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In this paper we are interested in zeros of polynomials whose coefficients lie in Q: we
will ask, what does local information about the zeros of a polynomial tell us about
its zeros globally? Local behavior amounts to checking whether the polynomial
has zeros in the field ) completed with respect to some valuation: thus, we check
whether a polynomial has a zero in (@, for each prime p € Z, where Q, is the field
@ completed with respect to the p-adic valuation; and also whether it has a zero
in Qoo = R. The main result of this paper will be that when f(z1,22,...,2,) is a
homogeneous quadratic polynomial, the existence of a nontrivial zero in Q, for each
p and a nontrivial zero in R implies that the polynomial has a nontrivial zero in
Q. To prove this result, which is called the Hasse-Minkowski Theorem, I will follow
closely Jean-Pierre Serre’s discussion of the question in A Course in Arithmetic; as
the treatment there was fairly condensed I found it worthwhile to expand on some
of the details, which 1s primarily what I have done in what follows.

This ability to move from local information to global information begins to fail
when we consider homogeneous cubic polynomials. A well-known example is due
to Ernst Selmer: 32® + 4y® + 52 has a zero in R and a zero in Q, for each prime
p, but no solutions in Q.

At the end of this paper I will also mention an application of Hasse-Minkowski that
will describe which integers can be written as the sum of three squares; a corollary
will show that every integer can be written as the sum of four squares. Both of
these can be proven using basic number theory, but they are also easy corollaries
of the main result of this paper. But there’s a lot of ground to cover before we get
there.

We assume that all fields have characteristic # 2, and we assume that all vector
spaces are finite dimensional over their field of scalars.

Quadratic Forms: Definitions and Basic Properties

Definition 1. Let V' be a vector space over a field F'. Let @) : V — I be a function
from the vector space into the field satisfying the following two conditions:

(i) Q(av) = a®*Qv)Vae FLveV
(i) The function (-, ) : V. x V = F given by (v, w) = %[Q(v—l—w) —Qv) — Q(w)]

is a (symmetric) bilinear form.
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Then we say that @ is a quadratic form, and we call (V, Q) a quadratic module.

We will often make use of the bilinear form defined in (ii), and, in fact, on a given
vector space V, there is a natural correspondence between its symmetric bilinear
forms and its quadratic forms, as follows. If we are given a symmetric bilinear
form, we can define Q(v) = (v,v), and get back a quadratic form (computing
Q(av) = (av,av) = a*(v,v) = a’Q(v) shows that property (i) holds, and %[(v +
w, v+ w) — (v,v) — (w,w)] = {v,w) shows that property (ii) holds). Expanding
Q(v+ w), and solving for {v, w) shows that the formula given in the definition gets
us back to the same bilinear form. Similarly, if we start with a quadratic form
and define a bilinear form (v, w) by the expression given in (ii), then (v, v) is the
quadratic form we started with. Thus, we get a one-to-one correspondence between
quadratic forms and symmetric bilinear forms on a vector space V' (when, again,
we assume the scalar field has characteristic # 2).

The more familiar definition of a quadratic form is a polynomial in variables
Z1,..., T, where each term has degree 2, so an expression of the form

n n
2D aijrij.
i=1 j=1
This description can be derived from the more abstract definition given above by

choosing a basis for the vector space V. Let eq,...e, be a basis for V. For z € V,
we write z = Y| x;e;. Then

n n n
Qz) = Q) Jwies) = O wiei, y_wje;)
i=1 i=1 j=1
n n
= Z xi<ei,z zje;)  (bilinearity in the first component)
i=1 j=1

n n
= Z Z z;x;{e;,e;) (bilinearity in the second component)
i=1j=1

n n
= Z Z 55T 5,

i=1j=1
where in the last expression a;; = (e;,e;). We can in turn think of this expression
as #' Az, where z is a vector with coordinates (z;) in the basis (e;), and A = (a;;).
Note that A is symmetric, since (e;, e;) = (e;,e;). We call A the matrix associated
to the quadratic form; notice that the same matrix defines the associated bilinear
form: (z,y) = ' Ay.

It would be nice to associate with a quadratic form ) the determinant of the matrix
A which represents the form, but A depends on the choice of basis, so we won’t
in general be able to associate a single number to @ in this way. But we will try
to anyway: we define the discriminant of ) to be the determinant of its matrix A
with respect to some basis of V. If we recall from linear algebra that changing the
basis of V' changes the matrix of the bilinear form to A’ = X* AX | where X is some
invertible matrix, then we see that det A’ = det A(det X)?; thus, the discriminant
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1s determined up to multiplication by the square of a nonzero field element. Thus,
if we are working over Q or R, for example, then it makes sense to say that the
discriminant 1s positive, negative, or 0, because those distinctions are not affected
by squares. Regardless of the field F', we can view the discriminant as a uniquely
determined element of {0} U F*/F*?  the elements of the field modulo the square
elements of the field.

