Math 129: Algebraic Number Theory Homework Assignment 9

William Stein

Due: Thursday, April 22, 2004

There are SIX problems.

1. In this problem you will compute an example of weak approximation, like I did in the example in Section 6 of lecture 18. Let $K=\mathbf{Q}$, let $|\cdot|_{7}$ be the 7 -adic absolute value, let $|\cdot|_{11}$ be the 11 -adic absolute value, and let $|\cdot|_{\infty}$ be the usual archimedean absolute value. Find an element $b \in \mathbf{Q}$ such that $\left|b-a_{i}\right|_{i}<\frac{1}{10}$, where $a_{7}=1, a_{11}=2$, and $a_{\infty}=-2004$.
2. Prove that -9 has a cube root in \mathbf{Q}_{10} using the following strategy (this is a special case of Hensel's Lemma, which you can read about in an appendix to Cassel's article).
(a) Show that there is an element $\alpha \in \mathbf{Z}$ such that $\alpha^{3} \equiv 9\left(\bmod 10^{3}\right)$.
(b) Suppose $n \geq 3$. Use induction to show that if $\alpha_{1} \in \mathbf{Z}$ and $\alpha^{3} \equiv 9\left(\bmod 10^{n}\right)$, then there exists $\alpha_{2} \in \mathbf{Z}$ such that $\alpha_{2}^{3} \equiv 9$ $\left(\bmod 10^{n+1}\right)$. (Hint: Show that there is an integer b such that $\left.\left(\alpha_{1}+b \cdot 10^{n}\right)^{3} \equiv 9\left(\bmod 10^{n+1}\right).\right)$
(c) Conclude that 9 has a cube root in \mathbf{Q}_{10}.
3. Prove that every finite extension of \mathbf{Q}_{p} "comes from" an extension of \mathbf{Q}, in the following sense. Given an irreducible polynomial $f \in \mathbf{Q}_{p}[x]$ there exists an irreducible polynomial $g \in \mathbf{Q}[x]$ such that the fields

$$
\mathbf{Q}_{p}[x] /(f)
$$

and $\mathbf{Q}_{p}[x] /(g)$ are isomorphic. [Hint: Choose each coefficient of g to be sufficiently close to the corresponding coefficient of f, then use Hensel's lemma to show that g has a root in $\mathbf{Q}_{p}[x] /(f)$.]
4. Find the 3 -adic expansion to precision 4 of each root of the following polynomial over \mathbf{Q}_{3} :

$$
f=x^{3}-3 x^{2}+2 x+3 \in \mathbf{Q}_{3}[x] .
$$

Your solution should conclude with three expressions of the form

$$
a_{0}+a_{1} \cdot 3+a_{2} \cdot 3^{2}+a_{3} \cdot 3^{3}+O\left(3^{4}\right)
$$

5. (a) Find the normalized Haar measure of the following subset of \mathbf{Q}_{7}^{+}:

$$
U=B\left(28, \frac{1}{50}\right)=\left\{x \in \mathbf{Q}_{7}:|x-28|<\frac{1}{50}\right\} .
$$

(b) Find the normalized Haar measure of the subset \mathbf{Z}_{7}^{*} of \mathbf{Q}_{7}^{*}.
6. Suppose that K is a finite extension of \mathbf{Q}_{p} and L is a finite extension of \mathbf{Q}_{q}, with $p \neq q$ and assume that K and L have the same degree. Prove that there is a polynomial $g \in \mathbf{Q}[x]$ such that $\mathbf{Q}_{p}[x] /(g) \cong K$ and $\mathbf{Q}_{q}[x] /(g) \cong L$. [Hint: Combine your solution to 3 with the weak approximation theorem.]

