in [Wal48, Ch. 2, Thm. 6.1].

Let qn be the sequence of “denominators” of the partial convergents, as
defined in Section 5.1.1, so q−2 = 1, q−1 = 0, and for n ≥ 0,

qn = anqn−1 + qn−2.

As we saw in the proof of Theorem 5.2.5, the limit limn→∞ cn exists pro-
vided that the sequence {qnqn−1} diverges to positive infinity.

For n even,

qn = anqn−1 + qn−2

= anqn−1 + an−2qn−3 + qn−4

= anqn−1 + an−2qn−3 + an−4qn−5 + qn−6

= anqn−1 + an−2qn−3 + · · · + a2q1 + q0

and for n odd,

qn = anqn−1 + an−2qn−3 + · · · + a1q0 + q−1.

Since an > 0 for n > 0, the sequence {qn} is increasing, so qi ≥ 1 for all
i ≥ 0. Applying this fact to the above expressions for qn, we see that for n
even

qn ≥ an + an−2 + · · · + a2,

and for n odd
qn ≥ an + an−2 + · · · + a1.

If
∑

an diverges, then at least one of
∑

a2n or
∑

a2n+1 must diverge.
The above inequalities then imply that at least one of the sequences {q2n}
or {q2n+1} diverge to infinity. Since {qn} is an increasing sequence, it follows
that {qnqn−1} diverges to infinity.

5.2 Infinite Continued Fractions 87

Example 5.2.8. Let an = 1
n log(n) for n ≥ 2 and a0 = a1 = 0. By the

integral test,
∑

an diverges, so by Theorem 5.2.7 the continued fraction
[a0, a1, a2, . . .] converges. This convergence is very slow, since, e.g.

[a0, a1, . . . , a9999] = 0.5750039671012225425930 . . .

yet
[a0, a1, . . . , a10000] = 0.7169153932917378550424

Theorem 5.2.9. Let x ∈ R be a real number. Then x is the value of the
(possibly infinite) simple continued fraction [a0, a1, a2, . . .] produced by the
continued fraction procedure.

Proof. If the sequence is finite then some tn = 0 and the result follows by
Lemma 5.2.4. Suppose the sequence is infinite. By Lemma 5.2.4,

x = [a0, a1, . . . , an,
1

tn
].

By Proposition 5.1.4 (which we apply in a case when the partial quotients
of the continued fraction are not integers!), we have

x =

1

tn
· pn + pn−1

1

tn
· qn + qn−1

.

Thus if cn = [a0, a1, . . . , an], then

x − cn = x − pn

qn

=
1
tn

pnqn + pn−1qn − 1
tn

pnqn − pnqn−1

qn

(

1
tn

qn + qn−1

) .

=
pn−1qn − pnqn−1

qn

(

1
tn

qn + qn−1

)

=
(−1)n

qn

(

1
tn

qn + qn−1

) .

Thus

|x − cn| =
1

qn

(

1
tn

qn + qn−1

)

<
1

qn(an+1qn + qn−1)

=
1

qn · qn+1
≤ 1

n(n + 1)
→ 0.

88 5. Continued Fractions

In the inequality we use that an+1 is the integer part of 1
tn

, and is hence

≤ 1
tn

< 1, since tn < 1.

This corollary follows from the proof of the above theorem.

Corollary 5.2.10 (Convergence of continued fraction). Let a0, a1, . . .
define a simple continued fraction, and let x = [a0, a1, . . .] ∈ R be its value.
Then for all m,

∣

∣

∣

∣

x − pm

qm

∣

∣

∣

∣

<
1

qm · qm+1
.

Proposition 5.2.11. If x is a rational number then the sequence a0, a1, . . .
produced by the continued fraction procedure terminates.

Proof. Let [b0, b1, . . . , bm] be the continued fraction representation of x that
we obtain using Algorithm 1.1.12, so the bi are the partial quotients at each
step. If m = 0, then x is an integer, so we may assume m > 0. Then

x = b0 + 1/[b1, . . . , bm].

If [b1, . . . , bm] = 1 then m = 1 and b1 = 1, which will not happen using
Algorithm 1.1.12, since it would give [b0+1] for the continued fraction of the
integer b0 +1. Thus [b1, . . . , bm] > 1, so in the continued fraction algorithm
we choose a0 = b0 and t0 = 1/[b1, . . . , bm]. Repeating this argument enough
times proves the claim.

5.3 The Continued Fraction of e

The continued fraction expansion of e begins [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .]. The
obvious pattern in fact does continue, as Euler proved in 1737 (see [Eul85]),
and we will prove in this section. As an application, Euler gave a proof
that e is irrational by noting that its continued fraction is infinite.

The proof we give below draws heavily on the proof in [Coh], which
describes a slight variant of a proof of Hermite (see [Old70]). The continued
fraction representation of e is also treated in the German book [Per57], but
the proof requires substantial background from elsewhere in that text.

5.3.1 Preliminaries

First, we write the continued fraction of e in a slightly different form.
Instead of [2, 1, 2, 1, 1, 4, . . .], we can start the sequence of coefficients

[1, 0, 1, 1, 2, 1, 1, 4, . . .]

to make the pattern the same throughout. (Everywhere else in this chap-
ter we assume that the partial quotients an for n ≥ 1 are positive, but

5.3 The Continued Fraction of e 89

temporarily relax that condition here and allow a1 = 0.) The numerators
and denominators of the convergents given by this new sequence satisfy a
simple recurrence. Using ri as a stand-in for pi or qi, we have

r3n = r3n−1 + r3n−2

r3n−1 = r3n−2 + r3n−3

r3n−2 = 2(n − 1)r3n−3 + r3n−4.

Our first goal is to collapse these three recurrences into one recurrence
that only makes mention of r3n, r3n−3, and r3n−6. We have

r3n = r3n−1 + r3n−2

= (r3n−2 + r3n−3) + (2(n − 1)r3n−3 + r3n−4)

= (4n − 3)r3n−3 + 2r3n−4.

This same method of simplification also shows us that

r3n−3 = 2r3n−7 + (4n − 7)r3n−6.

To get rid of 2r3n−4 in the first equation, we make the substitutions

2r3n−4 = 2(r3n−5 + r3n−6)

= 2((2(n − 2)r3n−6 + r3n−7) + r3n−6)

= (4n − 6)r3n−6 + 2r3n−7.

Substituting for 2r3n−4 and then 2r3n−7, we finally have the needed col-
lapsed recurrence,

r3n = 2(2n − 1)r3n−3 + r3n−6.

5.3.2 Two Integral Sequences

We define the sequences xn = p3n, yn = q3n. Since the 3n-convergents will
converge to the same real number that the n-convergents do, xn/yn also
converges to the limit of the continued fraction. Each sequence {xn}, {yn}
will obey the recurrence relation derived in the previous section (where zn

is a stand-in for xn or yn):

zn = 2(2n − 1)zn−1 + zn−2, for all n ≥ 2. (5.3.1)

The two sequences can be found in Table 5.1. (The initial conditions
x0 = 1, x1 = 3, y0 = y1 = 1 are taken straight from the first few convergents
of the original continued fraction.) Notice that since we are skipping several
convergents at each step, the ratio xn/yn converges to e very quickly.

90 5. Continued Fractions

TABLE 5.1. Convergents

n 0 1 2 3 4 · · ·
xn 1 3 19 193 2721 · · ·
yn 1 1 7 71 1001 · · ·

xn/yn 1 3 2.714 . . . 2.71830 . . . 2.7182817 . . . · · ·

5.3.3 A Related Sequence of Integrals

Now, we define a sequence of real numbers T0, T1, T2, . . . by the following
integrals:

Tn =

∫ 1

0

tn(t − 1)n

n!
etdt.

Below, we compute the first two terms of this sequence explicitly. (When
we compute T1, we are doing the integration by parts u = t(t−1), dv = etdt.
Since the integral runs from 0 to 1, the boundary condition is 0 when
evaluated at each of the endpoints. This vanishing will be helpful when we
do the integral in the general case.)

T0 =

∫ 1

0

etdt = e − 1,

T1 =

∫ 1

0

t(t − 1)etdt

= −
∫ 1

0

((t − 1) + t)etdt

= −(t − 1)et

∣

∣

∣

∣

∣

1

0

− tet

∣

∣

∣

∣

∣

1

0

+ 2

∫ 1

0

etdt

= 1 − e + 2(e − 1) = e − 3.

The reason that we defined this series now becomes apparent: T0 =
y0e−x0 and that T1 = y1e−x1. In general, it will be true that Tn = yne−xn.
We will now prove this fact.

It is clear that if the Tn were to satisfy the same recurrence that the xi

and yi do, in equation (5.3.1), then the above statement holds by induc-
tion. (The initial conditions are correct, as needed.) So we simplify Tn by

5.4 Quadratic Irrationals 91

integrating by parts twice in succession:

Tn =

∫ 1

0

tn(t − 1)n

n!
etdt

= −
∫ 1

0

tn−1(t − 1)n + tn(t − 1)n−1

(n − 1)!
etdt

=

∫ 1

0

(tn−2(t − 1)n

(n − 2)!
+ n

tn−1(t − 1)n−1

(n − 1)!

+ n
tn−1(t − 1)n−1

(n − 1)!
+

tn(t − 1)n−2

(n − 2)!

)

etdt

= 2nTn−1 +

∫ 1

0

tn−2(t − 1)n−2

n − 2!
(2t2 − 2t + 1) etdt

= 2nTn−1 + 2

∫ 1

0

tn−1(t − 1)n−1

n − 2!
etdt +

∫ 1

0

tn−2(t − 1)n−2

n − 2!
etdt

= 2nTn−1 + 2(n − 1)Tn−1 + Tn−2

= 2(2n − 1)Tn−1 + Tn−2,

which is the desired recurrence.
Therefore Tn = yne − xn. To conclude the proof, we consider the limit

as n approaches infinity:

lim
n→∞

∫ 1

0

tn(t − 1)n

n!
etdt = 0,

by inspection, and therefore

lim
n→∞

xn

yn
= lim

n→∞
(e − Tn

yn
) = e.

Therefore, the ratio xn/yn approaches e, and the continued fraction expan-
sion [2, 1, 2, 1, 1, 4, 1, 1, . . .] does in fact converge to e.

5.3.4 Extensions of the Argument

The method of proof of this section generalizes to show that the continued
fraction expansion of e1/n is

[1, (n − 1), 1, 1, (3n − 1), 1, 1, (5n − 1), 1, 1, (7n − 1), . . .]

for all n ∈ N (see Exercise 5.6).

5.4 Quadratic Irrationals

The main result of this section is that the continued fraction expansion of
a number is eventually repeating if and only if the number is a quadratic

92 5. Continued Fractions

irrational. This can be viewed as an analogue for continued fractions of
the familiar fact that the decimal expansion of x is eventually repeating if
and only if x is rational. The proof that continued fractions of quadratic
irrationals eventually repeats is surprisingly difficult and involves an inter-
esting finiteness argument. Section 5.4.2 emphasizes our striking ignorance
about continued fractions of real roots of irreducible polynomials over Q
of degree bigger than 2.

Definition 5.4.1 (Quadratic Irrational). A real number α ∈ R is a
quadratic irrational if it is irrational and satisfies a quadratic polynomial
with coefficients in Q.

Thus, e.g., (1 +
√

5)/2 is a quadratic irrational. Recall that

1 +
√

5

2
= [1, 1, 1, . . .].

The continued fraction of
√

2 is [1, 2, 2, 2, 2, 2, . . .], and the continued frac-
tion of

√
389 is

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .].

Does the [1, 2, 1, 1, 1, 1, 2, 1, 38] pattern repeat over and over again?

5.4.1 Periodic Continued Fractions

Definition 5.4.2 (Periodic Continued Fraction). A periodic continued
fraction is a continued fraction [a0, a1, . . . , an, . . .] such that

an = an+h

for some fixed positive integer h and all sufficiently large n. We call the
minimal such h the period of the continued fraction.

Example 5.4.3. Consider the periodic continued fraction [1, 2, 1, 2, . . .] =
[1, 2]. What does it converge to? We have

[1, 2] = 1 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

,

so if α = [1, 2] then

α = 1 +
1

2 +
1

α

= 1 +
1

2α + 1

α

= 1 +
α

2α + 1
=

3α + 1

2α + 1
.

5.4 Quadratic Irrationals 93

Thus 2α2 − 2α − 1 = 0, so

α =
1 +

√
3

2
.

Theorem 5.4.4 (Periodic Characterization). An infinite simple con-
tinued fraction is periodic if and only if it represents a quadratic irrational.

Proof. (=⇒) First suppose that

[a0, a1, . . . , an, an+1, . . . , an+h]

is a periodic continued fraction. Set α = [an+1, an+2, . . .]. Then

α = [an+1, . . . , an+h, α],

so by Proposition 5.1.4

α =
αpn+h + pn+h−1

αqn+h + qn+h−1
.

Here we use that α is the last partial quotient. Thus, α satisfies a quadratic
equation with coefficients in Q. Computing as in Example 5.4.3 and ratio-
nalizing the denominators, and using that the ai are all integers, shows
that

[a0, a1, . . .] = [a0, a1, . . . , an, α]

= a0 +
1

a1 +
1

a2 + · · · + 1

α

is of the form c + dα, with c, d ∈ Q, so [a0, a1, . . .] also satisfies a quadratic
polynomial over Q.

The continued fraction procedure applied to the value of an infinite sim-
ple continued fraction yields that continued fraction back, so by Proposi-
tion 5.2.11, α 6∈ Q because it is the value of an infinite continued fraction.

(⇐=) Suppose α ∈ R is an irrational number that satisfies a quadratic
equation

aα2 + bα + c = 0 (5.4.1)

with a, b, c ∈ Z and a 6= 0. Let [a0, a1, . . .] be the continued fraction expan-
sion of α. For each n, let

rn = [an, an+1, . . .],

so
α = [a0, a1, . . . , an−1, rn].

94 5. Continued Fractions

We will prove periodicity by showing that the set of rn’s is finite. If we
have shown finiteness, then there exists n, h > 0 such that rn = rn+h, so

[a0, . . . , an−1, rn] = [a0, . . . , an−1, an, . . . , an+h−1, rn+h]

= [a0, . . . , an−1, an, . . . , an+h−1, rn]

= [a0, . . . , an−1, an, . . . , an+h−1, an, . . . , an+h−1, rn+h]

= [a0, . . . , an−1, an, . . . , an+h−1].

It remains to show there are only finitely many distinct rn. We have

α =
pn

qn
=

rnpn−1 + pn−2

rnqn−1 + qn−2
.

Substituting this expression for α into the quadratic equation (5.4.1), we
see that

Anr2
n + Bnrn + Cn = 0,

where

An = ap2
n−1 + bpn−1qn−1 + cq2

n−1,

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2, and

Cn = ap2
n−2 + bpn−2qn−2 + cp2

n−2.

Note that An, Bn, Cn ∈ Z, that Cn = An−1, and that

B2 − 4AnCn = (b2 − 4ac)(pn−1qn−2 − qn−1pn−2)
2 = b2 − 4ac.

Recall from the proof of Theorem 5.2.9 that
∣

∣

∣

∣

α − pn−1

qn−1

∣

∣

∣

∣

<
1

qnqn−1
.

Thus

|αqn−1 − pn−1| <
1

qn
<

1

qn−1
,

so

pn−1 = αqn−1 +
δ

qn−1
with |δ| < 1.

Hence

An = a

(

αqn−1 +
δ

qn−1

)2

+ b

(

αqn−1 +
δ

qn−1

)

qn−1 + cq2
n−1

= (aα2 + bα + c)q2
n−1 + 2aαδ + a

δ2

q2
n−1

+ bδ

= 2aαδ + a
δ2

q2
n−1

+ bδ.

5.4 Quadratic Irrationals 95

Thus

|An| =

∣

∣

∣

∣

2aαδ + a
δ2

q2
n−1

+ bδ

∣

∣

∣

∣

< 2|aα| + |a| + |b|.

Thus there are only finitely many possibilities for the integer An. Also,

|Cn| = |An−1| and |Bn| =
√

b2 − 4(ac − AnCn),

so there are only finitely many triples (An, Bn, Cn), and hence only finitely
many possibilities for rn as n varies, which completes the proof. (The proof
above closely follows [HW79, Thm. 177, pg.144–145].)

5.4.2 Continued Fractions of Algebraic Numbers of Higher

Degree

Definition 5.4.5 (Algebraic Number). An algebraic number is a root
of a polynomial f ∈ Q[x].

Open Problem 5.4.6. Give a simple description of the complete contin-
ued fractions expansion of the algebraic number 3

√
2. It begins

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14,

3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

The author does not see a pattern, and the 534 reduces his confidence
that he will. Lang and Trotter (see [LT72]) analyzed many terms of the
continued fraction of 3

√
2 statistically, and their work suggests that 3

√
2 has

an “unusual” continued fraction; later work in [LT74] suggests that maybe
it does not.

Khintchine (see [Khi63, pg. 59])

No properties of the representing continued fractions, analogous
to those which have just been proved, are known for algebraic
numbers of higher degree [as of 1963]. [...] It is of interest to
point out that up till the present time no continued fraction
development of an algebraic number of higher degree than the
second is known [emphasis added]. It is not even known if such
a development has bounded elements. Generally speaking the
problems associated with the continued fraction expansion of al-
gebraic numbers of degree higher than the second are extremely
difficult and virtually unstudied.

Richard Guy (see [Guy94, pg. 260])

Is there an algebraic number of degree greater than two whose
simple continued fraction has unbounded partial quotients? Does
every such number have unbounded partial quotients?

96 5. Continued Fractions

Baum and Sweet [BS76] answered the analogue of Richard Guy’s ques-
tion but with algebraic numbers replaced by elements of a field K other
than Q. (The field K is F2((1/x)), the field of Laurent series in the variable
1/x over the finite field with two elements. An element of K is a polyno-
mial in x plus a formal power series in 1/x.) They found an α of degree
three over K whose continued fraction has all terms of bounded degree, and
other elements of various degrees greater than 2 over K whose continued
fractions have terms of unbounded degree.

5.5 Recognizing Rational Numbers

Suppose that somehow you can compute approximations to some rational
number, and want to figure what the rational number probably is. Com-
puting the approximation to high enough precision to find a period in the
decimal expansion is not a good approach, because the period can be huge
(see below). A much better approach is to compute the simple continued
fraction of the approximation, and truncate it before a large partial quo-
tient an, then compute the value of the truncated continued fraction. This
results in a rational number that has relatively small numerator and de-
nominator, and is close to the approximation of the rational number, since
the tail end of the continued fraction is at most 1/an.