The distinction between nonzero and 0 discriminant is of course always valid. If
@ has discriminant 0, we say 1t is a degenerate form; if @) has nonzero discrimi-
nant, it is nondegenerate. We can say more to distinguish degenerate forms from
nondegenerate ones, but we need to define orthogonality first:

Definition 2. Let (V,Q) be a quadratic module. We say x,y € V are orthogonal
if (z,y) = 0. If H C V, then define the orthogonal complement H° = {y € V :
(r,y) = 0V « € H}; note that H" forms a vector subspace. Finally, if Vi and V5
are two vector subspaces of V', then they are orthogonal if z € V1,y € Vo —

(z,y) = 0. That means V; C Vi’ and V5 C V.

@ i1s a nondegenerate form <= the orthogonal complement of the whole space
V with respect to the form @ is trivial: if V% = 0. This equivalence is easy to
see: letting A be the matrix of () with respect to some basis, we see that a vector
v € V9 would have the property that w!Av = 0 for every w € V, so we would have
to have Av = 0, which would mean v € ker A; thus, there’s a nontrivial vector in
V0 <= there’s a nontrivial vector in the kernel of A <= det A = 0.

A very useful technique when dealing with a quadratic module (V, Q) is going to
be breaking it up into pairwise orthogonal subspaces Uy, ...U,,, whose direct sum
is equal to the whole space V. We call V' the orthogonal direct sum of the U;, and
use the notation @ to signify the pairwise orthogonality of the U; :

A useful property of this construction is that if you take an element x and write it
as a sum of ; € U; for each 4, then Q(z) = Q1(x1) + - + Qm(zm), where Q; is
the restriction of @ to U;; if, on the other hand, you have a collection of quadratic
modules (U;, ;), you can construct a quadratic module (V, Q) where V = @U; and
Q(z) = Q1(z1)+ -+ Qm(zm), for & = (x1,...,2y) € V; this means that V is an
orthogonal direct sum of the U;.

Suppose that f and g are two forms written out with respect to a basis: so
flzi,2a,...,2,) and g(y1,y2,.. .Ym). We will write f4g¢ to denote the form in
n + m variables defined by: f(z1,%2,...,%n) + ¢(Tnt1, Tat2, .-, Tnym). This +
operation corresponds to orthgonal sum of the quadratic modules associated to f
and g. This operation will be very useful to us later.

Definition 3. Let (V, @) be a quadratic module. An element # € V is said to be
isotropic if Q(x) = 0. A vector subspace U C V is said to be isotropic if Q(x) =0
VeeU.



Proposition 4. Let (V, Q) be a quadratic module; let U be a vector subspace.
Then:

U is isotropic <= U C U" <= Qv =0.

Pf. If U isisotropic, then for z,y € U (&, y) = %[(1‘—1—3/, e4y)—(x,2)—(y,y)] =0,
so U C U the other equivalences are clear from the definitions. a

Definition 5. We call a quadratic module U a hyperbolic plane if it has basis
z,y, where z and y are each isotropic, but (z,y) # 0. Scaling y by ﬁ, we can

assume (z,y) = 1. Note that we can tell already that U is a nondegenerate module:
using the definition of the defining matrix A as having entries a;; = (e;, ¢;), we can

compute the matrix of ) to be <(1) é) which has nonzero determinant.

Proposition 6. Let (V,Q) be a nondegenerate quadratic module. Then any
nonzero isotropic element x is contained in a hyperbolic plane U C V.

Pf. Since V is nondegenerate we can find some z € V so that (z,z) # 0; scale z
so that {#,z) = 1. Then, letting y = z — %(z, z)ax, we have:

1
(x,y) = (&, z — §<z,z>x>
1
=(z,z) — §<Z,Z><l‘,l‘>
={z,z)=1.
Also,
1 1
(y, ) = (z — ={z,2)x, 2 — ={z,2)x)
2 2
1
={z,zy —{z,z){z, 2) + Z<Z’ Yz, 2) =0
So the space U spanned by z and y is the desired hyperbolic plane. a

Representation of Field Elements by Quadratic Forms

We say a form @) represents an element a in the scalar field F' if there 1s a nonzero

element x so that Q(z) = a; if the form is written out as f(xy1,xa,...,2,), then f
represents an element a if there’s an n-tuple (z1, 22, ...,2,) # (0,0,...,0) so that
fler, 2o, .. 2n) = a.

