Math 129: Algebraic Number Theory Homework Assignment 9

William Stein

Due: Thursday, April 22, 2004

There are SIX problems.

- 1. In this problem you will compute an example of weak approximation, like I did in the example in Section 6 of lecture 18. Let $K = \mathbf{Q}$, let $|\cdot|_7$ be the 7-adic absolute value, let $|\cdot|_{11}$ be the 11-adic absolute value, and let $|\cdot|_{\infty}$ be the usual archimedean absolute value. Find an element $b \in \mathbf{Q}$ such that $|b - a_i|_i < \frac{1}{10}$, where $a_7 = 1$, $a_{11} = 2$, and $a_{\infty} = -2004$.
- 2. Prove that -9 has a cube root in \mathbf{Q}_{10} using the following strategy (this is a special case of Hensel's Lemma, which you can read about in an appendix to Cassel's article).
 - (a) Show that there is an element $\alpha \in \mathbb{Z}$ such that $\alpha^3 \equiv 9 \pmod{10^3}$.
 - (b) Suppose $n \geq 3$. Use induction to show that if $\alpha_1 \in \mathbf{Z}$ and $\alpha^3 \equiv 9 \pmod{10^n}$, then there exists $\alpha_2 \in \mathbf{Z}$ such that $\alpha_2^3 \equiv 9 \pmod{10^{n+1}}$. (Hint: Show that there is an integer *b* such that $(\alpha_1 + b \cdot 10^n)^3 \equiv 9 \pmod{10^{n+1}}$.)
 - (c) Conclude that 9 has a cube root in \mathbf{Q}_{10} .
- 3. Prove that every finite extension of \mathbf{Q}_p "comes from" an extension of \mathbf{Q} , in the following sense. Given an irreducible polynomial $f \in \mathbf{Q}_p[x]$ there exists an irreducible polynomial $g \in \mathbf{Q}[x]$ such that the fields

$$\mathbf{Q}_p[x]/(f)$$

and $\mathbf{Q}_p[x]/(g)$ are isomorphic. [Hint: Choose each coefficient of g to be sufficiently close to the corresponding coefficient of f, then use Hensel's lemma to show that g has a root in $\mathbf{Q}_p[x]/(f)$.]

4. Find the 3-adic expansion to precision 4 of each root of the following polynomial over \mathbf{Q}_3 :

$$f = x^3 - 3x^2 + 2x + 3 \in \mathbf{Q}_3[x].$$

Your solution should conclude with three expressions of the form

$$a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + a_3 \cdot 3^3 + O(3^4).$$

5. (a) Find the normalized Haar measure of the following subset of \mathbf{Q}_{7}^{+} :

$$U = B\left(28, \frac{1}{50}\right) = \left\{x \in \mathbf{Q}_7 : |x - 28| < \frac{1}{50}\right\}.$$

- (b) Find the normalized Haar measure of the subset \mathbf{Z}_7^* of \mathbf{Q}_7^* .
- 6. Suppose that K is a finite extension of \mathbf{Q}_p and L is a finite extension of \mathbf{Q}_q , with $p \neq q$ and assume that K and L have the same degree. Prove that there is a polynomial $g \in \mathbf{Q}[x]$ such that $\mathbf{Q}_p[x]/(g) \cong K$ and $\mathbf{Q}_q[x]/(g) \cong L$. [Hint: Combine your solution to 3 with the weak approximation theorem.]