We begin with a contrived example, which illustrates how to recognize a
rational number. Let

x = 9495/3847 = 2.46815700545879906420587470756433584611385

The continued fraction of the truncation 2.468157005458799064 is

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, . . .]

We have

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1] =
9495

3847
.

Notice that no repetition is evident in the digits of x given above, though
we know that the decimal expansion of x must be eventually periodic, since
all decimal expansions of rational numbers are eventually periodic. In fact,
the length of the period of the decimal expansion of 1/3847 is 3846, which
is the order of 10 modulo 3847 (see Exercise 5.7).

For a slightly less contrived application of this idea, suppose f(x) ∈ Z[x]
is a polynomial with integer coefficients, and we know for some reason that
one root of f is a rational number. Then we can find that rational num-
ber by using Newton’s method to approximate each root, and continued
fractions to decide whether each root is a rational number (we can substi-
tute the value of the continued fraction approximation into f to see if it

5.6 Sums of Two Squares 97

is actually a root). One could also use the well-known rational root theo-
rem, which asserts that any rational root n/d of f , with n, d ∈ Z coprime,
has the property that n divides the constant term of f and d the leading
coefficient of f . However, using that theorem to find n/d would require
factoring the constant and leading terms of f , which could be completely
impractical if they have a few hundred digits (see Section 1.1.3). In con-
trast, Newton’s method and continued fractions should quickly find n/d,
assuming the degree of f isn’t too large.

For example, suppose f = 3847x2 − 14808904x + 36527265. To apply
Newton’s method, let x0 be a guess for a root of f . Then iterate using the
recurrence

xn+1 = xn − f(xn)

f ′(xn)
.

Choosing x0 = 0, approximations of first two iterates are

x1 = 2.466574501394566404103909378,

and
x2 = 2.468157004807401923043166846.

The continued fraction of the approximations x1 and x2 are

[2, 2, 6, 1, 47, 2, 1, 4, 3, 1, 5, 8, 2, 3]

and
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, . . .].

Truncating the continued fraction of x2 before 103 gives

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1],

which evaluates to 9495/3847, which is a rational root of f .
Another computational application of continued fractions, which we can

only hint at, is that there are functions in certain parts of advanced number
theory (that are beyond the scope of this book) that take rational values
at certain points, and which can only be computed efficiently via approx-
imations; using continued fractions as illustrated above to evaluate such
functions is crucial.

5.6 Sums of Two Squares

In this section we apply continued fractions to prove the following theorem.

Theorem 5.6.1. A positive integer n is a sum of two squares if and only
if all prime factors of p | n such that p ≡ 3 (mod 4) have even exponent in
the prime factorization of n.

98 5. Continued Fractions

We first consider some examples. Notice that 5 = 12 + 22 is a sum of
two squares, but 7 is not a sum of two squares. Since 2001 is divisible
by 3 (because 2 + 1), but not by 9 (since 2 + 1 is not), Theorem 5.6.1
implies that 2001 is not a sum of two squares. The theorem also implies
that 2 · 34 · 5 · 72 · 13 is a sum of two squares.

Definition 5.6.2 (Primitive). A representation n = x2 + y2 is primitive
if x and y are coprime.

Lemma 5.6.3. If n is divisible by a prime p ≡ 3 (mod 4), then n has no
primitive representations.

Proof. Suppose n has a primitive representation, n = x2 + y2, and let p be
any prime factor of n. Then

p | x2 + y2 and gcd(x, y) = 1,

so p ∤ x and p ∤ y. Since Z/pZ is a field we may divide by y2 in the equation
x2 + y2 ≡ 0 (mod p) to see that (x/y)2 ≡ −1 (mod p). Thus the quadratic

residue symbol
(

−1
p

)

equals +1. However, by Proposition 4.2.1,

(−1

p

)

= (−1)(p−1)/2

so
(

−1
p

)

= 1 if and only if (p−1)/2 is even, which is to say p ≡ 1 (mod 4).

Proof of Theorem 5.6.1 (=⇒). Suppose that p ≡ 3 (mod 4) is a prime,
that pr | n but pr+1 ∤ n with r odd, and that n = x2 + y2. Letting d =
gcd(x, y), we have

x = dx′, y = dy′, and n = d2n′

with gcd(x′, y′) = 1 and

(x′)2 + (y′)2 = n′.

Because r is odd, p | n′, so Lemma 5.6.3 implies that gcd(x′, y′) > 1, a
contradiction.

To prepare for our proof of (⇐=), we reduce the problem to the case
when n is prime. Write n = n2

1n2 where n2 has no prime factors p ≡ 3
(mod 4). It suffices to show that n2 is a sum of two squares, since

(x2
1 + y2

1)(x2
2 + y2

2) = (x1x2 − y1y2)
2 + (x1y2 + x2y1)

2, (5.6.1)

so a product of two numbers that are sums of two squares is also a sum of
two squares. Since 2 = 12 + 12 is a sum of two squares, it suffices to show
that any prime p ≡ 1 (mod 4) is a sum of two squares.

5.6 Sums of Two Squares 99

Lemma 5.6.4. If x ∈ R and n ∈ N, then there is a fraction
a

b
in lowest

terms such that 0 < b ≤ n and
∣

∣

∣
x − a

b

∣

∣

∣
≤ 1

b(n + 1)
.

Proof. Consider the continued fraction [a0, a1, . . .] of x. By Corollary 5.2.10,
for each m

∣

∣

∣

∣

x − pm

qm

∣

∣

∣

∣

<
1

qm · qm+1
.

Since qm+1 ≥ qm + 1 and q0 = 1, either there exists an m such that
qm ≤ n < qm+1, or the continued fraction expansion of x is finite and n
is larger than the denominator of the rational number x, in which case we
take a

b = x and are done. In the first case,

∣

∣

∣

∣

x − pm

qm

∣

∣

∣

∣

<
1

qm · qm+1
≤ 1

qm · (n + 1)
,

so
a

b
=

pm

qm
satisfies the conclusion of the lemma.

Proof of Theorem 5.6.1 (⇐=). As discussed above, it suffices to prove that
any prime p ≡ 1 (mod 4) is a sum of two squares. Since p ≡ 1 (mod 4),

(−1)(p−1)/2 = 1,

so Proposition 4.2.1 implies that −1 is a square modulo p; i.e., there ex-
ists r ∈ Z such that r2 ≡ −1 (mod p). Lemma 5.6.4, with n = ⌊√p⌋ and
x = − r

p , implies that there are integers a, b such that 0 < b <
√

p and

∣

∣

∣

∣

−r

p
− a

b

∣

∣

∣

∣

≤ 1

b(n + 1)
<

1

b
√

p
.

Letting c = rb + pa, we have that

|c| <
pb

b
√

p
=

p√
p

=
√

p

so
0 < b2 + c2 < 2p.

But c ≡ rb (mod p), so

b2 + c2 ≡ b2 + r2b2 ≡ b2(1 + r2) ≡ 0 (mod p).

Thus b2 + c2 = p.

Remark 5.6.5. Our proof of Theorem 5.6.1 leads to an efficient algorithm
to compute a representation of any p ≡ 1 (mod 4) as a sum of two squares.
See Listing 7.5.5 for an implementation.

100 5. Continued Fractions

5.7 Exercises

5.1 If cn = pn/qn is the nth convergent of [a0, a1, . . . , an] and a0 > 0,
show that

[an, an−1, . . . , a1, a0] =
pn

pn−1

and
[an, an−1, . . . , a2, a1] =

qn

qn−1
.

(Hint: In the first case, notice that
pn

pn−1
= an +

pn−2

pn−1
= an +

1
pn−1

pn−2

.)

5.2 Show that every nonzero rational number can be represented in ex-
actly two ways be a finite simple continued fraction. (For example, 2
can be represented by [1, 1] and [2], and 1/3 by [0, 3] and [0, 2, 1].)

5.3 Evaluate the infinite continued fraction [2, 1, 2, 1].

5.4 Determine the infinite continued fraction of 1+
√

13
2 .

5.5 Let a0 ∈ R and a1, . . . , an and b be positive real numbers. Prove that

[a0, a1, . . . , an + b] < [a0, a1, . . . , an]

if and only if n is odd.

5.6 (*) Extend the method presented in the text to show that the con-
tinued fraction expansion of e1/k is

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

for all k ∈ N.

(a) Compute p0, p3, q0, and q3 for the above continued fraction.
Your answers should be in terms of k.

(b) Condense three steps of the recurrence for the numerators and
denominators of the above continued fraction. That is, produce
a simple recurrence for r3n in terms of r3n−3 and r3n−6 whose
coefficients are polynomials in n and k.

(c) Define a sequence of real numbers by

Tn(k) =
1

kn

∫ 1/k

0

(kt)n(kt − 1)n

n!
etdt.

i. Compute T0(k), and verify that it equals q0e
1/k − p0.

ii. Compute T1(k), and verify that it equals q3e
1/k − p3.

5.7 Exercises 101

iii. Integrate Tn(k) by parts twice in succession, as in Sec-
tion 5.3, and verify that Tn(k), Tn−1(k), and Tn−2(k) satisfy
the recurrence produced in part 6b, for n ≥ 2.

(d) Conclude that the continued fraction

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

represents e1/k.

5.7 Let d be an integer that is coprime to 10. Prove that the decimal
expansion of 1

d has period equal to the order of 10 modulo d. (Hint:
For every positive integer r, we have 1

1−10r =
∑

n≥1 10−rn.)

5.8 Find a positive integer that has at least three different representations
as the sum of two squares, disregarding signs and the order of the
summands.

5.9 Show that if a natural number n is the sum of two two rational squares
it is also the sum of two integer squares.

5.10 (*) Let p be an odd prime. Show that p ≡ 1, 3 (mod 8) if and only
if p can be written as p = x2+2y2 for some choice of integers x and y.

5.11 Prove that of any four consecutive integers, at least one is not repre-
sentable as a sum of two squares.

102 5. Continued Fractions

This is page 103
Printer: Opaque this

6
Elliptic Curves

We introduce elliptic curves and describe how to put a group structure
on the set of points on an elliptic curve. We then apply elliptic curves to
two cryptographic problems—factoring integers and constructing public-
key cryptosystems. Elliptic curves are believed to provide good security
with smaller key sizes, something that is very useful in many applications,
e.g., if we are going to print an encryption key on a postage stamp, it
is helpful if the key is short! Finally, we consider elliptic curves over the
rational numbers, and briefly survey some of the key ways in which they
arise in number theory.

6.1 The Definition

Definition 6.1.1 (Elliptic Curve). An elliptic curve over a field K is a
curve defined by an equation of the form

y2 = x3 + ax + b,

where a, b ∈ K and −16(4a3 + 27b2) 6= 0.

The condition that −16(4a3 + 27b2) 6= 0 implies that the curve has no
“singular points”, which will be essential for the applications we have in
mind (see Exercise 6.1).

104 6. Elliptic Curves

0 1 2 3 4 5 6
0

1

2

3

4

5

6

∞

FIGURE 6.1. The Elliptic Curve y2 = x3 + x over Z/7Z

In Section 6.2 we will put a natural abelian group structure on the set

E(K) = {(x, y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}

of K-rational points on an elliptic curve E over K. Here O may be thought
of as a point on E “at infinity”. In Figure 6.1 we graph y2 = x3 + x over
the finite field Z/7Z, and in Figure 6.2 we graph y2 = x3 + x over the field
K = R of real numbers.

Remark 6.1.2. If K has characteristic 2 (e.g., K = Z/2Z), then for any
choice of a, b, the quantity −16(4a3 + 27b2) ∈ K is 0, so according to Defi-
nition 6.1.1 there are no elliptic curves over K. There is a similar problem
in characteristic 3. If we instead consider equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

we obtain a more general definition of elliptic curves, which correctly allows
for elliptic curves in characteristic 2 and 3; these elliptic curves are popular
in cryptography because arithmetic on them is often easier to efficiently
implement on a computer.

6.2 The Group Structure on an Elliptic Curve

Let E be an elliptic curve over a field K, given by an equation y2 =
x3 + ax + b. We begin by defining a binary operation + on E(K).

Algorithm 6.2.1 (Elliptic Curve Group Law). Given P1, P2 ∈ E(K),
this algorithm computes a third point R = P1 + P2 ∈ E(K).

6.2 The Group Structure on an Elliptic Curve 105

-1 0 1 2
-2

-1

0

1

2

x

y

FIGURE 6.2. The Elliptic Curve y2 = x3 + x over R

1. [Is Pi = O?] If P1 = O set R = P2 or if P2 = O set R = P1 and
terminate. Otherwise write (xi, yi) = Pi.

2. [Negatives] If x1 = x2 and y1 = −y2, set R = O and terminate.

3. [Compute λ] Set λ =

{

(3x2
1 + a)/(2y1) if P1 = P2,

(y1 − y2)/(x1 − x2) otherwise.

4. [Compute Sum] Then R =
(

λ2 − x1 − x2,−λx3 − ν
)

, where ν = y1 −
λx1 and x3 = λ2 − x1 − x2 is the x-coordinate of R.

Note that in Step 3 if P1 = P2, then y1 6= 0; otherwise, we would have
terminated in the previous step.

We implement this algorithm in Section 7.6.1.

Theorem 6.2.2. The binary operation + defined above endows the set
E(K) with an abelian group structure, in which O is the identity element.

Before discussing why the theorem is true, we reinterpret + geomet-
rically, so that it will be easier for us to visualize. We obtain the sum
P1 + P2 by finding the third point P3 of intersection between E and the
line L determined by P1 and P2, then reflecting P3 about the x-axis. (This
description requires suitable interpretation in cases 1 and 2, and when
P1 = P2.) This is illustrated in Figure 6.3, in which (0, 2) + (1, 0) = (3, 4)

106 6. Elliptic Curves

on y2 = x3 − 5x + 4. To further clarify this geometric interpretation, we
prove the following proposition.

Proposition 6.2.3 (Geometric group law). Suppose Pi = (xi, yi), i =
1, 2 are distinct point on an elliptic curve y2 = x3+ax+b, and that x1 6= x2.
Let L be the unique line through P1 and P2. Then L intersects the graph
of E at exactly one other point

Q =
(

λ2 − x1 − x2, λx3 + ν
)

,

where λ = (y1 − y2)/(x1 − x2) and ν = y1 − λx1.

Proof. The line L through P1, P2 is y = y1 + (x − x1)λ. Substituting this
into y2 = x3 + ax + b we get

(y1 + (x − x1)λ)2 = x3 + ax + b.

Simplifying we get f(x) = x3−λ2x2+· · · = 0, where we omit the coefficients
of x and the constant term since they will not be needed. Since P1 and P2

are in L∩E, the polynomial f has x1 and x2 as roots. By Proposition 2.5.2,
the polynomial f can have at most three roots. Writing f =

∏

(x−xi) and
equating terms, we see that x1 + x2 + x3 = λ2. Thus x3 = λ2 − x1 − x2, as
claimed. Also, from the equation for L we see that y3 = y1 + (x3 − x1)λ =
λx3 + ν, which completes the proof.

To prove Theorem 6.2.2 means to show that + satisfies the three axioms
of an abelian group with O as identity element: existence of inverses, com-
mutativity, and associativity. The existence of inverses follows immediately
from the definition, since (x, y)+ (x,−y) = O. Commutativity is also clear
from the definition of group law, since in parts 1–3, the recipe is unchanged
if we swap P1 and P2; in part 4 swapping P1 and P2 does not change the
line determined by P1 and P2, so by Proposition 6.2.3 it does not change
the sum P1 + P2.

It is more difficult to prove that + satisfies the associative axiom, i.e.,
that (P1 + P2) + P3 = P1 + (P2 + P3). This fact can be understood from at
least three points of view. One is to reinterpret the group law geometrically
(extending Proposition 6.2.3 to all cases), and thus transfer the problem
to a question in plane geometry. This approach is beautifully explained
with exactly the right level of detail in [ST92, §I.2]. Another approach is to
use the formulas that define + to reduce associativity to checking specific
algebraic identities; this is something that would be extremely tedious to do
by hand, but can be done using a computer (also tedious). A third approach
(see e.g. [Sil86] or [Har77]) is to develop a general theory of “divisors on
algebraic curves”, from which associativity of the group law falls out as a
natural corollary. The third approach is the best, because it opens up many
new vistas; however we will not pursue it further because it is beyond the
scope of this book.

6.3 Integer Factorization Using Elliptic Curves 107

-3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

L

L′

(1, 0)

(0, 2)

(3,−4)

(3, 4)

FIGURE 6.3. The Group Law: (1, 0) + (0, 2) = (3, 4) on y2 = x3
− 5x + 4

6.3 Integer Factorization Using Elliptic Curves

In 1987, Hendrik Lenstra published the landmark paper [Len87] that intro-
duces and analyzes the Elliptic Curve Method (ECM), which is a powerful
algorithm for factoring integers using elliptic curves. Lenstra’s method is
also described in [ST92, §IV.4], [Dav99, §VIII.5], and [Coh93, §10.3].

Lenstra’s algorithm is well suited for finding
“medium sized” factors of an integer N , which
today means 10 to 20 decimal digits. The ECM
method is not directly used for factoring RSA chal-
lenge numbers (see Section 1.1.3), but it is used on
auxiliary numbers as a crucial step in the “number
field sieve”, which is the best known algorithm for
hunting for such factorizations. Also, implementa-
tion of ECM typically requires little memory. Lenstra

6.3.1 Pollard’s (p − 1)-Method

Lenstra’s discovery of ECM was inspired by Pollard’s (p−1)-method, which
we describe in this section.

108 6. Elliptic Curves

Definition 6.3.1 (Power smooth). Let B be a positive integer. If n is
a positive integer with prime factorization n =

∏

pei

i , then n is B-power
smooth if pei

i ≤ B for all i.

Thus 30 = 2 · 3 · 5 is B power smooth for B = 5, 7, but 150 = 2 · 3 · 52 is
not 5-power smooth (it is B = 25-power smooth).

We will use the following algorithm in both the Pollard p−1 and elliptic
curve factorization methods.

Algorithm 6.3.2 (Least Common Multiple of First B Integers).
Given a positive integer B, this algorithm computes the least common multiple
of the positive integers up to B.

1. [Sieve] Using, e.g., the Sieve of Eratosthenes (Algorithm 1.2.3), compute
a list P of all primes p ≤ B.

2. [Multiply] Compute and output the product
∏

p∈P ⌊logp(B)⌋.

Proof. Let m = lcm(1, 2, . . . , B). Then

ordp(m) = max({ordp(n) : 1 ≤ n ≤ B}) = ordp(p
r),

where pr is the largest power of p that satisfies pr ≤ B. Since pr ≤ B <
pr+1, we have r = ⌊logp(B)⌋.