We say that two forms f and f’, with coefficient matrices A and A’ respectively,
are equivalent if there exists an invertible matrix X so that X*AX. It is easy to
see that two equivalent forms represent the same values: for, if f represents a, then
there exists some  # 0 so that x'Azr = a; we find y = X !z, so that » = Xy,
soa = o' Xz = (Xy)'AXy = " (X'AX)y = y' A’y; thus, this follows from the
invertibility of the change of basis matrix X. We write f ~ f’ when f and f’ are
equivalent.



Recalling the definition of a hyperbolic plane, we now define a hyperbolic form:

Definition 7. f(z1, z2) is called hyperbolic if f ~ z123 ~ 2 — 2. This means the
quadratic module (F?, f) is a hyperbolic plane: for, if f is hyperbolic, then it is
0 1 .
1 o) which
gives us some basis ey, ea so that (e;,e;) = 0 and (e1,ez) # 0. Conversely, if we

have a hyperbolic plane with isotropic basis vectors z, y, we saw that the matrix
1

2) ; multiplying

equivalent to @1x9, so that the matrix of the form is equivalent to

of the form was <(1) é), scaling y by %, the matrix becomes (9

= 0
2
out the form we get exactly zy. Finally, diagonalizing the matrix gets us the form
2 2
r] — x3.

From this we get the following proposition:

Proposition Juniper. Let f be a nondegenerate quadratic form that represents
0. Then we have f ~ fy+g, where f5 is hyperbolic. Furthermore, f represents all
elements of the field F'.

Pf. Proposition 6 lets us break our nondegenerate module (V, Q) corresponding
to f into a hyperbolic plane and its orthogonal complement. (One can check that
if U is a nondegenerate subspace of V', that V = U&U?.) Then, the equivalence
established in definition 7 gives us that f ~ fy4g¢, where fo is hyperbolic. f
represents all values of F' because a hyperbolic plane (V| @) has the property that
Q(V)=F, for Q(xr + Sy) = a. O

Finally note the following important theorem:

Theorem 8. Let f be a quadratic form in n variables. Then there exist ay,as, ..., a, €
F so that f ~ alx% + -4+ anxi.

Pf. This follows from the fact that we can find an orthogonal basis for any
quadratic module (V, @): if all elements are isotropic, then any basis is orthogonal;
otherwise, choose a nonisotropic vector ey, let it be your first basis element, and let
H be its orthogonal complement, which has dimension 1 smaller than V'; repeating
this process, we get an orthogonal basis.

So, there’s some basis of V' with respect to which the form has matrix

ay 0 0
0 as 0
A= . ,
0 0 an
andsof~aw%—|—~~~—|—anxi. O

We now pursue the question of when a form represents 0: the above theorem allows
us to assume f(xy,...,2,) = a2 + -+ apal.
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First, we need to talk a little bit about something called the Hilbert symbol.
Hilbert Symbols

In this section we assume that /' is either R or (Q, for some prime p € Z. We define
the Hilbert symbol (a,b) of two elements a,b € F* by:

- (a,b) = 1if 22 — az? — by? represents 0;
- (a,b) = =1 otherwise.

We will often write (a,b), to emphasize that the symbol is dependent on the field
we are talking about — @, for some valuation v. If we multiply a or b by a square,
that square can be absorbed, so to speak, by 22 or y?, so we can think of a and
b both as elements of the multiplicative group F*/F*?; this is often more useful.
Thus, we can think of the Hilbert symbol as a map F*/F*? x F*/F*? — {£1}.

Here is an easy proposition that will come in handy:

Proposition 9. Let a,b € F*, and let 3 = v/b. Then the Hilbert symbol (a,b) = 1
<= a is the norm of an element in F(5).

Pf. («=) If b is already a square in I, say b = ¢?, then F/(3) = F so requiring
that a is the norm of an element is just requiring a € F*, at which point we get
that (a,b) = 1 by letting (z,y,2) = (0,1,¢). If b is not a square, then F(3) is
a quadratic extension of F, and every element o can be written o« = s + gt for
5,1 € I'; every norm is of the form s? — bt?, so if @ = s? — bt?, then (1,t,s) is a
solution to 2% — az? — by? = 0.

