Math 129: Algebraic Number Theory Homework Assignment 4

William Stein

Due: Thursday, March 11, 2004

The problems:

1. Find representative ideals for each element of the class group of $\mathbf{Q}(\sqrt{-23})$. Illustrate how to use the Minkowski bound to prove that your list of representatives is complete.
2. Suppose \mathcal{O} is an order in the ring of integers \mathcal{O}_{K} of a number field. Is every ideal in \mathcal{O} necessarily generated by two elements?
3. Let K be a number field of degree $n>1$ with s pairs of complex conjugate embeddings. Prove that

$$
\left(\frac{\pi}{4}\right)^{s} \frac{n^{n}}{n!}>1
$$

4. Do the exercise on page 19 of Swinnerton-Dyer, which shows that the quantity $C_{r, s}$ in the finiteness of class group theorem can be taken to be $\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}}$.
5. Let α denote a root of $x^{3}-x+2$ and let $K=\mathbf{Q}(\alpha)$. Show that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$ and that K has class number 1 (don't just read this off from teh output of the MAGMA MaximalOrder and ClassNumber commands). [Hint: consider the square factors of the discriminant of $x^{3}-x+2$ and show that $\frac{1}{2}\left(a+b \alpha+c \alpha^{2}\right)$ is an algebra integer if and only if a, b, and c are all even.]
6. If S is a closed, bounded, convex, symmetric set in \mathbf{R}^{n} with $\operatorname{Vol}(S) \geq m 2^{n}$, for some positive integer m, show that S contains at least $2 m$ nonzero points in \mathbf{Z}^{n}.