We implement Algorithm 6.3.2 in Section 7.6.2.
Let N be a positive integer that we wish to factor. We use the Pollard

(p − 1)-method to look for a nontrivial factor of N as follows. First we
choose a positive integer B, usually with at most six digits. Suppose that
there is a prime divisor p of N such that p− 1 is B-power smooth. We try
to find p using the following strategy. If a > 1 is an integer not divisible
by p then by Theorem 2.1.12,

ap−1 ≡ 1 (mod p).

Let m = lcm(1, 2, 3, . . . , B), and observe that our assumption that p− 1 is
B-power smooth implies that p − 1 | m, so

am ≡ 1 (mod p).

Thus
p | gcd(am − 1, N) > 1.

If gcd(am−1, N) < N also then gcd(am−1, N) is a nontrivial factor of N . If
gcd(am − 1, N) = N , then am ≡ 1 (mod qr) for every prime power divisor
qr of N . In this case, repeat the above steps but with a smaller choice of B
or possibly a different choice of a. Also, it is a good idea to check from
the start whether or not N is not a perfect power Mr, and if so replace N
by M . We formalize the algorithm as follows:

6.3 Integer Factorization Using Elliptic Curves 109

Algorithm 6.3.3 (Pollard p − 1 Method). Given a positive integer N
and a bound B, this algorithm attempts to find a nontrivial factor m of N .
(Each prime p | m is likely to have the property that p−1 is B-power smooth.)

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Initialize] Set a = 2.

3. [Power and gcd] Compute x = am − 1 (mod N) and g = gcd(x,N).

4. [Finished?] If g 6= 1 or N , output g and terminate.

5. [Try Again?] If a < 10 (say), replace a by a + 1 and go to step 3.
Otherwise terminate.

We implement Algorithm 6.3.3 in Section 7.6.2.
For fixed B, Algorithm 6.3.3 often splits N when N is divisible by a

prime p such that p−1 is B-power smooth. Approximately 15% of primes p
in the interval from 1015 and 1015 +10000 are such that p−1 is 106 power-
smooth, so the Pollard method with B = 106 already fails nearly 85% of
the time at finding 15-digit primes in this range (see also Exercise 7.14).
We will not analyze Pollard’s method further, since it was mentioned here
only to set the stage for the elliptic curve factorization method.

The following examples illustrate the Pollard (p − 1)-method.

Example 6.3.4. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p − 1 method with B = 5 to split N . We have
m = lcm(1, 2, 3, 4, 5) = 60; taking a = 2 we have

260 − 1 ≡ 3416 (mod 5917)

and

gcd(260 − 1, 5917) = gcd(3416, 5917) = 61,

so 61 is a factor of 5917.

Example 6.3.5. In this example, we replace B by larger integer. Let N =
779167. With B = 5 and a = 2 we have

260 − 1 ≡ 710980 (mod 779167),

and gcd(260 − 1, 779167) = 1. With B = 15, we have

m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 584876 (mod 779167),

and

gcd(2360360 − 1, N) = 2003,

so 2003 is a nontrivial factor of 779167.

110 6. Elliptic Curves

Example 6.3.6. In this example, we replace B by a smaller integer. Let
N = 4331. Suppose B = 7, so m = lcm(1, 2, . . . , 7) = 420,

2420 − 1 ≡ 0 (mod 4331),

and gcd(2420 − 1, 4331) = 4331, so we do not obtain a factor of 4331. If we
replace B by 5, Pollard’s method works:

260 − 1 ≡ 1464 (mod 4331),

and gcd(260 − 1, 4331) = 61, so we split 4331.

Example 6.3.7. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. Suppose B = 15, so m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 0 (mod 187),

and gcd(2360360 − 1, 187) = 187, so we do not obtain a factor of 187. If we
replace a = 2 by a = 3, then Pollard’s method works:

3360360 − 1 ≡ 66 (mod 187),

and gcd(3360360 − 1, 187) = 11. Thus 187 = 11 · 17.

6.3.2 Motivation for the Elliptic Curve Method

Fix a positive integer B. If N = pq with p and q prime and p− 1 and q− 1
are not B-power smooth, then the Pollard (p − 1)-method is unlikely to
work. For example, let B = 20 and suppose that N = 59 ·101 = 5959. Note
that neither 59 − 1 = 2 · 29 nor 101 − 1 = 4 · 25 is B-power smooth. With
m = lcm(1, 2, 3, . . . , 20) = 232792560, we have

2m − 1 ≡ 5944 (mod N),

and gcd(2m − 1, N) = 1, so we do not find a factor of N .
As remarked above, the problem is that p−1 is not 20-power smooth for

either p = 59 or p = 101. However, notice that p − 2 = 3 · 19 is 20-power
smooth. Lenstra’s ECM replaces (Z/pZ)∗, which has order p − 1, by the
group of points on an elliptic curve E over Z/pZ. It is a theorem that

#E(Z/pZ) = p + 1 ± s

for some nonnegative integer s < 2
√

p (see e.g., [Sil86, §V.1] for a proof).
(Also every value of s subject to this bound occurs, as one can see using
“complex multiplication theory”.) For example, if E is the elliptic curve

y2 = x3 + x + 54

over Z/59Z then by enumerating points one sees that E(Z/59Z) is cyclic
of order 57. The set of numbers 59 + 1± s for s ≤ 15 contains 14 numbers
that are B-power smooth for B = 20 (see Exercise 7.14). Thus working
with an elliptic curve gives us more flexibility. For example, 60 = 59+1+0
is 5-power smooth and 70 = 59 + 1 + 10 is 7-power smooth.

6.3 Integer Factorization Using Elliptic Curves 111

FIGURE 6.4. Hendrik Lenstra

6.3.3 Lenstra’s Elliptic Curve Factorization Method

Algorithm 6.3.8 (Elliptic Curve Factorization Method). Given a
positive integer N and a bound B, this algorithm attempts to find a nontrivial
factor m of N . Carry out the following steps:

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Choose Random Elliptic Curve] Choose a random a ∈ Z/NZ such that
4a3 + 27 ∈ (Z/NZ)∗. Then P = (0, 1) is a point on the elliptic curve
y2 = x3 + ax + 1 over Z/NZ.

3. [Compute Multiple] Attempt to compute mP using an elliptic curve
analogue of Algorithm 2.3.7. If at some point we cannot compute a sum
of points because some denominator in step 3 of Algorithm 6.2.1 is not
coprime to N , we compute the gcd of this denominator with N . If this
gcd is a nontrivial divisor, output it. If every denominator is coprime
to N , output “Fail”.

We implement Algorithm 6.3.8 in Section 7.6.2.
If Algorithm 6.3.8 fails for one random elliptic curve, there is an option

that is unavailable with Pollard’s (p−1)-method—we may repeat the above
algorithm with a different elliptic curve. With Pollard’s method we always
work with the group (Z/NZ)∗, but here we can try many groups E(Z/NZ)
for many curves E. As mentioned above, the number of points on E over
Z/pZ is of the form p + 1 − t for some t with |t| < 2

√
p; Algorithm 6.3.8

thus has a chance if p+1− t is B-power-smooth for some t with |t| < 2
√

p.

6.3.4 Examples

For simplicity, we use an elliptic curve of the form

y2 = x3 + ax + 1,

which has the point P = (0, 1) already on it.
We factor N = 5959 using the elliptic curve method. Let

m = lcm(1, 2, . . . , 20) = 232792560 = 11011110000000100001111100002,

112 6. Elliptic Curves

where x2 means x is written in binary. First we choose a = 1201 at random
and consider y2 = x3 + 1201x + 1 over Z/5959Z. Using the formula for
P+P from Algorithm 6.2.1 implemented on a computer (see Section 7.6) we
compute 2i ·P = 2i · (0, 1) for i ∈ B = {4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27}.
Then

∑

i∈B 2iP = mP . It turns out that during no step of this computation
does a number not coprime to 5959 appear in any denominator, so we do
not split N using a = 1201. Next we try a = 389 and at some stage in
the computation we add P = (2051, 5273) and Q = (637, 1292). When
computing the group law explicitly we try to compute λ = (y1 − y2)/(x1 −
x2) in (Z/5959Z)∗, but fail since x1−x2 = 1414 and gcd(1414, 5959) = 101.
We thus find a nontrivial factor 101 of 5959.

For bigger examples and an implementation of the algorithm, see Sec-
tion 7.6.2.

6.3.5 A Heuristic Explanation

Let N be a positive integer and for simplicity of exposition assume that
N = p1 · · · pr with the pi distinct primes. It follows from Lemma 2.2.5 that
there is a natural isomorphism

f : (Z/NZ)∗ −→ (Z/p1Z)∗ × · · · × (Z/prZ)∗.

When using Pollard’s method, we choose an a ∈ (Z/NZ)∗, compute am,
then compute gcd(am−1, N). This gcd is divisible exactly by the primes pi

such that am ≡ 1 (mod pi). To reinterpret Pollard’s method using the
above isomorphism, let (a1, . . . , ar) = f(a). Then (am

1 , . . . , am
r) = f(am),

and the pi that divide gcd(am − 1, N) are exactly the pi such that am
i = 1.

By Theorem 2.1.12, these pi include the primes pj such that pj − 1 is
B-power smooth, where m = lcm(1, . . . ,m).

We will not define E(Z/NZ) when N is composite, since this is not
needed for the algorithm (where we assume that N is prime and hope for
a contradiction). However, for the remainder of this paragraph, we pretend
that E(Z/NZ) is meaningful and describe a heuristic connection between
Lenstra and Pollard’s methods. The significant difference between Pollard’s
method and the elliptic curve method is that the isomorphism f is replaced
by an isomorphism (in quotes)

“g : E(Z/NZ) → E(Z/p1Z) × · · · × E(Z/prZ)”

where E is y2 = x3 + ax + 1, and the a of Pollard’s method is replaced by
P = (0, 1). We put the isomorphism in quotes to emphasize that we have
not defined E(Z/NZ). When carrying out the elliptic curve factorization
algorithm, we attempt to compute mP and if some components of f(Q)
are O, for some point Q that appears during the computation, but others
are nonzero, we find a nontrivial factor of N .

6.4 Elliptic Curve Cryptography 113

6.4 Elliptic Curve Cryptography

In this section we discuss an analogue of Diffie-Hellman that uses an elliptic
curve instead of (Z/pZ)∗. The idea to use elliptic curves in cryptography
was independently proposed by Neil Koblitz and Victor Miller in the mid
1980s. We then discuss the ElGamal elliptic curve cryptosystem.

6.4.1 Elliptic Curve Analogues of Diffie-Hellman

The Diffie-Hellman key exchange from Section 3.1 works well on an elliptic
curve with no serious modification. Michael and Nikita agree on a secret
key as follows:

1. Michael and Nikita agree on a prime p, an elliptic curve E over Z/pZ,
and a point P ∈ E(Z/pZ).

2. Michael secretly chooses a random m and sends mP .

3. Nikita secretly chooses a random n and sends nP .

4. The secret key is nmP , which both Michael and Nikita can compute.

Presumably, an adversary can not compute nmP without solving the dis-
crete logarithm problem (see Problem 3.1.2 and Section 6.4.3 below) in
E(Z/pZ). For well-chosen E, P , and p experience suggests that the discrete
logarithm problem in E(Z/pZ) is much more difficult than the discrete log-
arithm problem in (Z/pZ)∗ (see Section 6.4.3 for more on the elliptic curve
discrete log problem).

6.4.2 The ElGamal Cryptosystem and Digital Rights

Management

This section is about the ElGamal cryptosystem, which works well on
an elliptic curves. This section draws on a paper by an actual computer
hacker named Beale Screamer who cracked a “Digital Rights Management”
(DRM) system.

The elliptic curve used in the DRM is an elliptic curve over the finite
field k = Z/pZ, where

p = 785963102379428822376694789446897396207498568951.

In base 16 the number p is

89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits of e, π, and
√

2. The
elliptic curve E is

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934.

114 6. Elliptic Curves

We have

#E(k) = 785963102379428822376693024881714957612686157429,

and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655).

Our heroes Nikita and Michael share digital music when they are not
out fighting terrorists. When Nikita installed the DRM software on her
computer, it generated a private key

n = 670805031139910513517527207693060456300217054473,

which it hides in bits and pieces of files. In order for Nikita to play Juno
Reactor’s latest hit juno, her web browser contacts a web site that sells
music. After Nikita sends her credit card number, that web site allows
Nikita to download a license file that allows her audio player to unlock and
play juno.

As we will see below, the license file was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
file to unlock juno. However, when she shares both juno and the license
file with Michael, he is frustrated because even with the license his com-
puter still does not play juno. This is because Michael’s computer does not
know Nikita’s computer’s private key (the integer n above), so Michael’s
computer can not decrypt the license file.

We now describe the ElGamal cryptosystem, which lends itself well to
implementation in the group E(Z/pZ). To illustrate ElGamal, we describe
how Nikita would set up an ElGamal cryptosystem that anyone could use
to encrypt messages for her. Nikita chooses a prime p, an elliptic curve E
over Z/pZ, and a point B ∈ E(Z/pZ), and publishes p, E, and B. She also
chooses a random integer n, which she keeps secret, and publishes nB. Her
public key is the four-tuple (p,E,B, nB).

Suppose Michael wishes to encrypt a message for Nikita. If the message is
encoded as an element P ∈ E(Z/pZ), Michael computes a random integer r

6.4 Elliptic Curve Cryptography 115

and the points rB and P +r(nB) on E(Z/pZ). Then P is encrypted as the
pair (rB, P + r(nB)). To decrypt the encrypted message, Nikita multiplies
rB by her secret key n to find n(rB) = r(nB), then subtracts this from
P + r(nB) to obtain

P = P + r(nB) − r(nB).

We implement this cryptosystem in Section 7.6.3.

Remark 6.4.1. It also make sense to construct an ElGamal cryptosystem
in the group (Z/pZ)∗.

Returning out our story, Nikita’s license file is an encrypted message to
her. It contains the pair of points (rB, P + r(nB)), where

rB = (179671003218315746385026655733086044982194424660,

697834385359686368249301282675141830935176314718)

and

P + r(nB) = (137851038548264467372645158093004000343639118915,

110848589228676224057229230223580815024224875699).

When Nikita’s computer plays juno, it loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB) = (328901393518732637577115650601768681044040715701,

586947838087815993601350565488788846203887988162).

It then subtracts this from P + r(nB) to obtain

P = (14489646124220757767,

669337780373284096274895136618194604469696830074).

The x-coordinate 14489646124220757767 is the key that unlocks juno.
If Nikita knew the private key n that her computer generated, she could

compute P herself and unlock juno and share her music with Michael.
Beale Screamer found a weakness in the implementation of the DRM that
allows Nikita to find n, which is not surprising since n is stored on her
computer.

6.4.3 The Elliptic Curve Discrete Logarithm Problem

Problem 6.4.2 (Elliptic Curve Discrete Log Problem). Suppose E
is an elliptic curve over Z/pZ and P ∈ E(Z/pZ). Given a multiple Q of P ,
the elliptic curve discrete log problem is to find n ∈ Z such that nP = Q.

116 6. Elliptic Curves

For example, let E be the elliptic curve given by y2 = x3 + x + 1 over
the field Z/7Z. We have

E(Z/7Z) = {O, (2, 2), (0, 1), (0, 6), (2, 5)}.

If P = (2, 2) and Q = (0, 6), then 3P = Q, so n = 3 is a solution to the
discrete logarithm problem.

If E(Z/pZ) has order p or p±1 or is a product of reasonably small primes,
then there are some methods for attacking the discrete log problem on E,
which are beyond the scope of this book. It is thus important to be able to
compute #E(Z/pZ) efficiently, in order to verify that the elliptic curve one
wishes to use for a cryptosystem doesn’t have any obvious vulnerabilities.
The naive algorithm to compute #E(Z/pZ) is to try each value of x ∈ Z/pZ
and count how often x3 +ax+ b is a perfect square mod p, but this is of no
use when p is large enough to be useful for cryptography. Fortunately, there
is an algorithm due to Schoof, Elkies, and Atkin for computing #E(Z/pZ)
efficiently, but we will not describe this algorithm because it uses many
ideas beyond the scope of this book.

In Section 3.1.1 we discussed the discrete log problem in (Z/pZ)∗. There
are general attacks called “index calculus attacks” on the discrete log prob-
lem in (Z/pZ)∗ that are slow, but still faster than the known algorithms for
solving the discrete log in a “general” group (one with no extra structure).
For most elliptic curves, there is no known analogue of index calculus at-
tacks on the discrete log problem. At present it appears that given p the
discrete log problem in E(Z/pZ) is much harder than the discrete log prob-
lem in the multiplicative group (Z/pZ)∗. This suggests that by using an
elliptic curve-based cryptosystem instead of one based on (Z/pZ)∗ one gets
equivalent security with much smaller numbers, which is one reason why
building cryptosystems using elliptic curves is attractive to some cryptog-
raphers. For example, Certicom, a company that strongly supports elliptic
curve cryptography, claims:

“[Elliptic curve crypto] devices require less storage, less power,
less memory, and less bandwidth than other systems. This al-
lows you to implement cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, smart
cards, and thin-clients. It also provides a big win in situations
where efficiency is important.”

For an up-to-date list of elliptic curve discrete log challenge problems
that Certicom sponsors, see [Cer]. For example, in April 2004 a specific
cryptosystem was cracked that was based on an elliptic curve over Z/pZ,
where p has 109 bits. The first unsolved challenge problem involves an
elliptic curve over Z/pZ, where p has 131 bits, and the next challenge after
that is one in which p has 163 bits. Certicom claims at [Cer] that the 163-bit
challenge problem is computationally infeasible.

6.5 Elliptic Curves Over the Rational Numbers 117

FIGURE 6.5. Louis J. Mordell

6.5 Elliptic Curves Over the Rational Numbers

Let E be an elliptic curve defined over Q. The following is a deep theorem
about the group E(Q).

Theorem 6.5.1 (Mordell). The group E(Q) is finitely generated. That
is, there are points P1, . . . , Ps ∈ E(Q) such that every element of E(Q) is
of the form n1P1 + · · · + nsPs for integers n1, . . . ns ∈ Z.

Mordell’s theorem implies that it makes sense to ask whether or not
we can compute E(Q), where by “compute” we mean find a finite set
P1, . . . , Ps of points on E that generate E(Q) as an abelian group. There
is a systematic approach to computing E(Q) (see e.g., [Cre97, Cre, Sil86]),
and it is widely believed this method always succeeds, but nobody has yet
proved that it always will. Proving that this procedure always works is one
of the central open problem in number theory, and is closely related to the
Birch and Swinnerton-Dyer conjecture (one of the Clay Math Institute’s
million dollar prize problems).