(=) If (a,b) = 1, then we have some (z,y,z) # (0,0,0) with z? — az? — by* = 0;

if = 0, then 2% = by?, so b must be a square; that means ' = F'(3) as above,

so again a is a norm because it is in F'*. If & # 0, we can solve for a: we see
2 2
2

a:x—Q—bi—Q,so thata:NOrmF(@)/F(%—ﬁ%). O

Proposition 10. Let a and b be two elements of F*, where F'is Q, or R. The
Hilbert symbol (a, b) satisfies the following:

(i) (a.b) = (b, a) (Symmetry)
(ii) (a,¢?) = 1

(iii) (a,—a) = 1

(iv) (a,1—a) =1

(v) (a,b) = (a, —ab)

(vi) (a,bt’) = (a,b)(a,b') (Bilinearity)



Pf.  The first expression is obvious from the definition of Hilbert symbol; for (ii),
if b = ¢?, then as in the proof of proposition 9, (0, 1, ¢) is a nontrivial solution; for
(iii), if b = —a, then (1,1,0) is a nontrivial solution; for (iv), if b = 1 — «a, then
(1,1,1) is a nontrivial solution. Finally, (vi) follows from theorem Paperclip below
by inspection; then (v) follows from (vi) combined with (iii). a
Letting (%) denote the Legendre symbol (so (%) = 11if a is a square mod p, and —1
otherwise) the following theorem concerning the Hilbert symbol can be shown:

Theorem Paperclip. When F' = Qo = R, (a,b) = 1 if at least one of @ and b is
positive, and (a,b) = —1 if they’re both negative.

When F' = @Qp, write ¢ and b as a = p*u and b = pPv, where u and v are p-adic
units. Then when p # 2 we have the following relation:

(a.8) = (=1)70)(

AR
Ly,
where £(u) denotes the equivalence class modulo 2 of “2;1 When p = 2, we have:

(a,b) = (—1)F e Fawt) ),

u?-1
3

where w(u) is the class modulo 2 of

In particular (this being a fact we will later use), for p # 2, if a and b are both
p-adic units, (a,b) = 1.

Pf.  See [Serre, p. 20]. O

The Hilbert symbol satisfies a product formula which looks similar to the product
formula for valuations. In the following, given a,b € Q*, we use the symbol (a, b),
to denote the Hilbert symbol of the images of @ and b in the completed field @, for
v €V = {pprimein Z}U {co}.

Theorem 11. Let a,b € Q*. Then (a,b), = 1 for almost all v € V| and
HveV(a’b)U =1

Pf.  See [Serre, p. 23]. O

Finally, we assume the following “approximation theorem” for Hilbert symbols: we
can take a finite set of elements a; and find an # € Q* so that (a;, ), is whatever
we like at each valuation v, so long as our whim meets certain obvious constraints:

Theorem 12. Let {a;}icr be a finite set of elements of Q*. Let {d; v }iervev
be a collection of numbers equal to £1. Then there exists some z € Q* with
(a;, %)y = i, for every ¢ € I and every v € V exactly when the following three
conditions hold:

(1) Almost all the 4; , are equal to 1.

(i) For each i € I, T div =1

veEV



(iii) For every v € V, 3 2, € Q} with (a;, zy)y = &; , for every i € I.

Pf.  See [Serre, p. 24]. O
The Invariants of a Form

We continue to assume that F'is QQ,, the completion of @@ with respect to v, which
is either the archimedean valuation or a p-adic valuation. Now we can define two
invariants of a form which will help us determine when a form can represent 0:

Let f be a nondegenerate quadratic form over F. We let d,(f) be the form’s
discriminant. If the form is diagonalized, i.e. written as f(zq,...,2,) = ajz? +
-~ -apx?, we have clearly d,(f) = a1 -+ ay.

We also define an invariant &, (f) = HK]-(ai, a;)y. We have g, = £1.

Since d, is taken as an element of F*/F*? and the determinant of the matrix of
the form only varies by squares, it is easy to see that d, 1s an invariant of the
equivalence class of the form. One must put more effort into showing that ¢, is
invariant. See [Serre, p. 35].

A criterion for squares follows from definitions: a number z is a square in F'* <=
r=1in F*/F*2,

Theorem 13. Let F' = Q, be a completion of ). Let f be a nondegenerate
quadratic form in n variables. Let d = d,(f) and € = £,(f). Then f represents 0
<~

yd=-1 (n=2)

(i) (-1,—d) == (n=3);

(iii) either d #1ord=1and e = (-1,-1) (n=4);

(iv) v = p or v = o0 and f is indefinite  (n > 5);
where equality is equivalence up to squares.

