Math 129: Algebraic Number Theory Homework Assignment 2

William Stein

Due: Thursday, February 26, 2004

The Problems:

1. (a) Let k be a field. Prove that $k[x]$ is a Dedekind domain.
(b) (Problem 1.12 from Swinnerton-Dyer) Let x be an indeterminate. Show that the ring $\mathbf{Z}[x]$ is Noetherian and integrally closed in its field of fractions, but is not a Dedekind domain.
2. Use MAGMA to write each of the following (fractional) ideals as a product of explicitly given prime ideals:
(a) The ideal (2004) in $\mathbf{Q}(\sqrt{-1})$.
(b) The ideals $I=(7)$ and $J=(3)$ in the ring of integers of $\mathbf{Q}\left(\zeta_{7}\right)$, where ζ_{7} is a root of the irreducible polynomial $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. (The field $\mathbf{Q}\left(\zeta_{7}\right)$ is called the 7 th cyclotomic field.)
(c) The principal fractional ideal (3/8) in $\mathbf{Q}(\sqrt{5})$.
3. Suppose R is an order in the ring \mathcal{O}_{K} of integers of a number field. (Recall that an order is a subring of finite index in \mathcal{O}_{K}.) For each of the following questions, either explain why the answer is yes for any possible order R in any \mathcal{O}_{K}, or find one specific counterexample:
(a) Is R necessarily Noetherian?
(b) Is R necessarily integrally closed in its field of fractions?
(c) Is every nonzero prime ideal of R necessarily maximal?
(d) Is it always possible to write every ideal of R uniquely as a product of prime ideals of R ?
4. Let \mathcal{O}_{K} be the ring of integers of a number field K. Prove that the group of fractional ideals of \mathcal{O}_{K}, under multiplication is (non-canonically) isomorphic to the group of positive rational numbers under multiplication.