The details of the above approach to computing E(Q) are beyond the
scope of this book. In several places below we will simply assert that E(Q)
has a certain structure or is generated by certain elements. In each case,
we computed E(Q) using a computer implementation of this method.

6.5.1 The Torsion Subgroup of E(Q) and the Rank

For any abelian group G, let Gtor be the subgroup of elements of finite
order. If E is an elliptic curve over Q, then E(Q)tor is a subgroup of E(Q),
which must be finite because of Theorem 6.5.1 (see Exercise 6.6). One can
also prove that E(Q)tor is finite by showing that for all but finitely many
primes p there is an injective homomorphism E(Q)tor →֒ E(Z/pZ). For
example, if E is y2 = x3 − 5x + 4, then E(Q)tor = {O, (1, 0)} ∼= Z/2Z.

118 6. Elliptic Curves

The possibilities for E(Q)tor are known.

Theorem 6.5.2 (Mazur, 1976). Let E be an elliptic curve over Q. Then
E(Q)tor is isomorphic to one of the following 15 groups:

Z/nZ for n ≤ 10 or n = 12,

Z/2 × Z/2n for n ≤ 4.

The quotient E(Q)/E(Q)tor is a finitely generated free abelian group,
so it is isomorphism to Zr for some integer r, called the rank of E(Q).

Conjecture 6.5.3. There are elliptic curves over Q of arbitrarily large
rank.

The “world record” is the following curve, whose rank is at least 24:

y2+xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116

It was discovered in January 2000 by Roland Martin and William McMillen
of the National Security Agency. For several months they were not allowed
to release the actual curve to the public.

6.5.2 The Congruent Number Problem

Definition 6.5.4 (Congruent Number). We call a nonzero rational
number n a congruent number if ±n is the area of a right triangle with
rational side lengths. Equivalently, n is a congruent number if the system
of two equations

a2 + b2 = c2

1

2
ab = n

has a solution with a, b, c ∈ Q.

For example, 6 is the area of the right triangle with side lengths 3, 4,
and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3/2, 20/3, and
41/6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the integer congruent numbers up to 50:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47.

Every congruence class modulo 8 except 3 is represented in this list,
which incorrectly suggests that if n ≡ 3 (mod 8) then n is not a congruent
number. Though no n ≤ 218 with n ≡ 3 (mod 8) is a congruent number,
n = 219 is a congruent number congruent and 219 ≡ 3 (mod 8).

6.5 Elliptic Curves Over the Rational Numbers 119

Deciding whether an integer n is a congruent number can be subtle since
the simplest triangle with area n can be very complicated. For example,
as Zagier pointed out, the number 157 is a congruent number, and the
“simplest” rational right triangle with area 157 has side lengths

a =
6803298487826435051217540

411340519227716149383203
and b =

411340519227716149383203

21666555693714761309610
.

This solution would be difficult to find by a brute force search.
We call congruent numbers “congruent” because of the following proposi-

tion, which asserts that any congruent number is the common “congruence”
between three perfect squares.

Proposition 6.5.5. Suppose n is the area of a right triangle with rational
side lengths a, b, c, with a ≤ b < c. Let A = (c/2)2. Then

A − n, A, and A + n

are all perfect squares of rational numbers.

Proof. We have

a2 + b2 = c2

1

2
ab = n

Add or subtract 4 times the second equation to the first to get

a2 ± 2ab + b2 = c2 ± 4n

(a ± b)2 = c2 ± 4n
(

a ± b

2

)2

=
(c

2

)2

± n

= A ± n

The following open problem has motivated much work on congruent num-
bers.

Open Problem 6.5.6. Give an algorithm which, given n, outputs whether
or not n is a congruent number.

The following proposition establishes a link between elliptic curves and
the congruent number problem.

Proposition 6.5.7 (Congruent numbers and elliptic curves). Let n
be a rational number. There is a bijection between

A =

{

(a, b, c) ∈ Q3 :
ab

2
= n, a2 + b2 = c2

}

120 6. Elliptic Curves

and

B =
{

(x, y) ∈ Q2 : y2 = x3 − n2x, with y 6= 0
}

given explicitly by the maps

f(a, b, c) =

(

− nb

a + c
, 2n2a + c

)

and

g(x, y) =

(

n2 − x2

y
, −2xn

y
,

n2 + x2

y

)

.

The proof of this proposition is not deep, but involves substantial algebra
and we will not prove it in this book.

For n 6= 0, let En be the elliptic curve y2 = x3 − n2x.

Proposition 6.5.8 (Congruent number criterion). The rational num-
ber n is a congruent number if and only if there is a point P = (x, y) ∈
En(Q) with y 6= 0.

Proof. The number n is a congruent number if and only if the set A from
Proposition 6.5.7 is nonempty. By the proposition A is nonempty if and
only if B is nonempty.

Example 6.5.9. Let n = 5. Then En is y2 = x3 − 25x, and we find by a
brute force search the point (−4,−6) ∈ En(Q). Then

g(−4,−6) =

(

25 − 16

−6
,−−40

−6
,
25 + 16

−6

)

=

(

−3

2
,−20

3
,−41

6

)

.

Multiplying through by −1 yields the side lengths of a rational right triangle
with area 5.

We can apply the map g to any point in En(Q) with y 6= 0. Using the
group law we find that 2(−4,−6) = (1681/144, 62279/1728), and

g(2(−4,−6)) =

(

−1519

492
,−4920

1519
,
3344161

747348

)

.

Example 6.5.10. Let n = 1, so E1 is defined by y2 = x3 − x. Since 1 is not
a congruent number, the elliptic curve E1 has no point with y 6= 0. See
Exercise 6.10.

Example 6.5.9 foreshadows the following theorem.

Theorem 6.5.11 (Infinitely Many Triangles). If n is a congruent
number, then there are infinitely many distinct right triangles with rational
side lengths and area n.

6.6 Exercises 121

We will not prove this theorem, except to note that one proves it by
showing that En(Q)tor = {O, (0, 0), (n, 0), (−n, 0)}, so the elements of the
set B in Proposition 6.5.7 all have infinite order, hence B is infinite so A
is infinite.

There is a theorem of Tunnell that combined with the conjecture of
Birch and Swinnerton-Dyer (alluded to above), which if true, would imply
the existence of an elementary way to decide whether or not an integer n
is a congruent number. We state this elementary way in the form of a
conjecture.

Conjecture 6.5.12. Let a, b, c denote integers. If n is an even square-free
integer then n is a congruent number if and only if

#
{

(a, b, c) ∈ Z3 : 4a2 + b2 + 8c2 =
n

2
: c is even

}

= #
{

(a, b, c) : 4a2 + b2 + 8c2 =
n

2
: c is odd

}

.

If n is odd and square free then n is a congruent number if and only if

#
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is even
}

= #
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is odd
}

.

The book [Kob84] is about congruent numbers and Conjecture 6.5.12.
The Birch and Swinnerton-Dyer conjecture is a Clay Math Institute million
dollar millennium prize problem (see [Cla, Wil00]).

6.6 Exercises

6.1 Write down an equation y2 = x3 + ax + b over a field K such that
−16(4a3+27b2) = 0. Precisely what goes wrong when trying to endow
the set E(K) = {(x, y) ∈ K × K : y2 = x3 + ax + b} ∪ {O} with a
group structure?

6.2 One rational solution to the equation y2 = x3 − 2 is (3, 5). Find a
rational solution with x 6= 3 by drawing the tangent line to (3, 5) and
computing the second point of intersection.

6.3 Let E be the elliptic curve over the finite field K = Z/5Z defined by
the equation

y2 = x3 + x + 1.

(a) List all 9 elements of E(K).

(b) What is the structure of E(K), as a product of cyclic groups?

122 6. Elliptic Curves

6.4 Let E be the elliptic curve defined by the equation y2 = x3 + 1. For
each prime p ≥ 5, let Np be the cardinality of the group E(Z/pZ)
of points on this curve having coordinates in Z/pZ. For example, we
have that N5 = 6, N7 = 12, N11 = 12, N13 = 12, N17 = 18, N19 =
12, , N23 = 24, and N29 = 30 (you do not have to prove this).

(a) For the set of primes satisfying p ≡ 2 (mod 3), can you see a
pattern for the values of Np? Make a general conjecture for the
value of Np when p ≡ 2 (mod 3).

(b) (*) Prove your conjecture.

6.5 Let E be an elliptic curve over the real numbers R. Prove that E(R)
is not a finitely generated abelian group.

6.6 (*) Suppose G is a finitely generated abelian group. Prove that the
subgroup Gtor of elements of finite order in G is finite.

6.7 Suppose y2 = x3 +ax+b with a, b ∈ Q defines an elliptic curve. Show
that there is another equation Y 2 = X3 + AX + B with A,B ∈ Z
whose solutions are in bijection with the solutions to y2 = x3+ax+b.

6.8 Suppose a, b, c are relatively prime integers with a2 + b2 = c2. Then
there exist integers x and y with x > y such that c = x2 + y2 and
either a = x2 − y2, b = 2xy or a = 2xy, b = x2 − y2.

6.9 (*) Fermat’s Last Theorem for exponent 4 asserts that any solution
to the equation x4 + y4 = z4 with x, y, z ∈ Z satisfies xyz = 0. Prove
of Fermat’s Last Theorem for exponent 4, as follows.

(a) Show that if the equation x2 + y4 = z4 has no integer solutions
with xyz 6= 0, then Fermat’s Last Theorem for exponent 4 is
true.

(b) Prove that x2 +y4 = z4 has no integer solutions with xyz 6= 0 as
follows. Suppose n2 +k4 = m4 is a solution with m > 0 minimal
amongst all solutions. Show that there exists a solution with m
smaller using Exercise 6.8 (consider two cases).

6.10 (*) Prove that 1 is not a congruent number by showing that the
elliptic curve y2 = x3 − x has no rational solutions except (0, 1) and
(0, 0), as follows:

(a) Write y = p
q and x = r

s , where p, q, r, s are all positive integers

and gcd(p, q) = gcd(r, s) = 1. Prove that s | q, so q = sk for
some k ∈ Z.

(b) Prove that s = k2, and substitute to see that p2 = r3 − rk4.

6.6 Exercises 123

(c) Prove that r is a perfect square by supposing there is a prime ℓ
such that ordℓ(r) is odd and analyzing ordℓ of both sides of
p2 = r3 − rk4.

(d) Write r = m2, and substitute to see that p2 = m6−m2k4. Prove
that m | p.

(e) Divide through by m2 and deduce a contradiction to Exer-
cise 6.9.

124 6. Elliptic Curves

This is page 125
Printer: Opaque this

7
Computational Number Theory

In this chapter, we discuss how to use the computer language Python to
do computations with many of the mathematical objects discussed in this
book. One reason we separate this chapter from the other chapters is that
the best order for presenting theory is in many cases not the best order for
presenting algorithms that rely on that theory. For example, in Section 2.1.1
we gave theoretical criterion for whether or not a linear equation ax ≡ b
(mod n) has a solution, and it wasn’t until Section 2.3 that we described
an algorithm for solving them. Moreover, extensive asides on issues related
to implementing algorithms would obstruct the flow of the earlier chapters.

We use Python [Ros] because it is free and includes arbitrary precision
integer arithmetic, but does not include substantial number theoretic func-
tionality. If we were to use one of the major packages such as Mathematica,
Maple, MATLAB, or MAGMA, then this chapter would be a manual de-
scribing how to use various builtin functions, instead of a chapter about
how those functions actually work. Also, Python code is concise and easy
to read. A drawback to using Python is that some of the algorithms we im-
plemented for this book run more slowly than they would if implemented
in certain other languages. We believe the clarity of having complete im-
plementations of the relevant algorithms for this book easily available in a
readable form is worth the tradeoff.

If you do not wish to use Python, you can still learn from this chapter.
View the Python listings as pseudocode, and try to understand the details
of how the algorithms work. In contrast, if you would like to understand
Python well, great places to start are http://docs.python.org/tut and

126 7. Computational Number Theory

http://diveintopython.org. Also, in this chapter we will describe new
language feature as we first encounter them.

Python is freely available from http://www.python.org. The examples
in this chapter assume you are using Python version at least 2.3. You can
download a file that contains all of the code printed on the following pages
from

http://modular.fas.harvard.edu/ent/.

Put the file ent.py in a directory, start up Python, and load the functions
from ent.py by typing the following:

>>> from ent import *

You might also install IPython (http://ipython.scipy.org), which
provides a friendly interface to Python with better support for mathematics
and documentation.

The examples in this chapter have been automatically tested using the
default Python 2.3 shell. Some examples contain numbers that are obtained
using randomized algorithms, so output may be different for you. Lines
containing such output are indicated by a comment #rand.

Some of the functions defined in this chapter use the Python functions
log and sqrt from the Python math library, and the randrange function
from the random library. The code below assume these three functions have
been imported as follows:

from random import randrange

from math import log, sqrt

In Python the notation == means “equals”, != means “not equals”, >=
means ≥ and <= means ≤. Another important convention in Python is that
if n and m are integers, then the expression n/m evaluates to the biggest
integer ≤ n/m, as the following examples illustrate:

>>> 7/5

1

>>> -2/3

-1

To obtain a floating point approximation to a rational number use a
decimal point or coerce at least one of the integers to a float

>>> 1.0/3

0.33333333333333331

>>> float(2)/3

0.66666666666666663

7.1 Prime Numbers 127

7.1 Prime Numbers

The main algorithms relevant to Chapter 1 are Algorithm 1.1.12 for com-
puting greatest common divisors, an algorithm for integer factorization,
and Algorithm 1.2.3 which computes all primes up to a certain bound.

7.1.1 Greatest Common Divisors

The following is an implementation of Algorithm 1.1.12.

Listing 7.1.1 (Greatest Common Divisor).

def gcd(a, b): # (1)

"""

Returns the greatest commond divisor of a and b.

Input:

a -- an integer

b -- an integer

Output:

an integer, the gcd of a and b

Examples:

>>> gcd(97,100)

1

>>> gcd(97 * 10**15, 19**20 * 97**2) # (2)

97L

"""

if a < 0: a = -a

if b < 0: b = -b

if a == 0: return b

if b == 0: return a

while b != 0: # (3)

(a, b) = (b, a%b) # (4)

return a

————————————————————————

In line (1) we declare the name of the function and the two input argu-
ments a and b. Notice how the rest of the function is indented. In Python
indentation has meaning, e.g., it determines the scope of the definition
of the gcd function and the while loop in lines (3) and (4). The part of
Listing 7.1.1 between triple quotes is a documentation string; it is where
we describe the gcd function, its input and output, and gives examples of
usage. All functions defined in this chapter include such a documentation
string, which is usually longer than the actual code that implements the
function. From within IPython the documentation string can be accessed
by typing gcd?.

In line (2) notice that exponentiation xy in Python is denoted x**y.
The output of the second example is 97L instead of 97 because Python

128 7. Computational Number Theory

implements two types of integers, int and long. The int type represents
integers that fit within the “word size” of the computer. The long type
represents integers of arbitrary size, but computations with them are slower
than with int. When a computation involving an int results in an integer
that is larger than can fit in an int, the result is of type long. The reason
97L is printed instead of 97 is that longs are printed with a trailing L, as
the following example illustrates.

>>> 100**2

10000

>>> 10**20

100000000000000000000L

The rest of the code implements Algorithm 1.1.12. The expression a%b,
read “a mod b”, in the while loop is Python’s notation for the the unique
integer r such that 0 ≤ r < |b| and a = bq+r for some q ∈ Z. The command
(a,b)=(b,a%b) simultaneously sets a to b and b to the remainder a%b.

7.1.2 Enumerating Primes

Listing 7.1.2 contains an implementation of Algorithm 1.2.3.

Listing 7.1.2 (Sieve of Eratosthenes).

def primes(n):

"""

Returns a list of the primes up to n, computed

using the Sieve of Eratosthenes.

Input:

n -- a positive integer

Output:

list -- a list of the primes up to n

Examples:

>>> primes(10)

[2, 3, 5, 7]

>>> primes(45)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

"""

if n <= 1: return []

X = range(3,n+1,2) # (1)

P = [2] # (2)

sqrt_n = sqrt(n) # (3)

while len(X) > 0 and X[0] <= sqrt_n: # (4)

p = X[0] # (5)

P.append(p) # (6)

X = [a for a in X if a%p != 0] # (7)

return P + X # (8)

7.1 Prime Numbers 129

————————————————————————

In the line labeled (1) we create the list X of odd numbers i with 3 ≤ i <
n+1 using Python’s range function. In line (2) we create the list P with the
single element 2. In line (3) we compute

√
n using the sqrt library function

imported earlier. Line (4) sets up a while loop that iterates until either X

is empty or the first element of X is greater than
√

n. Line (5) sets p equal
to the first element of X, then line (6) appends p to the end of P. Line (7)
deletes the elements of X that are divisible by p. Finally line (8) is executed
after the while loop terminates, and returns the concatenation of P and X.

Our implementation of primes makes extensive use the Python list

data type. The following examples further illustrate use of lists:

>>> range(10) # range(n) is from 0 to n-1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(3,10) # range(a,b) is from a to b-1

[3, 4, 5, 6, 7, 8, 9]

>>> [x**2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [x**2 for x in range(10) if x%4 == 1]

[1, 25, 81]

>>> [1,2,3] + [5,6,7] # concatenation

[1, 2, 3, 5, 6, 7]

>>> len([1,2,3,4,5]) # length of a list

5

>>> x = [4,7,10,’gcd’] # mixing types is fine

>>> x[0] # 0-based indexing

4

>>> x[3]

’gcd’

>>> x[3] = ’lagrange’ # assignment

>>> x.append("fermat") # append to end of list

>>> x

[4, 7, 10, ’lagrange’, ’fermat’]

>>> del x[3] # delete entry 3 from list

>>> x

[4, 7, 10, ’fermat’]

The following examples illustrate an application of the primes function
to computation of the number π(x) of primes up to x.

>>> v = primes(10000)

>>> len(v) # this is pi(10000)

1229

>>> len([x for x in v if x < 1000]) # pi(1000)

168

>>> len([x for x in v if x < 5000]) # pi(5000)

130 7. Computational Number Theory

669

7.1.3 Integer Factorization

We implement integer factorization using two functions. The first function
splits off a factor using an algorithm such as trial division, the Pollard
p − 1 method, or the elliptic curve method. The second splits off factors
until n is completely factored. Listing 7.1.4 contains an implementation of
a factorization algorithm, which by default uses the trial division splitting
algorithm implemented in Listing 7.1.3. In Section 7.6 we will see how to
use the Pollard p − 1 and elliptic curve algorithms for splitting off factors.