Pf.  There are the four cases to check, and each is a matter of observation and
manipulation until we get the formulas above; so here T will show (i) and (ii) which
indicate the sorts of arguments involved; for (iii) and (iv), see [Serre, p. 37-8].
Write f as alx% + -4 anxi.

(i) (n = 2) If (z1,22) is going to be a solution to ajz} + asx3 = 0, then for one
thing neither &1 nor z; can be 0. Then f represents 0 <—- alx% = —azxg
-t = (£2)2 so if and only if —2L is a square. That happens if and only if —% =1
2 T az as

in F*/F*2. Since L =-aa=—din F*/F*2, —2=1 «— d=-1L
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(ii) (n = 3) Multiplying through by as and absorbing squares, we get that f
represents 0 <= alagx% + azagxg + x% represents 0. By definition of the Hilbert
symbol, that form represents 0 <= (—aja3, —asaz) = 1. Expanding this using bi-
linearity of the Hilbert symbol, we eventually end up with the requirement specified
above. The details are as follows:

—

—apas, —0203)

(=1, —azaz)(a1, —azas)(as, —azas)

(—=1,=1)(=1,az2)(—=1, az) (a1, —1)(a1, az) (a1, as)(as, —as)(as, as)
(=1,=1)(=1,a1)(=1,a2)(—1,as) (a1, az) (a1, as)(az, as)
(_

1, —ajazas) H(ai, a;)
= (=1,—d())e(f)

—

which equals 1 exactly when (—1,—d) = &, so our claim is proven. a

We also prove the following proposition about F' = (, for some prime p; it fol-
lows directly from the above theorem. Here we are concerned with when a form
represents an element a € F*/F*2.

Proposition Goldfish. Let F = Q, for p prime. Let « € F*/F*?. Then f =

arr? + -+ a,x2 represents a <>

(ii) (a,=d) =¢ (n=2);
(iii) either a # —d or a = —d and (—1,—d) =¢ (n = 3);
(iv) no conditions  (n > 4).

Pf. Let a € F*/F*2. Defining f = f—az?, then clearly f represents 0 <— f
represents a: for, if f represents a, it is clear that f represents 0; conversely, if f
represents 0, then either z = 0 so f represents 0, at which point it represents all of
F,or z # 0, at which point f(z1/7,...,#,/%) represents a.

Furthermore, d(f) = —ad(f) (recalling that d is the product of the coefficients of

the form); and £(f) = (—a, d(f))e(f), since ¢ is the product of the Hilbert symbols
of each pair of the coefficients, so the addition of a new coefficient will lead to
multiplication of the original (f) by (—a,a1)(—a,az2) - (—a,ay).

So in each case we will have that the form f represents a < f represents 0. We
proceed by translating the conditions on f from theorem 13 into conditions on f

and a by using the relations just established between e(f) and £(f), and between

d(f) and d(f).



(i) When n = 1, f represents 0 if d(f) = —1 by part (i) of the above theorem, so
when —ad(f) = —1, so when a = d(f).

(ii) When n = 2,

f represents 0 < (=1, —d(f)) = «(f)
= (=L ad(f)) = (—a,d(f))e(f)
= (=La)(=1,d(f) = (=1,d(f))(a,d(f))e(f)
— (=L a) = (a,d(f))e(f)
= (a,=1)(a,d(f)) = (f)
— (a,—d(f)) = &(f)

(iii)) When n = 3, f represents 0 if d(f) # 1, or if d(f) =1 and 6(f) =(-1,-1);

for the first case

A(f)#1 = —ad(f) #1 <= —a#d(J);

for the second case,

d(f) =1 <= —ad(f) =1 <= a=—d(/);

in this case, we have e(f) = (=1, —1), which happens

a,d(f))e(f) = (=1,-1)
— (_1’ (f))(a,d(f))e(f) = (_1’_1);

since in this case (a,d(f)) = (=d(f),d(f)) = 1, we have (=1, —=d(f)) = (f).
(iv) Finally, when n > 4, f always represents 0, so f always represents a. a

Remark. When F' = R, (i), (ii), and (iii) of proposition Goldfish are still true;
when n > 4, we always get a solution when not all of the coefficients have the same
sign (i.e., the form is indefinite); if the form is positive definite (all its coefficients
are positive) we get a solution exactly when a is positive; and if the form is negative
definite (all its coefficients are negative) we get a solution exactly when a is negative.

The Main Result

We are now interested in the local-to-global principle: letting f be a quadratic form
with rational coefficients, we will show that f represents 0 in Q, for all v exactly
when f represents 0 in Q. We will sometimes use the notation f, when we want to
be clear that we are viewing the form over Q,.

