Math 129: Algebraic Number Theory Homework Assignment 4

William Stein

Due: Thursday, March 11, 2004

The problems:

- 1. Find representative ideals for each element of the class group of $\mathbf{Q}(\sqrt{-23})$. Illustrate how to use the Minkowski bound to prove that your list of representatives is complete.
- 2. Suppose \mathcal{O} is an order in the ring of integers \mathcal{O}_K of a number field. Is every ideal in \mathcal{O} necessarily generated by two elements?
- 3. Let K be a number field of degree n > 1 with s pairs of complex conjugate embeddings. Prove that

$$\left(\frac{\pi}{4}\right)^s \frac{n^n}{n!} > 1.$$

- 4. Do the exercise on page 19 of Swinnerton-Dyer, which shows that the quantity $C_{r,s}$ in the finiteness of class group theorem can be taken to be $\left(\frac{4}{\pi}\right)^s \frac{n!}{n^n}$.
- 5. Let α denote a root of $x^3 x + 2$ and let $K = \mathbf{Q}(\alpha)$. Show that $\mathcal{O}_K = \mathbf{Z}[\alpha]$ and that K has class number 1 (don't just read this off from teh output of the MAGMA MaximalOrder and ClassNumber commands). [Hint: consider the square factors of the discriminant of $x^3 - x + 2$ and show that $\frac{1}{2}(a + b\alpha + c\alpha^2)$ is an algebra integer if and only if a, b, and c are all even.]
- 6. If S is a closed, bounded, convex, symmetric set in \mathbb{R}^n with $\operatorname{Vol}(S) \ge m2^n$, for some positive integer m, show that S contains at least 2m nonzero points in \mathbb{Z}^n .