Trial division is a simple method for splitting off the smallest prime
factor of an integer. If it splits off a factor, then that factor is guaranteed
to be prime. The implementation below quickly factors numbers with up
to about 12 digits, and can also be used to factor off small primes from a
large number.

Listing 7.1.3 (Trial Division).

def trial_division(n, bound=None):

"""

Return the smallest prime divisor <= bound of the

positive integer n, or n if there is no such prime.

If the optional argument bound is omitted, then bound=n.

Input:

n -- a positive integer

bound - (optional) a positive integer

Output:

int -- a prime p<=bound that divides n, or n if

there is no such prime.

Examples:

>>> trial_division(15)

3

>>> trial_division(91)

7

>>> trial_division(11)

11

>>> trial_division(387833, 300)

387833

>>> # 300 is not big enough to split off a

>>> # factor, but 400 is.

>>> trial_division(387833, 400)

389

"""

if n == 1: return 1

7.1 Prime Numbers 131

for p in [2, 3, 5]:

if n%p == 0: return p

if bound == None: bound = n

dif = [6, 4, 2, 4, 2, 4, 6, 2]

m = 7; i = 1

while m <= bound and m*m <= n:

if n%m == 0:

return m

m += dif[i%8]

i += 1

return n

————————————————————————

When declaring trial division the second argument is bound=None.
This means the second argument is optional, and if the user omits it when
calling trial division, then bound is set equal to None. In the while loop
we use +=, e.g., in the line i += 1. This has exactly the same effect as
i=i+1, but may be implemented more efficiently.

The following two observations are needed to see that the implementation
in Listing 7.1.3 is correct. First, in order to find a divisor of n it is only
necessary to consider integers m ≤ √

n. This is because if m >
√

n and
m | n, then n/m also divides n and n/m <

√
n. Second, for efficiently

the implementation above does not simply march through all m ≤ √
n,

but after checking that none of 2, 3, 5 divides n, starts with m = 7 and
increments m by each of 4, 2, 4, 2, 4, 6, 2, 6 in turn, cycling around. This has
the affect of skipping those m that are divisible by 2, 3, or 5. The reason is
that the numbers modulo 30 that are coprime to 2, 3, 5 are exactly 7, 7+4,
7+4+2, 7+4+2+4, etc. One could, of course, replace 30 by 210 = 2·3·5·7
at the expense of replacing dif by a longer list (see Exercise 7.2).

Listing 7.1.4 contains an implementation of a factorization algorithm
that uses trial division.

Listing 7.1.4 (Integer Factorization).

def factor(n):

"""

Returns the factorization of the integer n as

a sorted list of tuples (p,e), where the integers p

are output by the split algorithm.

Input:

n -- an integer

Output:

list -- factorization of n

Examples:

>>> factor(500)

[(2, 2), (5, 3)]

>>> factor(-20)

132 7. Computational Number Theory

[(2, 2), (5, 1)]

>>> factor(1)

[]

>>> factor(2004)

[(2, 2), (3, 1), (167, 1)]

"""

if n in [-1, 0, 1]: return []

if n < 0: n = -n

F = []

while n != 1:

p = trial_division(n)

e = 1

n /= p

while n%p == 0:

e += 1; n /= p

F.append((p,e))

F.sort()

return F

————————————————————————

The pairs (p, e) in the factorization are represented as tuples. The tuple
type is similar to the list type, with some exceptions. The following exam-
ples illustrate usage of the tuple type:

>>> x=(1, 2, 3) # creation

>>> x[1]

2

>>> (1, 2, 3) + (4, 5, 6) # concatenation

(1, 2, 3, 4, 5, 6)

>>> (a, b) = (1, 2) # assignment assigns to each member

>>> print a, b

1 2

>>> for (c, d) in [(1,2), (5,6)]:

... print c, d

1 2

5 6

>>> x = 1, 2 # parentheses optional in creation

>>> x

(1, 2)

>>> c, d = x # parentheses also optional

>>> print c, d

1 2

7.2 The Ring of Integers Modulo n 133

7.2 The Ring of Integers Modulo n

The main algorithmic issues of Chapter 2 are solving linear equations and
systems of linear equations in one variable modulo n, computing powers
quickly, finding a generator of (Z/pZ)∗, and determining whether or not a
number is prime.

7.2.1 Linear Equations Modulo n

Listing 7.2.1 is an implementation of Algorithm 2.3.4 for computing g and
integers x, y such that ax + by = g.

Listing 7.2.1 (Extended GCD).

def xgcd(a, b):

"""

Returns g, x, y such that g = x*a + y*b = gcd(a,b).

Input:

a -- an integer

b -- an integer

Output:

g -- an integer, the gcd of a and b

x -- an integer

y -- an integer

Examples:

>>> xgcd(2,3)

(1, -1, 1)

>>> xgcd(10, 12)

(2, -1, 1)

>>> g, x, y = xgcd(100, 2004)

>>> print g, x, y

4 -20 1

>>> print x*100 + y*2004

4

"""

if a == 0 and b == 0: return (0, 0, 1)

if a == 0: return (abs(b), 0, b/abs(b))

if b == 0: return (abs(a), a/abs(a), 0)

x_sign = 1; y_sign = 1

if a < 0: a = -a; x_sign = -1

if b < 0: b = -b; y_sign = -1

x = 1; y = 0; r = 0; s = 1

while b != 0:

(c, q) = (a%b, a/b)

(a, b, r, s, x, y) = (b, c, x-q*r, y-q*s, r, s)

return (a, x*x_sign, y*y_sign)

134 7. Computational Number Theory

————————————————————————

Using Proposition 2.1.9 and xgcd we obtain the following algorithm for
computing the inverse of a (mod n).

Listing 7.2.2 (Inverse Modulo).

def inversemod(a, n):

"""

Returns the inverse of a modulo n, normalized to

lie between 0 and n-1. If a is not coprime to n,

raise an exception (this will be useful later for

the elliptic curve factorization method).

Input:

a -- an integer coprime to n

n -- a positive integer

Output:

an integer between 0 and n-1.

Examples:

>>> inversemod(1,1)

0

>>> inversemod(2,5)

3

>>> inversemod(5,8)

5

>>> inversemod(37,100)

73

"""

g, x, y = xgcd(a, n)

if g != 1:

raise ZeroDivisionError, (a,n)

assert g == 1, "a must be coprime to n."

return x%n

————————————————————————

Proposition 2.1.9 leads to the algorithm implemented in Listing 7.2.3 for
solving a linear equation ax ≡ b (mod n). In line (1) we compute c such
that ac ≡ g (mod n); also in line (1) the underscore means that the third
value returned by xgcd should be ignored (not saved to a variable). Since
g | a and g | n, we have (a/g)c ≡ 1 (mod n/g), and multiplying by b,
rearranging, and using that g | b, yields a(b/g)c ≡ b (mod bn/g). Thus
(b/g)c solves the equation ax ≡ b (mod n).

Listing 7.2.3 (Solve Linear Modulo).

def solve_linear(a,b,n):

"""

If the equation ax = b (mod n) has a solution, return a

7.2 The Ring of Integers Modulo n 135

solution normalized to lie between 0 and n-1, otherwise

returns None.

Input:

a -- an integer

b -- an integer

n -- an integer

Output:

an integer or None

Examples:

>>> solve_linear(4, 2, 10)

8

>>> solve_linear(2, 1, 4) == None

True

"""

g, c, _ = xgcd(a,n) # (1)

if b%g != 0: return None

return ((b/g)*c) % n

————————————————————————

In Listing 7.2.4 we implement Algorithm 2.2.3 for solving Chinese Re-
mainder Theorem problems.

Listing 7.2.4 (Chinese Remainder Theorem).

def crt(a, b, m, n):

"""

Return the unique integer between 0 and m*n - 1

that reduces to a modulo n and b modulo m, where

the integers m and n are coprime.

Input:

a, b, m, n -- integers, with m and n coprime

Output:

int -- an integer between 0 and m*n - 1.

Examples:

>>> crt(1, 2, 3, 4)

10

>>> crt(4, 5, 10, 3)

14

>>> crt(-1, -1, 100, 101)

10099

"""

g, c, _ = xgcd(m, n)

assert g == 1, "m and n must be coprime."

return (a + (b-a)*c*m) % (m*n)

————————————————————————

136 7. Computational Number Theory

7.2.2 Computation of Powers

In Listing 7.2.5 we implement Algorithm 2.3.7 for quickly computing large
powers of an integer modulo n.

Listing 7.2.5 (Power Modulo).

def powermod(a, m, n):

"""

The m-th power of a modulo n.

Input:

a -- an integer

m -- a nonnegative integer

n -- a positive integer

Output:

int -- an integer between 0 and n-1

Examples:

>>> powermod(2,25,30)

2

>>> powermod(19,12345,100)

99

"""

assert m >= 0, "m must be nonnegative." # (1)

assert n >= 1, "n must be positive." # (2)

ans = 1

apow = a

while m != 0:

if m%2 != 0:

ans = (ans * apow) % n # (3)

apow = (apow * apow) % n # (4)

m /= 2

return ans % n

————————————————————————

The two assert statements in lines (1) and (2) express conditions that
must be satisfied by the input to the function. If either condition is not
satisfied, the function terminates and the corresponding error message is
printed. In the while loop, in lines (3) and (4), we reduce each intermediate
integer modulo n, since otherwise the integers involved could be huge.

7.2.3 Finding a Primitive Root

Listing 7.2.6 contains an implementation of Algorithm 2.5.13 for computing
a primitive root modulo p.

Listing 7.2.6 (Primitive Root).

def primitive_root(p):

7.2 The Ring of Integers Modulo n 137

"""

Returns first primitive root modulo the prime p.

(If p is not prime, this return value of this function

is not meaningful.)

Input:

p -- an integer that is assumed prime

Output:

int -- a primitive root modulo p

Examples:

>>> primitive_root(7)

3

>>> primitive_root(389)

2

>>> primitive_root(5881)

31

"""

if p == 2: return 1

F = factor(p-1)

a = 2

while a < p:

generates = True

for q, _ in F:

if powermod(a, (p-1)/q, p) == 1:

generates = False

break

if generates: return a

a += 1

assert False, "p must be prime."

————————————————————————

7.2.4 Determining Whether a Number is Prime

In Listing 7.2.7 we define a function that decides whether or not an integer is
a pseudoprime to several bases. See Section 2.4 for the connection between
primes and pseudo-primes.

Listing 7.2.7 (Is Pseudoprime).

def is_pseudoprime(n, bases = [2,3,5,7]):

"""

Returns True if n is a pseudoprime to the given bases,

in the sense that n>1 and b**(n-1) = 1 (mod n) for each

elements b of bases, with b not a multiple of n, and

False otherwise.

Input:

n -- an integer

138 7. Computational Number Theory

bases -- a list of integers

Output:

bool

Examples:

>>> is_pseudoprime(91)

False

>>> is_pseudoprime(97)

True

>>> is_pseudoprime(1)

False

>>> is_pseudoprime(-2)

True

>>> s = [x for x in range(10000) if is_pseudoprime(x)]

>>> t = primes(10000)

>>> s == t

True

>>> is_pseudoprime(29341) # first non-prime pseudoprime

True

>>> factor(29341)

[(13, 1), (37, 1), (61, 1)]

"""

if n < 0: n = -n

if n <= 1: return False

for b in bases:

if b%n != 0 and powermod(b, n-1, n) != 1:

return False

return True

————————————————————————

We iterate over the elements b of bases, and for each b that is not a
multiple of n, we decide whether bn−1 ≡ 1 (mod n). If not, then n is
definitely not prime so we return False; if the congruence is satisfied for
all b, return True.

The following session illustrates that for the default bases 2, 3, 5, 7, the
first non-prime pseudoprime is 29341, and for the bases 2, 3, 5, 7, 11, 13,
then the first non-prime pseudoprime is 162401:

>>> P = [p for p in range(200000) if is_pseudoprime(p)]

>>> Q = primes(200000)

>>> R = [x for x in P if not (x in Q)]; print R

[29341, 46657, 75361, 115921, 162401]

>>> [n for n in R if is_pseudoprime(n,[2,3,5,7,11,13])]

[162401]

>>> factor(162401)

[(17, 1), (41, 1), (233, 1)]

7.2 The Ring of Integers Modulo n 139

We next turn to the Miller-Rabin primality test. First we state the algo-
rithm precisely with proof, and give an implementation in Listing 7.2.9

Algorithm 7.2.8 (Miller-Rabin Primality Test). Given an integer n ≥
5 this algorithm outputs either true or false. If it outputs true, then n is
“probably prime”, and if it outputs false, then n is definitely composite.

1. [Split Off Power of 2] Compute the unique integers m and k such that m
is odd and n − 1 = 2k · m.

2. [Random Base] Choose a random integer a with 1 < a < n.

3. [Odd Power] Set b = am (mod n). If b ≡ ±1 (mod n) output true and
terminate.

4. [Even Powers] If b2r ≡ −1 (mod n) for any r with 1 ≤ r ≤ k − 1,
output true and terminate. Otherwise output false.

If Miller-Rabin outputs true for n, we can call it again with n and if it
again outputs true then the probability that n is prime increases.

Proof. We will prove that the algorithm is correct, but will prove noth-
ing about how likely the algorithm is to assert that a composite is prime.
We must prove that if the algorithm pronounces an integer n compos-
ite, then n really is composite. Thus suppose n is prime, yet the algo-
rithm pronounces n composite. Then am 6≡ ±1 (mod n), and for all r
with 1 ≤ r ≤ k − 1 we have a2rm 6≡ −1 (mod n). Since n is prime and

2k−1m = (n−1)/2, Proposition 4.2.1 implies that a2k−1m ≡ ±1 (mod n), so

by our hypothesis a2k−1m ≡ 1 (mod n). But then (a2k−2m)2 ≡ 1 (mod n),

so by Proposition 2.5.2, we have a2k−2m ≡ ±1 (mod n). Again, by our

hypothesis, this implies a2k−2 ≡ 1 (mod n). Repeating this argument in-
ductively we see that am ≡ ±1 (mod n), which contradicts our hypothesis
on a.

The implementation of Algorithm 7.2.8 in Listing 7.2.9 runs the Miller-
Rabin primality test on n several times (a default of 4) and returns true only
if n is declared probably prime every time. One of the examples illustrate
how Miller-Rabin sometimes gives incorrect results.

Listing 7.2.9 (Miller-Rabin Primality Test).

def miller_rabin(n, num_trials=4):

"""

True if n is likely prime, and False if n

is definitely not prime. Increasing num_trials

increases the probability of correctness.

(One can prove that the probability that this

function returns True when it should return

False is at most (1/4)**num_trials.)

140 7. Computational Number Theory

Input:

n -- an integer

num_trials -- the number of trials with the

primality test.

Output:

bool -- whether or not n is probably prime.

Examples:

>>> miller_rabin(91)

False #rand

>>> miller_rabin(97)

True #rand

>>> s = [x for x in range(1000) if miller_rabin(x, 1)]

>>> t = primes(1000)

>>> print len(s), len(t) # so 1 in 25 wrong

175 168 #rand

>>> s = [x for x in range(1000) if miller_rabin(x)]

>>> s == t

True #rand

"""

if n < 0: n = -n

if n in [2,3]: return True

if n <= 4: return False

m = n - 1

k = 0

while m%2 == 0:

k += 1; m /= 2

Now n - 1 = (2**k) * m with m odd

for i in range(num_trials):

a = randrange(2,n-1) # (1)

apow = powermod(a, m, n)

if not (apow in [1, n-1]):

some_minus_one = False

for r in range(k-1): # (2)

apow = (apow**2)%n

if apow == n-1:

some_minus_one = True

break # (3)

if (apow in [1, n-1]) or some_minus_one:

prob_prime = True

else:

return False

return True

————————————————————————

7.3 Public-Key Cryptography 141

In line (1) we use randrange; the command randrange(a,b) returns a
random integer in the interval [a, b−1]. Line (3) uses the break statement,
which exists the immediately enclosing for or while loop; in this case the
for loop starting at line (2).

7.3 Public-Key Cryptography

The main algorithms in Chapter 3 deal with implementing the Diffie-
Hellman and RSA cryptosystems, and with some attacks on RSA in special
cases. In this section we give a function for encoding an arbitrary string as a
sequence of numbers of some bounded size, and vice-versa, then implement
each of Diffie-Hellman and RSA.

7.3.1 The Diffie-Hellman Key Exchange

In order for two parties to agree on a secret key using Diffie-Hellman, we
need a function to generate a large random prime.

Listing 7.3.1 (Random Prime).

def random_prime(num_digits, is_prime = miller_rabin):

"""

Returns a random prime with num_digits digits.

Input:

num_digits -- a positive integer

is_prime -- (optional argment)

a function of one argument n that

returns either True if n is (probably)

prime and False otherwise.

Output:

int -- an integer

Examples:

>>> random_prime(10)

8599796717L #rand

>>> random_prime(40)

1311696770583281776596904119734399028761L #rand

"""

n = randrange(10**(num_digits-1), 10**num_digits)

if n%2 == 0: n += 1

while not is_prime(n): n += 2

return n

————————————————————————

Suppose p is a large random prime. Then it is extremely unlikely that 2
will have small order modulo p, so we will use g = 2 as the base for the

142 7. Computational Number Theory

key exchange. The function dh init below computes and returns a ran-
dom integer n and 2n (mod p). Thus Nikita and Michael should each call
dh init with input p, and send the resulting 2n (mod p) to each other.
Then each calls dh secret with the powers of 2 they received to compute
the the shared secret key. After defining dh init and dh secret below, we
give a complete nontrivial example.

Listing 7.3.2 (Initialize Diffie-Hellman).

def dh_init(p):

"""

Generates and returns a random positive

integer n < p and the power 2^n (mod p).

Input:

p -- an integer that is prime

Output:

int -- a positive integer < p, a secret

int -- 2^n (mod p), send to other user

Examples:

>>> p = random_prime(20)

>>> dh_init(p)

(15299007531923218813L, 4715333264598442112L) #rand

"""

n = randrange(2,p)

return n, powermod(2,n,p)

————————————————————————

Listing 7.3.3 (Diffie-Hellman Secret).

def dh_secret(p, n, mpow):

"""

Computes the shared Diffie-Hellman secret key.

Input:

p -- an integer that is prime

n -- an integer: output by dh_init for this user

mpow-- an integer: output by dh_init for other user

Output:

int -- the shared secret key.