Theorem 14. (Hasse-Minkowski) A quadratic form f represents 0 in ) <=
f represents 0in Q, ¥ v € V = {p prime in Z}U {oco}.

Pf. ( = ) Since Q C @, for each v, a representation of 0 in Q is also a
representation of 0 in Q,.
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(«<=) As we have seen earlier, we can assume that one of the coefficients in our
form f = ayx? + -+ apx2 is 1 by multiplying through; say by a; : a1 f = afz? +
-+ aja, 2, which clearly represents 0 exactly when the original form does. We

split up into four cases:

We can assume that f = z? + axZ; since fo, represents 0, we know that a > 0. We
can factor a € Q* as a product of primes; the power of each p in the factorization is
exactly the valuation v, (a) (including when p doesn’t divide a and so the valuation
is 0) so we can write a as a product in all primes: a = Hp p¥rl®) where vp € Z, and
for most p, vp(a) = 0.

We know by assumption that in each p-adic field Qy, f, represents 0. Thus, in each

field Qy, solving for a we find that a is a square: 0 = ¥ — az — a = (z—;)z in
@Qp. Thus, v, (a) is even for each p. Thus, it is clear that a is in fact a square in Q;

therefore, f represents 0, since 1 = +/a and z5 = 1 will work.
(n=3)

When n = 3, the form looks like f = 2% — az3 — bx3, where a,b € Q* (we don’t
assume anything about their sign). If @ and b have square factors, we can absorb
them into x5 and x3, so we can assume they are square free, and we can assume
they are integers by multiplying by p? if p is in the denominator. That is, vp(a)
and v, (b) are 0 or 1 for each prime p.

We can also assume without loss that |a| < |b]; we let m = |a| + |b] and induct on
the size of m:

Base case: m = 2. We have f = 27 + 22 £ x2. Since f., represents 0, we know that
not all signs are positive, and so it is easy to find solutions in Q.

Now the case when m > 2. Then the larger coefficient |b| > 2. Write b = &py - - - pg
for distinct primes p;. Then we claim that a is a square (mod p;). If ¢ = 0
(mod p;), this is obvious; otherwise a is a unit in Qp,. We know that f represents 0
in @Qp,, so find nontrivial (z,y, z) € le so that 22 — az? — by? = 0; by homogeneity
we can assume that (z,y, z) are in Zz?;n and not all divisible by p;. Reducing modulo
pi, we see that 22 —ax? =0 (mod p;). If z =0 (mod p;), then z =0 (mod p;), so
that in the original expression 22 — az? — by? = 0, we find 22 — az? = by® we see
that p?|by?; but p; only divided b once, so p;|y, and the triplet (z,y, z) is no longer
primitive, contradiction. Thus, we cannot have # = 0 (mod p;), so a is a square in
Z/piz.

Now, we apply the Chinese remainder theorem to see that Z/bZ = szlb Z/piZ,
since the p; are assumed to be distinct, a is in fact a square (mod b). So we can
find integers ¢ and b’ so that t? = a + bb’; we can choose ¢ so that || < @. Solving
for b, we see that bb' = 1% — a, so that bb’ is a norm from F(y/a), when F is either
Q or Q,. By proposition 9, we have f = x? — ax3 — bx3 represents 0 <= b is

11



a norm from F(y/a) <= b is a norm from F(\/a) <= [ = 2% — ax} — b2}
represents 0. Since bb’ is a norm and norms are multiplicative, either b and &' are
both norms or neither one is; this is how we got the middle equivalence. Thus f
represents 0 in each @, since f does; and it will suffice to show that f’ represents
0 1n @Q, since then f will.

Factoring b’ into a square-free factor and a square factor &' = b"u?, we see that f/
is equivalent to f” = #% — ax? — b"22, and we get to use our inductive hypothesis

because |b"| < [b]:

[o]\2
b
—(|2b|) +1:—|4|-|-1<|b|

b t? —a
V| == < V| =
)= 5] < | = |

<14 1Y <
<1241 <

with the last inequality holding because [b| > 2. Thus f” has m” = |a| + || <
m = |a| + |b]; since f’ and hence f” represents 0 in each Q,, f” represents 0 in Q
by inductive hypothesis. Now, f represents 0 in Q, so its equivalent f’ represents
0, and we saw that happens exactly when f represents 0, so we’re done.

We rewrite our form in 4 variables as the difference of two forms in 2 variables, so
that we can use results about forms with 2 variables that we have already shown.
so let f = ax? + bx3 — (cx + dz?). We are assuming that f, represents 0 for
each valuation v € V. So let (¢1,12,t3,%4) be a solution in Q,; then we have
at? + bt3 = et + di2.

