Math 129: Algebraic Number Theory Homework Assignment 2

William Stein

Due: Thursday, February 26, 2004

The Problems:

- 1. (a) Let k be a field. Prove that k[x] is a Dedekind domain.
 - (b) (Problem 1.12 from Swinnerton-Dyer) Let x be an indeterminate. Show that the ring $\mathbf{Z}[x]$ is Noetherian and integrally closed in its field of fractions, but is not a Dedekind domain.
- 2. Use MAGMA to write each of the following (fractional) ideals as a product of explicitly given prime ideals:
 - (a) The ideal (2004) in $\mathbf{Q}(\sqrt{-1})$.
 - (b) The ideals I = (7) and J = (3) in the ring of integers of $\mathbf{Q}(\zeta_7)$, where ζ_7 is a root of the irreducible polynomial $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. (The field $\mathbf{Q}(\zeta_7)$ is called the 7th cyclotomic field.)
 - (c) The principal fractional ideal (3/8) in $\mathbf{Q}(\sqrt{5})$.
- 3. Suppose R is an order in the ring \mathcal{O}_K of integers of a number field. (Recall that an order is a subring of finite index in \mathcal{O}_K .) For each of the following questions, either explain why the answer is yes for any possible order R in any \mathcal{O}_K , or find one specific counterexample:
 - (a) Is R necessarily Noetherian?
 - (b) Is R necessarily integrally closed in its field of fractions?
 - (c) Is every nonzero prime ideal of R necessarily maximal?
 - (d) Is it always possible to write every ideal of R uniquely as a product of prime ideals of R?
- 4. Let \mathcal{O}_K be the ring of integers of a number field K. Prove that the group of fractional ideals of \mathcal{O}_K , under multiplication is (non-canonically) isomorphic to the group of positive rational numbers under multiplication.