Examples:

>>> p = random_prime(20)

>>> n, npow = dh_init(p)

>>> m, mpow = dh_init(p)

>>> dh_secret(p, n, mpow)

15695503407570180188L #rand

>>> dh_secret(p, m, npow)

15695503407570180188L #rand

"""

7.3 Public-Key Cryptography 143

return powermod(mpow,n,p)

————————————————————————

First Nikita and Michael generate a prime.

>>> p = random_prime(50)

>>> p

13537669335668960267902317758600526039222634416221L #rand

Nikita generates her secret n and computes 2n (mod p).

>>> n, npow = dh_init(p)

>>> n

8520467863827253595224582066095474547602956490963L #rand

>>> npow

3206478875002439975737792666147199399141965887602L #rand

Michael generates his secret m and computes 2m (mod p).

>>> m, mpow = dh_init(p)

>>> m

3533715181946048754332697897996834077726943413544L #rand

>>> mpow

3465862701820513569217254081716392362462604355024L #rand

At this point Nikita publicly announces npow and Michael publicly an-
nounces mpow. Nikita and Michael can now compute the shared secret key.

>>> dh_secret(p, n, mpow)

12931853037327712933053975672241775629043437267478L #rand

>>> dh_secret(p, m, npow)

12931853037327712933053975672241775629043437267478L #rand

7.3.2 Encoding Strings as Lists of Integers

In order to encrypt actual messages, instead of single integers, we define a
function that converts an arbitrary string to a list of integers, and another
that converts a list of integers back to a string.

A chosen plain text attack is an attack on a cryptosystem in which the
attacker knows the unencrypted and encrypted versions of some messages,
and can use that information to deduce something about future encrypted
messages. For example, if a remote weather station encrypts the tempera-
ture and sends it encrypted, then an attacker who knows the temperature
at the weather station might know how that temperature is encrypted.
To reduce the chance that such attacks could weaken the cryptosystems
implemented in this chapter, the function str to numlist randomizes its
output, so the same string will usually be encoded differently, depending
on when the function is called.

144 7. Computational Number Theory

Listing 7.3.4 (String to Number List).

def str_to_numlist(s, bound):

"""

Returns a sequence of integers between 0 and bound-1

that encodes the string s. Randomization is included,

so the same string is very likely to encode differently

each time this function is called.

Input:

s -- a string

bound -- an integer >= 256

Output:

list -- encoding of s as a list of integers

Examples:

>>> str_to_numlist("Run!", 1000)

[82, 117, 110, 33] #rand

>>> str_to_numlist("TOP SECRET", 10**20)

[4995371940984439512L, 92656709616492L] #rand

"""

assert bound >= 256, "bound must be at least 256."

n = int(log(bound) / log(256)) # (1)

salt = min(int(n/8) + 1, n-1) # (2)

i = 0; v = []

while i < len(s): # (3)

c = 0; pow = 1

for j in range(n): # (4)

if j < salt:

c += randrange(1,256)*pow # (5)

else:

if i >= len(s): break

c += ord(s[i])*pow # (6)

i += 1

pow *= 256

v.append(c)

return v

————————————————————————

In Listing 7.3.4, we view a string as a sequence of integers between 0 and
255. In line (1) we compute the number of characters that can be encoded
in an integer up to bound; this is the block size. In line (2) we determine
the number of random characters in each block. The while loop (3) iterates
until we have encoded every character of the string in the list v of numbers.
The for loop (4) iterates over the number of characters in a block, forming
a number in base 256. The lower order digits are random (line 5), and the
rest encode actual text of the message (line 6). The function ord used in
line (6) converts a character to a number between 0 and 255. Listing 7.3.5

7.3 Public-Key Cryptography 145

takes a sequence of integers output by str to numlist and returns the
corresponding string.

Listing 7.3.5 (Number List to String).

def numlist_to_str(v, bound):

"""

Returns the string that the sequence v of

integers encodes.

Input:

v -- list of integers between 0 and bound-1

bound -- an integer >= 256

Output:

str -- decoding of v as a string

Examples:

>>> print numlist_to_str([82, 117, 110, 33], 1000)

Run!

>>> x = str_to_numlist("TOP SECRET MESSAGE", 10**20)

>>> print numlist_to_str(x, 10**20)

TOP SECRET MESSAGE

"""

assert bound >= 256, "bound must be at least 256."

n = int(log(bound) / log(256))

s = ""

salt = min(int(n/8) + 1, n-1)

for x in v:

for j in range(n):

y = x%256

if y > 0 and j >= salt:

s += chr(y)

x /= 256

return s

————————————————————————

7.3.3 The RSA Cryptosystem

Listings 7.3.6–7.3.8 contain an implementation of the RSA cryptosystem.

Listing 7.3.6 (Initialize RSA).

def rsa_init(p, q):

"""

Returns defining parameters (e, d, n) for the RSA

cryptosystem defined by primes p and q. The

primes p and q may be computed using the

random_prime functions.

Input:

146 7. Computational Number Theory

p -- a prime integer

q -- a prime integer

Output:

Let m be (p-1)*(q-1).

e -- an encryption key, which is a randomly

chosen integer between 2 and m-1

d -- the inverse of e modulo eulerphi(p*q),

as an integer between 2 and m-1

n -- the product p*q.

Examples:

>>> p = random_prime(20); q = random_prime(20)

>>> print p, q

37999414403893878907L 25910385856444296437L #rand

>>> e, d, n = rsa_init(p, q)

>>> e

5 #rand

>>> d

787663591619054108576589014764921103213L #rand

>>> n

984579489523817635784646068716489554359L #rand

"""

m = (p-1)*(q-1)

e = 3

while gcd(e, m) != 1: e += 1

d = inversemod(e, m)

return e, d, p*q

————————————————————————

In Listing 7.3.6, we compute m = ϕ(pq), find a random encryption ex-
ponent that is coprime to m, and compute the inverse of the encryption
exponent modulo m.

Listing 7.3.7 (Encrypt Using RSA).

def rsa_encrypt(plain_text, e, n):

"""

Encrypt plain_text using the encrypt

exponent e and modulus n.

Input:

plain_text -- arbitrary string

e -- an integer, the encryption exponent

n -- an integer, the modulus

Output:

str -- the encrypted cipher text

Examples:

>>> e = 1413636032234706267861856804566528506075

>>> n = 2109029637390047474920932660992586706589

7.4 Quadratic Reciprocity 147

>>> rsa_encrypt("Run Nikita!", e, n)

[78151883112572478169375308975376279129L] #rand

>>> rsa_encrypt("Run Nikita!", e, n)

[1136438061748322881798487546474756875373L] #rand

"""

plain = str_to_numlist(plain_text, n)

return [powermod(x, e, n) for x in plain]

————————————————————————

Listing 7.3.7 defines rsa encrypt, which converts a plain text message
to a list of integers, then returns the eth powers of those integers modulo n,
where e is the encryption exponent.

Listing 7.3.8 (Decrypt Using RSA).

def rsa_decrypt(cipher, d, n):

"""

Decrypt the cipher_text using the decryption

exponent d and modulus n.

Input:

cipher_text -- list of integers output

by rsa_encrypt

Output:

str -- the unencrypted plain text

Examples:

>>> d = 938164637865370078346033914094246201579

>>> n = 2109029637390047474920932660992586706589

>>> msg1 = [1071099761433836971832061585353925961069]

>>> msg2 = [1336506586627416245118258421225335020977]

>>> rsa_decrypt(msg1, d, n)

’Run Nikita!’

>>> rsa_decrypt(msg2, d, n)

’Run Nikita!’

"""

plain = [powermod(x, d, n) for x in cipher]

return numlist_to_str(plain, n)

————————————————————————

In Listing 7.3.8 we define rsa decrypt, which raises each input integer
to the power of d modulo n, then converts the resulting list of integers back
to a string.

7.4 Quadratic Reciprocity

The main algorithmic ideas in Chapter 4 are computation of the Legendre
symbol, and an algorithm for finding square roots in Z/pZ.

148 7. Computational Number Theory

7.4.1 Computing the Legendre Symbol

Corollary 4.2.2 provides a simple and efficient algorithm to compute
(

a
p

)

,

which we implement below.

Listing 7.4.1 (Legendre Symbol).

def legendre(a, p):

"""

Returns the Legendre symbol a over p, where

p is an odd prime.

Input:

a -- an integer

p -- an odd prime (primality not checked)

Output:

int: -1 if a is not a square mod p,

0 if gcd(a,p) is not 1

1 if a is a square mod p.

Examples:

>>> legendre(2, 5)

-1

>>> legendre(3, 3)

0

>>> legendre(7, 2003)

-1

"""

assert p%2 == 1, "p must be an odd prime."

b = powermod(a, (p-1)/2, p)

if b == 1: return 1

elif b == p-1: return -1

return 0

————————————————————————

7.4.2 Finding Square Roots

In this section we implement the algorithm of Section 4.5 for finding square
roots of integers modulo p.

Listing 7.4.2 (Square Root Modulo).

def sqrtmod(a, p):

"""

Returns a square root of a modulo p.

Input:

a -- an integer that is a perfect

square modulo p (this is checked)

p -- a prime

7.4 Quadratic Reciprocity 149

Output:

int -- a square root of a, as an integer

between 0 and p-1.

Examples:

>>> sqrtmod(4, 5) # p == 1 (mod 4)

3 #rand

>>> sqrtmod(13, 23) # p == 3 (mod 4)

6 #rand

>>> sqrtmod(997, 7304723089) # p == 1 (mod 4)

761044645L #rand

"""

a %= p

if p == 2: return a

assert legendre(a, p) == 1, "a must be a square mod p."

if p%4 == 3: return powermod(a, (p+1)/4, p)

def mul(x, y): # multiplication in R # (1)

return ((x[0]*y[0] + a*y[1]*x[1]) % p, \

(x[0]*y[1] + x[1]*y[0]) % p)

def pow(x, n): # exponentiation in R # (2)

ans = (1,0)

xpow = x

while n != 0:

if n%2 != 0: ans = mul(ans, xpow)

xpow = mul(xpow, xpow)

n /= 2

return ans

while True:

z = randrange(2,p)

u, v = pow((1,z), (p-1)/2)

if v != 0:

vinv = inversemod(v, p)

for x in [-u*vinv, (1-u)*vinv, (-1-u)*vinv]:

if (x*x)%p == a: return x%p

assert False, "Bug in sqrtmod."

————————————————————————

The implementation above follows the algorithm in Section 4.5 closely.
In lines (1) and (2) we define the functions mul and pow for multiplying
two elements of the ring R of Section 4.5, where elements are represented
as pairs of integers modulo p. Notice that Python supports definition of a
function inside another function. Also, notice that the pow function defined
starting at line (2) is very similar to powermod defined in Listing 7.2.5.

150 7. Computational Number Theory

7.5 Continued Fractions

The main algorithms of Chapter 5 involve evaluating the value of a con-
tinued fraction as in Section 5.1, and computing continued fractions of
floating point numbers as described in Section 5.2.1. We implement these
algorithms, and also implement a simple function for writing a number as
a sum of two squares.

The function in Lisiting 7.5.1 computes the partial convergents of a con-
tinued fraction as in Proposition 5.1.9.

Listing 7.5.1 (Convergents of Continued Fraction).

def convergents(v):

"""

Returns the partial convergents of the continued

fraction v.

Input:

v -- list of integers [a0, a1, a2, ..., am]

Output:

list -- list [(p0,q0), (p1,q1), ...]

of pairs (pm,qm) such that the mth

convergent of v is pm/qm.

Examples:

>>> convergents([1, 2])

[(1, 1), (3, 2)]

>>> convergents([3, 7, 15, 1, 292])

[(3, 1), (22, 7), (333, 106), (355, 113), (103993, 33102)]

"""

w = [(0,1), (1,0)]

for n in range(len(v)):

pn = v[n]*w[n+1][0] + w[n][0]

qn = v[n]*w[n+1][1] + w[n][1]

w.append((pn, qn))

del w[0]; del w[0] # remove first entries of w

return w

————————————————————————

In Listing 7.5.2 we define contfrac rat, which computes the continued
fraction of an arbitrary rational number, using an algorithm derived from
the proof of Proposition 5.1.9. Notice that we give the rational number
as input by giving its numerator and denominator, since Python has no
native type for rational numbers (it is not difficult to define such a type
using Python classes, but we will not do so here, since in this chapter we do
no nontrivial arithmetic with rational numbers). Notice that the definition
of contfrac rat below is almost the same as that of gcd in Listing 7.1.1,
except that we keep track of the partial quotients.

7.5 Continued Fractions 151

Listing 7.5.2 (Continued Fraction of Rational).

def contfrac_rat(numer, denom):

"""

Returns the continued fraction of the rational

number numer/denom.

Input:

numer -- an integer

denom -- a positive integer coprime to num

Output

list -- the continued fraction [a0, a1, ..., am]

of the rational number num/denom.

Examples:

>>> contfrac_rat(3, 2)

[1, 2]

>>> contfrac_rat(103993, 33102)

[3, 7, 15, 1, 292]

"""

assert denom > 0, "denom must be positive"

a = numer; b = denom

v = []

while b != 0:

v.append(a/b)

(a, b) = (b, a%b)

return v

————————————————————————

Listing 7.5.3 contains an implementation of the continued fraction pro-
cedure from Section 5.2.1. Suppose x is a floating point number input to
Python (i.e., a C double, i.e., a number possibly in scientific notation like
on a hand calculator). We compute terms an of the continued fraction ex-
pansion of x along with the partial convergents pn/qn, until the difference
pn/qn − x is 0 to the precision of a Python float.

Listing 7.5.3 (Continued Fraction of Floating Point Number).

def contfrac_float(x):

"""

Returns the continued fraction of the floating

point number x, computed using the continued

fraction procedure, and the sequence of partial

convergents.

Input:

x -- a floating point number (decimal)

Output:

list -- the continued fraction [a0, a1, ...]

obtained by applying the continued

152 7. Computational Number Theory

fraction procedure to x to the

precision of this computer.

list -- the list [(p0,q0), (p1,q1), ...]

of pairs (pm,qm) such that the mth

convergent of continued fraction

is pm/qm.

Examples:

>>> v, w = contfrac_float(3.14159); print v

[3, 7, 15, 1, 25, 1, 7, 4]

>>> v, w = contfrac_float(2.718); print v

[2, 1, 2, 1, 1, 4, 1, 12]

>>> contfrac_float(0.3)

([0, 3, 2, 1], [(0, 1), (1, 3), (2, 7), (3, 10)])

"""

v = []

w = [(0,1), (1,0)] # keep track of convergents

start = x

while True:

a = int(x) # (1)

v.append(a)

n = len(v)-1

pn = v[n]*w[n+1][0] + w[n][0]

qn = v[n]*w[n+1][1] + w[n][1]

w.append((pn, qn))

x -= a

if abs(start - float(pn)/float(qn)) == 0: # (2)

del w[0]; del w[0] # (3)

return v, w

x = 1/x

————————————————————————

In line (1) we use the int command to coerce x into an int, which has
the affect of computing ⌊x⌋. In line (2) the command float(qn) results in
a float, so that the quotient float(pn)/float(qn) is a float that approx-
imates the rational number pn/qn. If we had instead written pn/qn in line
(2), then pn/qn would always be an integer, which is not what we want. In
line (3) we delete the first two entries of the list w, which are the partial
convergents 0 and ∞.

Remark 7.5.4. The Python module gmpy supports arbitrary precision arith-
metic with floating point numbers. It does not come standard with Python,
but can be downloaded from http://gmpy.sourceforge.net/. You could
modify contfrac float to use gmpy, and compute the continued fraction
expansion of floating point numbers with many digits.

7.5 Continued Fractions 153

Listing 7.5.5 contains an implementation of an algorithm based on the
proof of Theorem 5.6.1 for quickly writing a prime p ≡ 1 (mod 4) as a sum
of two integer squares, even if the prime is huge (hundreds of digits).

Listing 7.5.5 (Write Prime as Sum of Two Squares).

def sum_of_two_squares(p):

"""

Uses continued fractions to efficiently compute

a representation of the prime p as a sum of

two squares. The prime p must be 1 modulo 4.

Input:

p -- a prime congruent 1 modulo 4.

Output:

integers a, b such that p is a*a + b*b

Examples:

>>> sum_of_two_squares(5)

(1, 2)

>>> sum_of_two_squares(389)

(10, 17)

>>> sum_of_two_squares(86295641057493119033)

(789006548L, 9255976973L)

"""

assert p%4 == 1, "p must be 1 modulo 4"

r = sqrtmod(-1, p) # (1)

v = contfrac_rat(-r, p) # (2)

n = int(sqrt(p))

for a, b in convergents(v): # (3)

c = r*b + p*a # (4)

if -n <= c and c <= n: return (abs(b),abs(c))

assert False, "Bug in sum_of_two_squares." # (5)

————————————————————————

The code in Listing 7.5.5 combines several functions defined earlier in
this chapter. In line (1) we call the sqrtmod function of Listing 7.4.2 in
the case p ≡ 1 (mod 4), which was the difficult case for finding square
roots that uses a non-deterministic algorithm. In line (2) we use compute
the continued fraction of the rational number −r/p, and in line (3) we
iterate over the convergents of this continued fraction. When the c from
line (4) satisfies the appropriate bound, we have found our sum-of-two-
squares representation. The proof of Theorem 5.6.1 guarantees that there
will be such a c and that line (5) will never be reached.

154 7. Computational Number Theory

7.6 Elliptic Curves

The fundamental algorithms that we described in Chapter 6 are arithmetic
of points on elliptic curve, the Pollard (p − 1) and elliptic curve integer
factorization methods, and the the ElGamal elliptic curve cryptosystem.
In this section we implement each of these algorithms for elliptic curves
over Z/pZ, and finish with an investigation of the associative law on an
elliptic curve.

7.6.1 Arithmetic

Each elliptic curve function takes as first input an elliptic curve y2 = x3 +
ax + b over Z/pZ, which we represent by a triple (a,b,p). We represent
points on an elliptic curve in Python as a pair (x,y), with 0 ≤ x, y <
p or as the string "Identity". The functions in Listings 7.6.1 and 7.6.2
implement the group law (Algorithm 6.2.1) and computation of mP for
possibly large m.

Listing 7.6.1 (Elliptic Curve Group Law).

def ellcurve_add(E, P1, P2):

"""

Returns the sum of P1 and P2 on the elliptic

curve E.

Input:

E -- an elliptic curve over Z/pZ, given by a

triple of integers (a, b, p), with p odd.

P1 --a pair of integers (x, y) or the

string "Identity".