We’d like to say that this means az? 4 bx3 and cx? + dz3 both represent the same
nonzero element of Q,; we argue as follows. Suppose we have at? +bt3 = ct3+dit3 =
0, then this means that at least one of these binary quadratic forms represents 0 (in
the sense of having a nontrivial solution); say, without loss, that this is ez + bx2.
Then by proposition Juniper, the form represents all elements of the field F'; so, in
particular, we choose any nonzero represented by cz2 + dz? and get that it is also
represented by az? + bx2. So we conclude that we can find in each complete field
Qy, a nonzero quadruple (¢1,12,13,4) so that so that at? +bt3 = ct3 +dt3 = t, # 0.

Now we apply proposition Goldfish, which says that when n = 2, f, represents a if
and only if (a, —dy(fy))v = €4 (fu). Thus, since both binary forms represent ¢,, we
get (ty, —ab)y = (a,b)y and (t,,—cd)y = (¢, d), for every v € V.

Now, we will use theorem 12 to find a single element & € Q* satisfying the above
equalities — i.e., an # € Q* so that (z,—ab), = (a,b), and (z,—ed)y = (¢, d)y
for all v € V. Explicitly, we have a1 = —ab and ay = —cd; 61, = (a,b), and
d2u = (¢,d)y; the product formula for Hilbert Symbols (theorem 11) guarantees
that (i) and (ii) of theorem 12 are met; and the existence of the ¢, above gives (iii);
and then we get this single z with (z, —ab), = (a,b), and (z, —cd), = (¢, d), for
allv e V.

Then, working backwards, there’s some = € (Q* so that for each valuation v we can
find (t1,t2,13,ta) € QF so that at? 4+ bt3 = ct3 + di5 = x # 0. Then, the form
12



ar? + bal — xz? represents 0 (using our already chosen ¢, {5, and letting z = 1)
in Q, for each v; we conclude by part (ii) above that this means ez} + bx3 — 22
represents 0 in Q; similarly, the form cz2 + dx? — 222 represents 0 in each field
@y, so by part (ii) it represents 0 in Q; finally, since both represent 0 in @, the
binary forms axz? 4 br? and cx3 + dxj each represent z in @, so that their difference
azr? + bx3 — (cal + dz?) represents 0 in Q, as desired.

(n>5)
We will induct on n: write f as f = h—g, where h = aj2? + azz2 and g =
agxg +--+ anxfl.

We construct a finite set S of valuations V' as follows: let S = {2} U {oco} U {p €
Z | vp(a;) #0for 3<i<n}. Soletv e S. f, represents 0 by assumption, so we
can argue as we did in the second paragraph of the case n = 4 that there is some
nonzero element of a, € Q) which is represented by both A and g in Q,; in other
words, we can find z,; € Q, so that a, = h(xy1,2y2) = g(2v3,...,2u,n). One
can show that the squares of @, form an open set, so 3 some real ¢ > 0 so that
|1 — ul, < e implies u is a square. We now use the Weak Approximation Theorem
to find 21,22 € Q so that a = h(xy, 23) has the property that |a — ay|, < ¢|ay |, for
each v € S. Then |% — 1|, < ¢, so that 4- is a square in @, for each v € 5.

So now we consider the form f; = ¢ — az?. When v € S, we know - Is a square
by the above reasoning, so g represents a in @, because g represenvts ay; 80 fi
represents 0 in Q,. When v ¢ S, then v # 2 or oo, and by construction of S we get
that the coefficients of g, as, ..., a, are all units in Q,; thus d,(g) is also a unit.
(—1,—=dy(g))y = 1 because both are units; this follows from theorem Paperclip; by
the same theorem, each Hilbert symbol (a;,a;), = 1 because they’re all units, so
gu(g) = Hiq(ai,aj)v = 1; thus, by proposition Goldfish (iii) and (iv) (which we
can apply because v # 00), we get that g represents a (whether or not a = —d, (¢)).
Thus, f; represents 0 in @, for all v; f; is a form in n — 1 variables, so by inductive
hypothesis f; represents 0 in @; so g represents a in Q. Since what we did at first
was finding the z1, x5 so that h represented a, we now can conclude that f = h—g
represents 0.

And now the theorem is proved for all n...! a

An Application of Hasse-Minkowski

We conclude with a nice application of Hasse-Minkowski.

Theorem 15. Let n € ZT. Then n can be written as the sum of three square
integers <= n is not of the form 4%(8b — 1).

Pf.  We will need the following lemma, a result about 2-adic numbers:
13



Lemma 16. Let « € Q3%; write « = 2"u, where va(u) = 0. Then z is a square <=
n is even and n = 1 (mod 8).

Pf.  See [Serre, p. 18]. O

From this lemma, we see that if there exist a,b € 7 so that n = 4%(8b6 — 1), this
means exactly that —n = 2%¢(1 — 8b) is a square in Q.

Now, it 1s easy to see that the Hasse-Minkowski theorem implies that for any a € Q~,
a 1s representable by a form in ) <= a is representable by that form in Q, for
each valuation v; this follows from applying the theorem to the form f—az>. So we
will try to show that n is representable by the form f = #% + z2 + 22 in each Q,.

We need two more lemmas, the first of which I will prove, the second of which
I will skip. The first establishes conditions on an arbitrary a € Q* so that it is
representable by the form f; the second allows us to move from representations in
@ to representations in Z.

Lemma 17. Let a € Q*. Then a can be written as the sum of three squares in Q
<= a is positive and —a not a square in Q5.

Pf. Looking at Q. = IR, a is the sum of three squares in R exactly when it’s
positive, so that takes care of the positivity bit.

Now we use proposition Goldfish to see when a is the sum of three squares in @, for
each p: part (iil) tells us that a is representable by f so long as either a # —d,(f),
or a = —dp(f) and (=1, —d,(f))p, = ep(f). For each p, the discriminant d, = 1;
also, it is easy to see that (1,1), =1, so &,(f) = 1 as well. When p > 2, we have
(—=1,—1), = 1 by theorem Paperclip which said that when « and b are units and
p# 2, (a,b), = 1. Thus, when p > 2, we get (—1,—dp), = (=1,-1), =1 =¢p; s0
a is the sum of three squares in Q, for each p > 2.

When p = 2, however, (=1, —ds)s = (=1, —1)2 = —1, because the form 2%+ 23 + 3
does not represents 0 in, say, Z/87Z (we can assume by homogeneity of the form
that the z; are integers and at least one of them is odd, we must have 2 of them
odd, and then the only possibilities mod 8 for #7 + x3 + 3 are 2, 3, and 6). Thus,
(—=1,—=ds)2 = (—1,—1)s = —1 # £5. Thus, for f to represent 0 in Q, we must have
a# —d, = —1in Q3/Q3%2, which means exactly that —a is not a square in Q,. O

Lemma 18. If f is a positive definite quadratic form with integer coefficients, and
if for each (z1,...,2m) € Q™, there is (y1,...,¥m) in Z™ with f(x —y) < 1, then

for any n € Z is representable by f over (@, we get that n is also representable by
f over Z.

Pf.  See [Serre, p. 46]. O

Now, we can prove the theorem. The form f is certainly positive definite, which
just means it is always positive on nonzero triples (z1, #2, z3). It also satisfies the
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other hypothesis of lemma 18, for given a triplet of rationals (1,22, #3), we can
choose a triplet of integers (y1, y2, ¥3) so that each component y; is within % of 1ts
corresponding components x;; then we have f(z —y) = (z1 — y1)? + (22 — y2)? +
(x5 —y3)? < % < 1. Thus, if n € Z is representable by f over Q, 1t is representable
over Z. And, of course, n is representable by f over (Q exactly when n is positive
and —n is not a square by lemma 17; and by lemma 15, this is exactly when n is

not of the form 4%(86 — 1). So, the theorem holds. a
And we conclude with the four squares theorem:
Theorem 19. (Legendre) Every positive integer is the sum of four squares.

Pf. Let n € Zt. Write n = 4%m, where m is not divisible by 4. Then m is
not congruent to 0 or 4 (mod 8); if m = 1,2,3,5,6 (mod 8), then n is the sum of
three squares by theorem 15, and thus the sum of four. If m = 7 (mod 8), then
m—1=6 (mod 8), so m— 1 is the sum of three squares: m —1 = 3 + 2% + 23; so
m is the sum of four squares: m = x? + 22 + 22+ 1, so n is the sum of four squares
too: n = (2921)? + (2%29)? + (2%23)% + (29)2. m|
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Notes

As I said at the beginning, I followed Serre’s book extremely closely, going through
parts of chapters I, IIT, and TV (pp. 11-47). My other listed sources were consulted
for algebraic and number theoretic background. A draft was read over by Warren
Sinnott, who pointed out errors and helped me clean up some of the proofs. My
work was primarily expanding Serre’s write-up on the subject.
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