P2 -- same type as P1

Output:

R -- same type as P1

Examples:

>>> E = (1, 0, 7) # y**2 = x**3 + x over Z/7Z

>>> P1 = (1, 3); P2 = (3, 3)

>>> ellcurve_add(E, P1, P2)

(3, 4)

>>> ellcurve_add(E, P1, (1, 4))

’Identity’

>>> ellcurve_add(E, "Identity", P2)

(3, 3)

"""

a, b, p = E

assert p > 2, "p must be odd."

if P1 == "Identity": return P2

if P2 == "Identity": return P1

7.6 Elliptic Curves 155

x1, y1 = P1; x2, y2 = P2

x1 %= p; y1 %= p; x2 %= p; y2 %= p

if x1 == x2 and y1 == p-y2: return "Identity"

if P1 == P2:

if y1 == 0: return "Identity"

lam = (3*x1**2+a) * inversemod(2*y1,p)

else:

lam = (y1 - y2) * inversemod(x1 - x2, p)

x3 = lam**2 - x1 - x2

y3 = -lam*x3 - y1 + lam*x1

return (x3%p, y3%p)

————————————————————————

Listing 7.6.2 (Computing a Multiple of a Point).

def ellcurve_mul(E, m, P):

"""

Returns the multiple m*P of the point P on

the elliptic curve E.

Input:

E -- an elliptic curve over Z/pZ, given by a

triple (a, b, p).

m -- an integer

P -- a pair of integers (x, y) or the

string "Identity"

Output:

A pair of integers or the string "Identity".

Examples:

>>> E = (1, 0, 7)

>>> P = (1, 3)

>>> ellcurve_mul(E, 5, P)

(1, 3)

>>> ellcurve_mul(E, 9999, P)

(1, 4)

"""

assert m >= 0, "m must be nonnegative."

power = P

mP = "Identity"

while m != 0:

if m%2 != 0: mP = ellcurve_add(E, mP, power)

power = ellcurve_add(E, power, power)

m /= 2

return mP

————————————————————————

156 7. Computational Number Theory

7.6.2 Integer Factorization

In Listing 7.6.3 we implement Algorithm 6.3.2 for computing the least
common multiple of all integers up to some bound.

Listing 7.6.3 (Least Common Multiple of Numbers).

def lcm_to(B):

"""

Returns the least common multiple of all

integers up to B.

Input:

B -- an integer

Output:

an integer

Examples:

>>> lcm_to(5)

60

>>> lcm_to(20)

232792560

>>> lcm_to(100)

69720375229712477164533808935312303556800L

"""

ans = 1

logB = log(B)

for p in primes(B):

ans *= p**int(logB/log(p))

return ans

————————————————————————

Next we implement Pollard’s p − 1 method, as in Algorithm 6.3.3. We
use only the bases a = 2, 3, but you could change this to use more bases
by modifying the for loop in Listing 7.6.4.

Listing 7.6.4 (Pollard).

def pollard(N, m):

"""

Use Pollard’s (p-1)-method to try to find a

nontrivial divisor of N.

Input:

N -- a positive integer

m -- a positive integer, the least common

multiple of the integers up to some

bound, computed using lcm_to.

Output:

int -- an integer divisor of n

Examples:

7.6 Elliptic Curves 157

>>> pollard(5917, lcm_to(5))

61

>>> pollard(779167, lcm_to(5))

779167

>>> pollard(779167, lcm_to(15))

2003L

>>> pollard(187, lcm_to(15))

11

>>> n = random_prime(5)*random_prime(5)*random_prime(5)

>>> pollard(n, lcm_to(100))

315873129119929L #rand

>>> pollard(n, lcm_to(1000))

3672986071L #rand

"""

for a in [2, 3]:

x = powermod(a, m, N) - 1

g = gcd(x, N)

if g != 1 and g != N:

return g

return N

————————————————————————

In order to implement the elliptic curve method and also in our upcom-
ing elliptic curve cryptography implementation, it will be useful to define
the function randcurve of Listing 7.6.5, which computes a random elliptic
curve over Z/pZ and a point on it. For simplicity, randcurve always re-
turns a curve of the form y2 = x3 +ax+1, and the point P = (0, 1). As an
exercise you could change this function to return a more general curve, and
find a random point by choosing a random x, then incrementing it until
x3 + ax + 1 is a perfect square.

Listing 7.6.5 (Random Elliptic Curve).

def randcurve(p):

"""

Construct a somewhat random elliptic curve

over Z/pZ and a random point on that curve.

Input:

p -- a positive integer

Output:

tuple -- a triple E = (a, b, p)

P -- a tuple (x,y) on E

Examples:

>>> p = random_prime(20); p

17758176404715800329L #rand

>>> E, P = randcurve(p)

>>> print E

158 7. Computational Number Theory

(15299007531923218813L, 1, 17758176404715800329L) #rand

>>> print P

(0, 1)

"""

assert p > 2, "p must be > 2."

a = randrange(p)

while gcd(4*a**3 + 27, p) != 1:

a = randrange(p)

return (a, 1, p), (0,1)

————————————————————————

In Listing 7.6.6, we implement the elliptic curve factorization method.

Listing 7.6.6 (Elliptic Curve Factorization Method).

def elliptic_curve_method(N, m, tries=5):

"""

Use the elliptic curve method to try to find a

nontrivial divisor of N.

Input:

N -- a positive integer

m -- a positive integer, the least common

multiple of the integers up to some

bound, computed using lcm_to.

tries -- a positive integer, the number of

different elliptic curves to try

Output:

int -- a divisor of n

Examples:

>>> elliptic_curve_method(5959, lcm_to(20))

59L #rand

>>> elliptic_curve_method(10007*20011, lcm_to(100))

10007L #rand

>>> p = random_prime(9); q = random_prime(9)

>>> n = p*q; n

117775675640754751L #rand

>>> elliptic_curve_method(n, lcm_to(100))

117775675640754751L #rand

>>> elliptic_curve_method(n, lcm_to(500))

117775675640754751L #rand

"""

for _ in range(tries): # (1)

E, P = randcurve(N) # (2)

try: # (3)

Q = ellcurve_mul(E, m, P) # (4)

except ZeroDivisionError, x: # (5)

g = gcd(x[0],N) # (6)

7.6 Elliptic Curves 159

if g != 1 or g != N: return g # (7)

return N

————————————————————————

In line (1) the underscore means that the for loop iterates tries times,
but that no variable is “wasted” recording which iteration we are in. In
line (2) we compute a random elliptic curve and point on it. The elliptic
curve method works by assuming N is prime, doing a certain computation,
on an elliptic curve over Z/NZ, and detecting if something goes wrong.
Python contains a mechanism called exception handling, which leads to
a very simple implementation of the elliptic curve method, that uses the
elliptic curve functions that we have already defined. The try statement
in line (3) means that the code in line (4) should be executed, and if the
ZeroDivisionError exception is raised, then the code in lines (6) and
(7) should be executed, but not otherwise. Recall that in the definition of
inversemod from Listing 7.2.2, when the inverse could not be computed,
we raised a ZeroDivisionError, which included the offending pair (a, n).
Thus when computing mP , if at any point it is not possible to invert
a number modulo N , we jump to line (6), compute a gcd with N , and
hopefully split N .

7.6.3 ElGamal Elliptic Curve Cryptosystem

Listing 7.6.7 defines a function that creates an ElGamal cryptosystem over
Z/pZ. This is simplified from what one would do in actual practice. One
would use a more general random elliptic curve and point than we do in
elgamal init, and count the number of points on it using the Schoof-
Elkies-Atkin algorithm, then repeat this procedure if the number of points
is not a prime or a prime times a small number, or is p, p − 1, or p + 1.
Since implementing Schoof-Elkies-Atkin is beyond the scope of this book,
we have not included this crucial step.

Listing 7.6.7 (Initialize ElGamal).

def elgamal_init(p):

"""

Constructs an ElGamal cryptosystem over Z/pZ, by

choosing a random elliptic curve E over Z/pZ, a

point B in E(Z/pZ), and a random integer n. This

function returns the public key as a 4-tuple

(E, B, n*B) and the private key n.

Input:

p -- a prime number

Output:

tuple -- the public key as a 3-tuple

(E, B, n*B), where E = (a, b, p) is an

160 7. Computational Number Theory

elliptic curve over Z/pZ, B = (x, y) is

a point on E, and n*B = (x’,y’) is

the sum of B with itself n times.

int -- the private key, which is the pair (E, n)

Examples:

>>> p = random_prime(20); p

17758176404715800329L #rand

>>> public, private = elgamal_init(p)

>>> print "E =", public[0]

E = (15299007531923218813L, 1, 17758176404715800329L) #rand

>>> print "B =", public[1]

B = (0, 1)

>>> print "nB =", public[2]

nB = (5619048157825840473L, 151469105238517573L) #rand

>>> print "n =", private[1]

n = 12608319787599446459 #rand

"""

E, B = randcurve(p)

n = randrange(2,p)

nB = ellcurve_mul(E, n, B)

return (E, B, nB), (E, n)

————————————————————————

In Listing 7.6.8 we define elgamal encrypt, which encrypts a message
using the ElGamal cryptosystem on an elliptic curve.

Listing 7.6.8 (Encrypt Using ElGamal).

def elgamal_encrypt(plain_text, public_key):

"""

Encrypt a message using the ElGamal cryptosystem

with given public_key = (E, B, n*B).

Input:

plain_text -- a string

public_key -- a triple (E, B, n*B), as output

by elgamal_init.

Output:

list -- a list of pairs of points on E that

represent the encrypted message

Examples:

>>> public, private = elgamal_init(random_prime(20))

>>> elgamal_encrypt("RUN", public)

[((6004308617723068486L, 15578511190582849677L), \ #rand

(7064405129585539806L, 8318592816457841619L))] #rand

"""

E, B, nB = public_key

a, b, p = E

7.6 Elliptic Curves 161

assert p > 10000, "p must be at least 10000."

v = [1000*x for x in \

str_to_numlist(plain_text, p/1000)] # (1)

cipher = []

for x in v:

while not legendre(x**3+a*x+b, p)==1: # (2)

x = (x+1)%p

y = sqrtmod(x**3+a*x+b, p) # (3)

P = (x,y)

r = randrange(1,p)

encrypted = (ellcurve_mul(E, r, B), \

ellcurve_add(E, P, ellcurve_mul(E,r,nB)))

cipher.append(encrypted)

return cipher

————————————————————————

In line (1) we encode the plain text message as a sequence of integers
that are all 0 modulo 1000. It would be nice if the integers returned by
str to numlist were the x-coordinates of points on the elliptic curve E,
but typically only half the x ∈ Z/pZ will actually be x-coordinates of points
on E. Thus we multiply the integers returned by str to numlist, and 1
to them in line (2) until they are the x-coordinates of points on E. Note
that since half the elements of Z/pZ are perfect squares, we should only
have to add 1 very few times to obtain a perfect square. The rest of the
Listing 7.6.8 is a straightforward implementation of ElGamal as described
in Section 6.4.2.

In Listing 7.6.9 we give the corresponding decryption routine, which takes
into account the way we encoded integers as points on E.

Listing 7.6.9 (Decrypt Using ElGamal).

def elgamal_decrypt(cipher_text, private_key):

"""

Encrypt a message using the ElGamal cryptosystem

with given public_key = (E, B, n*B).

Input:

cipher_text -- list of pairs of points on E output

by elgamal_encrypt.

Output:

str -- the unencrypted plain text

Examples:

>>> public, private = elgamal_init(random_prime(20))

>>> v = elgamal_encrypt("TOP SECRET MESSAGE!", public)

>>> print elgamal_decrypt(v, private)

TOP SECRET MESSAGE!

"""

E, n = private_key

162 7. Computational Number Theory

p = E[2]

plain = []

for rB, P_plus_rnB in cipher_text:

nrB = ellcurve_mul(E, n, rB)

minus_nrB = (nrB[0], -nrB[1])

P = ellcurve_add(E, minus_nrB, P_plus_rnB)

plain.append(P[0]/1000)

return numlist_to_str(plain, p/1000)

————————————————————————

7.7 Exercises

7.1 (a) Let y = 10000. Compute π(y) = #{primes p ≤ y}.
(b) The prime number theorem implies π(x) is asymptotic to x

log(x) .

How close is π(y) to y/ log(y), where y is as in (a)?

7.2 Design an analogue of the trial division function of Listing 7.1.3
that uses a sequence dif of length longer than 8, so it skips integers
not coprime to 210 (see the discussion after Listing 7.1.3).

7.3 Compute the last two digits of 345.

7.4 Find the integer a such that 0 ≤ a < 113 and

10270 + 1 ≡ a37 (mod 113).

7.5 Find the proportion of primes p < 1000 such that 2 is a primitive
root modulo p.

7.6 Find a prime p such that the smallest primitive root modulo p is 37.

7.7 You and Nikita wish to agree on a secret key using the Diffie-Hellman
key exchange. Nikita announces that p = 3793 and g = 7. Nikita
secretly chooses a number n < p and tells you that gn ≡ 454 (mod p).
You choose the random number m = 1208. What is the secret key?

7.8 You see Michael and Nikita agree on a secret key using the Diffie-
Hellman key exchange. Michael and Nikita choose p = 97 and g = 5.
Nikita chooses a random number n and tells Michael that gn ≡ 3
(mod 97), and Michael chooses a random number m and tells Nikita
that gm ≡ 7 (mod 97). Brute force crack their code: What is the
secret key that Nikita and Michael agree upon? What is n? What
is m?

7.9 In this problem, you will “crack” an RSA cryptosystem. What is the
secret decoding number d for the RSA cryptosystem with public key
(n, e) = (5352381469067, 4240501142039)?

7.7 Exercises 163

7.10 Nikita creates an RSA cryptosystem with public key

(n, e) = (1433811615146881, 329222149569169).

In the following two problems, show the steps you take to factor n.
(Don’t simply factor n directly using a computer.)

(a) Somehow you discover that d = 116439879930113. Show how
to use the probabilistic algorithm of Section 3.3.3 to use d to
factor n.

(b) In part (a) you found that the factors p and q of n are very
close. Show how to use the Fermat factorization method of Sec-
tion 3.3.2 to factor n.

7.11 Compute the pn and qn for the continued fractions [−3, 1, 1, 1, 1, 3]
and [0, 2, 4, 1, 8, 2]. Check that the propositions in Section 5.1.1 hold.

7.12 A theorem of Hurwitz (1891) asserts that for any irrational number x,
there exists infinitely many rational numbers a/b such that

∣

∣

∣
x − a

b

∣

∣

∣
<

1√
5b2

.

Take x = e, and obtain four rational numbers that satisfy this in-
equality.

7.13 Which of the following numbers is a sum of two squares? Express
those that are as a sum of two squares.

−389, 12345, 729, 1729, 5809961789

7.14 (a) Show that the set of numbers 59 + 1 ± s for s ≤ 15 contains 14
numbers that are B-power smooth for B = 20.

(b) Find the proportion of primes p in the interval from 1012 and
1012 + 1000 such that p − 1 is B = 105 power-smooth.

164 7. Computational Number Theory

This is page 165
Printer: Opaque this

Answers and Hints

1. Prime Numbers

2. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97.

3. Emulate the proof of Proposition 1.2.4.

2. The Ring of Integers Modulo n

1. They are 5, 13, 3, and 8.

2. For example x = 22, y = −39.

3. Hint: Use the binomial theorem and prove that if r ≥ 1 then p
divides

(

p
r

)

.

6. For example, S1 = {0, 1, 2, 3, 4, 5, 6}, S2 = {1, 3, 5, 7, 11, 13, 23},
S3 = {0, 2, 4, 6, 8, 10, 12}, and S4 = {2, 3, 5, 7, 11, 13, 29}. In each
we find Si by listing the first seven numbers satisfying the ith
condition, then adjusted the last number if necessary so that the
reductions would be distinct modulo 7.

7. An integer is divisible by 5 if and only if the last digits is 0 or 5.
An integer is divisible by 9 if and only if the sum of the digits
is divisible by 9. An integer is divisible by 11 if and only if the
alternating sum of the digits is divisible by 11.

8. Hint for part (a): Use the divisibility rule you found in Exer-
cise 1.7.

166 7. Computational Number Theory

9. 71

10. 8

11. As explained on page 22, we know that Z/nZ is a ring for any n.
Thus to show that Z/pZ is a field it suffices to show that every
nonzero element a ∈ Z/pZ has an inverse. Lift a to an element
a ∈ Z, and set b = p in Proposition 2.3.1. Because p is prime,
gcd(a, p) = 1, so there exists x, y such that ax+py = 1. Reducing
this equality modulo p proves that a has an inverse x (mod p).
Alternative one could argue just like after Definition 2.1.10 that
am = 1 for some m, so some power of a is the inverse of a.

12. 302

14. Only for n = 1, 2. If n > 2, then n is either divisible by an
odd prime p or 4. If 4 | n, then 2e − 2e−1 divides ϕ(n) for some
e ≥ 2, so ϕ(n) is even. If an odd p divides n, then the even
number pe − pe−1 divides ϕ(n) for some e ≥ 1.

15. The map ψ is a homomorphism since both reduction maps

Z/mnZ → Z/mZ and Z/mnZ → Z/nZ

are homomorphisms. It is injective because if a ∈ Z is such that
ψ(a) = 0, then m | a and n | a, so mn | a (since m and n are
coprime), so a ≡ 0 (mod mn). The cardinality of Z/mnZ is mn
and the cardinality of the product Z/mZ × Z/nZ is also mn,
so ψ must be an isomorphism. The units (Z/mnZ)∗ are thus in
bijection with the units (Z/mZ)∗ × (Z/nZ)∗.

For the second part of the exercise, let g = gcd(m,n) and set
a = mn/g. Then a 6≡ 0 (mod mn), but m | a and n | a, so
a ker(ψ).

16. We express the question as a system of linear equations modulo
various numbers, and use the Chinese remainder theorem. Let
x be the number of books. The problem asserts that

x ≡ 6 (mod 7)

x ≡ 2 (mod 6)

x ≡ 1 (mod 5)

x ≡ 0 (mod 4)

Applying CRT to the first pair of equations we find that x ≡ 20
(mod 42). Applying CRT to this equation and the third we find
that x ≡ 146 (mod 210). Since 146 is not divisible by 4, we add
multiples of 210 to 146 until we find the first x that is divisible
by 4. The first multiple works, and we find that the aspiring
mathematicians have 356 math books.

7.7 Exercises 167

17. Note that p = 3 works, since 11 = 32 + 2 is prime. Now suppose
p 6= is any prime such that p and p2+2 are both prime. We must
have p ≡ 1 (mod 3) or p ≡ 2 (mod 3). Then p2 ≡ 1 (mod 3),
so p2 + 2 ≡ 0 (mod 3), which contradicts the fact that p2 + 2 is
prime.

18. For (a) n = 1, 2, see solution to Exercise 2.14. For (b), yes there
are many such examples. For example, m = 2, n = 4.

19. By repeated application of multiplicativity and Equation (2.2.2)
on page 29, we see that if n =

∏

i pei

i is the prime factorization
of n, then

ϕ(n) =
∏

i

(pei

i − pei−1
i) =

∏

i

pei−1
i ·

∏

i

(pi − 1).

20. 1, 6, 29, 34

21. Let g = gcd(12n+1, 30n+2). Then g | 30n+2−2·(12n+1) = 6n.
For the same reason g also divides 12n+1−2·(6n) = 1, so g = 1,
as claimed.

24. There is no primitive root modulo 8, since (Z/8Z)∗ has order
4, but every element of (Z/8Z)∗ has order 2. Prove that if ζ is
a primitive root modulo 2n, for n ≥ 3, then the reduction of ζ
mod 8 is a primitive root, a contradiction.

25. 2 is a primitive root modulo 125.

26. Let
∏m

i=1 pei

i be the prime factorization of n. Slightly generaliz-
ing Exercise 15 we see that

(Z/nZ)∗ ∼=
∏

(Z/pei

i Z)∗.

Thus (Z/nZ)∗ is cyclic if and only if the product (Z/pei

i Z)∗ is
cyclic. If 8 | n, then there is no chance (Z/nZ)∗ is cyclic, so
assume 8 ∤ n. Then by Exercise 2.25 each group (Z/pei

i Z)∗ is
itself cyclic. A product of cyclic groups is cyclic if and only the
orders of the factors in the product are coprime (this follows from
Exercise 2.15). Thus (Z/nZ)∗ is cyclic if and only if the numbers
pi(pi − 1), for i = 1, . . . ,m are pairwise coprime. Since pi − 1 is
even, there can be at most one odd prime in the factorization of
n, and we see that (Z/nZ)∗ is cyclic if and only if n is an odd
prime power, twice an odd prime power, or n = 4.

3. Public-Key Cryptography

1. The best case is that each letter is A. Then the question is to find
the largest n such that 1 + 27 + · · ·+ 27n ≤ 1020. By computing

168 7. Computational Number Theory

log27(1020), we see that 2713 < 1020 and 2714 > 1020. Thus
n ≤ 13, and since 1+27+ · · ·+27n−1 < 27n, and 2 ·2713 < 1020,
it follows that n = 13.

2. This is not secure, since it is just equivalent to a “Ceaser Ci-
pher”, that is a permutation of the letters of the alphabet, which
is well-known to be easily broken using a frequency analysis.

3. If we can compute the polynomial

f = (x−p)(x−q)(x−r) = x3−(p+q+r)x2+(pq+pr+qr)x−pqr,

then we can factor n by finding the roots of f , e.g., using New-
ton’s method (or Cardona’s formula for the roots of a cubic).
Because p, q, r, are distinct odd primes we have

ϕ(n) = (p − 1)(q − 1)(r − 1) = pqr − (pq + pr + qr) + p + q + r,

and
σ(n) = 1 + (p + q + r) + (pq + pr + qr) + pqr.

Since we know n, ϕ(n), and σ(n), we know

σ(n) − 1 − n = (p + q + r) + (pq + pr + qr), and

ϕ(n) − n = (p + q + r) − (pq + pr + qr).

We can thus compute both p + q + r and pq + pr + qr, hence
deduce f and find p, q, r.

4. Quadratic Reciprocity

1. They are all 1, −1, 0, and 1.

2. By Proposition 4.3.3 the value of
(

3
p

)

depends only on the re-

duction ±p (mod 12). List enough primes p such that the ±p
reduce to 1, 5, 7, 11 modulo 12 and verify that the asserted for-
mula holds for each of them.

6. Since p = 213 − 1 is prime there are either two solutions or no
solutions to x2 ≡ 5 (mod p), and we can decide which using
quadratic reciprocity. We have

(

5

p

)

= (−1)(p−1)/2·(5−1)/2
(p

5

)

=
(p

5

)

,

so there are two solutions if and only if p = 213 −1 is ±1 mod 5.
In fact p ≡ 1 (mod 5), so there are two solutions.

7. We have 448 = 296. By Fermat’s Little Theorem 296 = 1, so
x = 1.

7.7 Exercises 169

8. For (a) take a = 19 and n = 20. We found this example us-
ing the Chinese remainder theorem applied to 4 (mod 5) and 3
(mod 4), and used that

(

19
20

)

=
(

19
5

)

·
(

19
4

)

= (−1)(−1) = 1, yet
19 is not a square modulo either 5 or 4, so is certainly not a
square modulo 20.

9. Hint: First reduce to the case that 6k − 1 is prime, by using
that if p and q are primes not of the form 6k − 1, then neither
is their product. If p = 6k − 1 divides n2 + n + 1, it divides
4n2 + 4n + 4 = (2n + 1)2 + 3, so −3 is a quadratic residue
modulo p. Now use quadratic reciprocity to show that −3 is not
a quadratic residue modulo p.

5. Continued Fractions

9. Suppose n = x2 + y2, with x, y ∈ Q. Let d be such that dx, dy ∈
Z. Then d2n = (dx)2 + (dy)2 is a sum of two integer squares, so
by Theorem 5.6.1 if p | d2n and p ≡ 3 (mod 4), then ordp(d

2n)
is even. We have ordp(d

2n) is even if and only if ordp(n) is even,
so Theorem 5.6.1 implies that n is also a sum of two squares.

11. The squares modulo 8 are 0, 1, 4, so a sum of two squares reduces
modulo 8 to one of 0, 1, 2, 4 or 5. Four consecutive integers that
are sums of squares would reduce to four consecutive integers in
the set {0, 1, 2, 4, 5}, which is impossible.

6. Elliptic Curves

2. The second point of intersection is (129/100, 383/1000).

3. The group is cyclic of order 9, generated by (4, 2). The elements
of E(K) are

{O, (4, 2), (3, 4), (2, 4), (0, 4), (0, 1), (2, 1), (3, 1), (4, 3)}.

4. In part (a) the pattern is that Np = p + 1. For part (b), a hint
is that when p ≡ 2 (mod 3), the map x 7→ x3 on (Z/pZ)∗ is an
automorphism, so x 7→ x3 + 1 is a bijection. Now use what you
learned about squares in Z/pZ from Chapter 4.

5. For all sufficiently large real x, the equation y2 = x3 +ax+b has
a real solution y. Thus the group E(R) is not countable, since R
is not countable. But any finitely generated group is countable.

6. In a course on abstract algebra one often proves the nontrivial
fact that every subgroup of a finitely generated abelian group
is finitely generated. In particular, the torsion subgroup Gtor is
finitely generated. However, a finitely generated abelian torsion
group is finite.

170 7. Computational Number Theory

7. Hint: Multiply both sides of y2 = x3 + ax + b by a power of a
common denominator, and “absorb” powers into x and y.

8. Hint: see Exercise 4.5.

7. Computational Number Theory
All code below assume that the Python functions from Chapter 7
have been defined.

1. >>> len(primes(10000))

1229

>>> 10000/log(10000)

1085.73620476

3. >>> powermod(3,45,100)

43

4. First raise both sides of the equation to the power of the multi-
plicative inverse of 37 modulo 112 = ϕ(113), which is 109 to get
a ≡ (10270 +1)109 (mod 113). We then evaluate this and obtain
a = 60.

>>> inversemod(37, 112)

109

>>> powermod(102, 70, 113)

98

>>> powermod(99, 109, 113)

60

5. Using the following program we see that the number 2 is a prim-
itive root 67 out of 168 times (about 40 percent).

>>> P = primes(1000)

>>> Q = [p for p in P if primitive_root(p) == 2]

>>> print len(Q), len(P)

67 168

6. The first such prime is 36721.

>>> P = primes(50000)

>>> Q = [primitive_root(p) for p in P]

>>> Q.index(37)

3893

>>> P[3893]

36721

7. 2156, since the secret key is gnm ≡ 454m ≡ 2156.

7.7 Exercises 171

8. To break the system, we need to find n such that 5n ≡ 3
(mod 97). The following program does this finds n = 70, and
similarly one finds that m = 31. The secret key is 570·31 ≡ 44
(mod 97).

>>> for n in range(97):

... if powermod(5,n,97)==3: print n

70

9. We factor n and computer ϕ(n) then the inverse d of e modulo
ϕ(n).

>>> factor(5352381469067)

[(141307, 1), (37877681L, 1)]

>>> d=inversemod(4240501142039, (141307-1)*(37877681-1))

>>> d

5195621988839L

11. >>> convergents([-3,1,1,1,1,3])

[(-3, 1), (-2, 1), (-5, 2), (-7, 3), \

(-12, 5), (-43, 18)]

>>> convergents([0,2,4,1,8,2])

[(0, 1), (1, 2), (4, 9), (5, 11), \

(44, 97), (93, 205)]

12. The following code outputs the first 8 examples. First we import
the math library, in order to compute a decimal approximation
to e. Then we compute terms of the continued fraction of e along
with the partial convergents. Finally we print only those partial
convergents that satisfy the Hurwitz inequality.

>>> import math

>>> e = math.exp(1)

>>> v, convs = contfrac_float(e)

>>> [(a,b) for a, b in convs if \

abs(e - a*1.0/b) < 1/(math.sqrt(5)*b**2)]

[(3, 1), (19, 7), (193, 71), (2721, 1001),\

(49171, 18089), (1084483, 398959),\

(28245729, 10391023), (325368125, 119696244)]

13. −389 is not a sum of two squares because it is negative. 12345
is not because 3 exactly divides it. 729 = 36 = (33)2 + 02. The
number 5809961789 is prime and equals 515422 + 561552.

>>> factor(12345)

[(3, 1), (5, 1), (823, 1)]

>>> factor(729)

[(3, 6)]

>>> factor(5809961789)

172 7. Computational Number Theory

[(5809961789L, 1)]

>>> 5809961789 % 4

1L

>>> sum_of_two_squares(5809961789)

(51542L, 56155L)

14. We use the following program. The computation of Ps takes a
few seconds, since our implementation of factor is not very
efficient.

>>> N = [60 + s for s in range(-15,16)]

>>> def is_powersmooth(B, x):

... for p, e in factor(x):

... if p**e > B: return False

... return True

>>> Ns = [x for x in N if is_powersmooth(20, x)]

>>> print len(Ns), len(N), len(Ns)*1.0/len(N)

14 31 0.451612903226

>>> P = [x for x in range(10**12, 10**12+1000)\

if miller_rabin(x)]

>>> Ps = [x for x in P if \

is_powersmooth(10000, x-1)]

>>> print len(Ps), len(P), len(Ps)*1.0/len(P)

2 37 0.0540540540541

This is page 173
Printer: Opaque this

References

[ACD+99] K. Aardal, S. Cavallar, B. Dodson, A. Lenstra, W. Lioen, P. L.
Montgomery, B. Murphy, J. Gilchrist, G. Guillerm, P. Leyland,
J. Marchand, F. Morain, A. Muffett, C.&C. Putnam, and P. Zim-
mermann, Factorization of a 512-bit RSA key using the Number
Field Sieve, http://www.loria.fr/~zimmerma/records/RSA155
(1999).

[AGP94] W. R. Alford, Andrew Granville, and Carl Pomerance, There
are infinitely many Carmichael numbers, Ann. of Math. (2) 139
(1994), no. 3, 703–722. MR 95k:11114

[AKS02] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P , to
appear in Annals of Math.,
http://www.cse.iitk.ac.in/users/manindra/primality.ps

(2002).

[BS76] Leonard E. Baum and Melvin M. Sweet, Continued fractions of
algebraic power series in characteristic 2, Ann. of Math. (2) 103
(1976), no. 3, 593–610. MR 53 #13127

[Bur89] D. M. Burton, Elementary number theory, second ed., W. C.
Brown Publishers, Dubuque, IA, 1989. MR 90e:11001

[Cal] C. Caldwell, The Largest Known Primes,
http://www.utm.edu/research/primes/largest.html.

174 References

[Cer] Certicom, The certicom ECC challenge,
http://www.certicom.com/

index.php?action=res,ecc challenge.

[Cla] Clay Mathematics Institute, Millennium prize problems,
http://www.claymath.org/millennium prize problems/.

[Coh] H. Cohn, A short proof of the continued fraction expansion of e,
http://research.microsoft.com/~cohn/publications.html.

[Coh93] H. Cohen, A course in computational algebraic number theory,
Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin,
1993. MR 94i:11105

[Con97] John H. Conway, The sensual (quadratic) form, Carus Mathemat-
ical Monographs, vol. 26, Mathematical Association of America,
Washington, DC, 1997, With the assistance of Francis Y. C. Fung.
MR 98k:11035

[CP01] R. Crandall and C. Pomerance, Prime numbers, Springer-Verlag,
New York, 2001, A computational perspective. MR 2002a:11007

[Cre] J. E. Cremona, mwrank (computer software),
http://www.maths.nott.ac.uk/personal/jec/ftp/progs/.

[Cre97] , Algorithms for modular elliptic curves, second ed., Cam-
bridge University Press, Cambridge, 1997.

[Dav99] H. Davenport, The higher arithmetic, seventh ed., Cambridge Uni-
versity Press, Cambridge, 1999, An introduction to the theory of
numbers, Chapter VIII by J. H. Davenport. MR 2000k:11002

[DH76] W. Diffie and M.E. Hellman, New directions in cryptography,
IEEE Trans. Information Theory IT-22 (1976), no. 6, 644–654.
MR 55 #10141

[Eul85] Leonhard Euler, An essay on continued fractions, Math. Systems
Theory 18 (1985), no. 4, 295–328, Translated from the Latin by
B. F. Wyman and M. F. Wyman. MR 87d:01011b

[FT93] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge
University Press, Cambridge, 1993. MR 94d:11078

[GS02] X. Gourdon and P. Sebah, The π(x) project,
http://numbers.computation.free.fr/constants/primes/

pix/pixproject.html.

[Guy94] R. K. Guy, Unsolved problems in number theory, second ed.,
Springer-Verlag, New York, 1994, Unsolved Problems in Intuitive
Mathematics, I. MR 96e:11002

References 175

[Har77] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York,
1977, Graduate Texts in Mathematics, No. 52.

[Hoo67] C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225
(1967), 209–220. MR 34 #7445

[HW79] G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers, fifth ed., The Clarendon Press Oxford University Press,
New York, 1979. MR 81i:10002

[IBM01] IBM, IBM’s Test-Tube Quantum Computer Makes History,
http://www.research.ibm.com/resources/news/

20011219 quantum.shtml.

[IR90] K. Ireland and M. Rosen, A classical introduction to modern
number theory, second ed., Springer-Verlag, New York, 1990. MR
92e:11001

[Khi63] A. Ya. Khintchine, Continued fractions, Translated by Peter
Wynn, P. Noordhoff Ltd., Groningen, 1963. MR 28 #5038

[Knu97] Donald E. Knuth, The art of computer programming, third
ed., Addison-Wesley Publishing Co., Reading, Mass.-London-
Amsterdam, 1997, Volume 1: Fundamental algorithms, Addison-
Wesley Series in Computer Science and Information Processing.

[Knu98] , The art of computer programming. Vol. 2, second ed.,
Addison-Wesley Publishing Co., Reading, Mass., 1998, Seminu-
merical algorithms, Addison-Wesley Series in Computer Science
and Information Processing. MR 83i:68003

[Kob84] N. Koblitz, Introduction to elliptic curves and modular forms,
Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New
York, 1984. MR 86c:11040

[Leh14] D. N. Lehmer, List of primes numbers from 1 to 10,006,721,
Carnegie Institution Washington, D.C. (1914).

[Lem] F. Lemmermeyer, Proofs of the Quadratic Reciprocity Law,
http://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html.

[Len87] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann.
of Math. (2) 126 (1987), no. 3, 649–673. MR 89g:11125

[LL93] A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The development of
the number field sieve, Lecture Notes in Mathematics, vol. 1554,
Springer-Verlag, Berlin, 1993. MR 96m:11116

176 References

[LMG+01] Vandersypen L. M., Steffen M., Breyta G., Yannoni C. S., Sher-
wood M. H., and Chuang I. L., Experimental realization of Shor’s
quantum factoring algorithm using nuclear magnetic resonance,
Nature 414 (2001), no. 6866, 883–887.

[LT72] S. Lang and H. Trotter, Continued fractions for some algebraic
numbers, J. Reine Angew. Math. 255 (1972), 112–134; addendum,
ibid. 267 (1974), 219–220; MR 50 #2086. MR 46 #5258

[LT74] , Addendum to: “Continued fractions for some algebraic
numbers” (J. Reine Angew. Math. 255 (1972), 112–134), J. Reine
Angew. Math. 267 (1974), 219–220. MR 50 #2086

[Mor93] P. Moree, A note on Artin’s conjecture, Simon Stevin 67 (1993),
no. 3-4, 255–257. MR 95e:11106

[NZM91] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An introduc-
tion to the theory of numbers, fifth ed., John Wiley & Sons Inc.,
New York, 1991. MR 91i:11001

[Old70] C. D. Olds, The Simple Continued Fraction Expression of e, Amer.
Math. Monthly 77 (1970), 968–974.

[Per57] O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte
und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische
Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957.
MR 19,25c

[Ros] Guido van Rossum, Python,
http://www.python.org.

[RSA] RSA, The New RSA Factoring Challenge,
http://www.rsasecurity.com/rsalabs/challenges/factoring.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Comm. ACM 21
(1978), no. 2, 120–126. MR 83m:94003

[Sho97] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J. Com-
put. 26 (1997), no. 5, 1484–1509. MR 98i:11108

[Sil86] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts
in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR
87g:11070

[Sin99] S. Singh, The Code Book: The Science of Secrecy from Ancient
Egypt to Quantum Cryptography, Doubleday, 1999.

References 177

[Slo] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/.

[ST92] J. H. Silverman and J. Tate, Rational points on elliptic curves, Un-
dergraduate Texts in Mathematics, Springer-Verlag, New York,
1992. MR 93g:11003

[Wal48] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nos-
trand Company, Inc., New York, N. Y., 1948. MR 10,32d

[Wei03] E. W. Weisstein, RSA-576 Factored,
http://mathworld.wolfram.com/news/2003-12-05/rsa/.

[Wil00] A. J. Wiles, The Birch and Swinnerton-Dyer Conjecture,
http://www.claymath.org/prize problems/birchsd.htm.

[Zag75] D. Zagier, The first 50 million prime numbers,
http://modular.fas.harvard.edu/scans/papers/zagier/.

