
manuscripta math. 95, 463 – 469 (1998) manuscripta
mathematica
c© Springer-Verlag 1998

A procedure to calculate torsion
of elliptic curves over Q

Darrin Doud

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA.
e-mail: doud@math.uiuc.edu

Received: 7 August 1997 / Revised version: 28 November 1997

Abstract. We present an algorithm which uses the analytic parameteriza-
tion of elliptic curves to rapidly calculate torsion subgroups, and calculate
its running time. This algorithm is much faster than the “traditional” Lutz–
Nagell algorithm used by most computer algebra systems to calculate torsion
subgroups.

Mathematics Subject Classification (1991): 11G05

1. Elliptic curves

An elliptic curve over Q is the set of solutions to an equation of the form
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where the ai are rational
numbers. ForK a field containing Q, we will denote the solutions which have
coordinates in K by E(K). It is well known that for K a number field, E(K)
is a finitely generated abelian group, hence it has a finite torsion subgroup.
In calculating the torsion subgroup, of E(Q), we will generally use a change
of coordinates to put the equation defining the elliptic curve into one of two
simpler forms, either y2 = 4x3 +Ax+B or y′2 = x′3 +4Ax′ +16B, with
A and B integers. We note that these two forms are related via x′ = 4x,
y′ = 4y. The discriminant of the elliptic curve is given for a curve in the first
form by the formula −A3 − 27B2; for the second form, the discriminant is
212 times this value.

The following theorem, due to Mazur, limits the groups which can occur
as rational torsion subgroups:

464 D. Doud

Theorem 1 (Mazur). The torsion group of any elliptic curve over Q is
isomorphic to Z/nZ for 1 ≤ n ≤ 10 or n = 12, or Z/2Z × Z/2nZ for
1 ≤ n ≤ 4. ([5], p. 223.)

2. The theorem of Lutz–Nagell

The following theorem is the basis for the most commonly used algorithm
for computing rational torsion subgroups:

Theorem 2 (Lutz–Nagell). Given any elliptic curve with coefficients in Z,
given by the equation y2+a1xy+a3y = x3+a2x

2+a4x+a6, the following
hold:

a. If P = (x(P), y(P)) is a torsion point of E(Q), then 4x(P) ∈ Z, and
8y(P) ∈ Z.

b. If the curve is of the form y2 = x3 + Ax + B, (i.e. if a1 = a2 = a3 = 0)
then x(P) ∈ Z, y(P) ∈ Z, and either y(P) = 0 or y(P)2 divides
−4A3 − 27B2.([4], p. 130)

To compute torsion subgroups using this theorem, we first change co-
ordinates to put the equation of the curve into the form given in part (b),
compute the quantity ∆ = −4A3 − 27B2, and, for y = 0 and each square
divisor y2 of ∆, solve the cubic equation x3 + Ax + (B − y2) = 0. For
any integral solutions x of this equation, we test whether the point (x, y) is
torsion (knowing by Theorem 1 that if it is torsion it has order at most 12).
This algorithm is very straightforward, but has two major disadvantages–
first, it requires that we factor ∆, which may be large and difficult to factor;
second, even if ∆ is easy to factor, it will often have many square divisors,
and we must solve a cubic equation for each of them. We will see that this
algorithm is rather slow, even for moderately sized ∆.

3. Bounding the size of the torsion subgroup

For an elliptic curve given by an equation of the form y2 = 4x3 + Ax + B,
we may consider the set E(Fp) of points on the curve with coordinates in
Fp. For such points, we have the following result:

Theorem 3. If p is a prime such that p6 | ∆, then there is a homomorphism
from E(Q) to E(Fp). If p is odd, then the restriction to the torsion subgroup
of E(Q) of the reduction homomorphism is injective. ([5], p. 176.)

By applying theorem 3 with several small primes which do not divide ∆,
we may quickly get a reasonably effective bound on the size of the torsion
subgroup. Getting this bound is quite rapid–it involves a bounded number
of computations, after reducing the coordinates of the curve mod p.

A procedure to calculate torsion of elliptic curves over Q 465

4. Analytic parameterization of elliptic curves

Given any lattice Λ ∈ C, we define the Weierstrass ℘ function

℘(z) =
1
z2 +

∑
α∈Λ
α6=0

(
1

(z − α)2
− 1

α2

)
.

This function is doubly periodic, with period lattice Λ, and satisfies the
differential equation

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z) − g3(Λ),

where g2(Λ), and g3(Λ) are complex numbers depending on Λ. In addition,
given any A and B, a lattice Λ exists with −g2(Λ) = A, and −g3(Λ) = B.
Thus, if E is the elliptic curve given by y2 = 4x3 + Ax + B, we get a map
C/Λ → E(C) given explicitly by z 7→ (℘(z), ℘′(z)). This map is in fact an
isomorphism of groups. This reduces the problem of finding rational torsion
points of E to that of finding complex torsion points of C/Λ, and checking
whether their image in E is rational. However, the n-torsion points of C/Λ
are trivially just 1

nΛ/Λ, so we only need to check rationality of the images.
It is easy to see that the set of real points on an elliptic curve with real

coefficients has either one or two components (in the standard topology
on R2). The component which is unbounded will be called the identity
component (since it can be considered to contain the point at infinity, which
is the identity for the group law on the elliptic curve). There is a fast algorithm
to calculate a basis of a lattice Λ of an elliptic curve with real coefficients
using the AGM ([2], p. 391); the basis ω1, ω2 thus obtained has the property
that the multiples of ω1 correspond to points on the identity component of
the curve, and the translates of these multiples by ω2/2 correspond to points
on the bounded component (if any).

We note that computation of ω1 and ω2 is extremely rapid, since it re-
quires only finding the roots of a cubic, and applying the AGM, which
converges quadratically. Since part of the algorithm which we will present
involves summing a series which converges linearly, the computation of ω1
and ω2 will not affect the asymptotic running time.

5. An analytic algorithm

Given an elliptic curve over Q (which we will assume is given by an equation
y2 = 4x3 + Ax + B), we first calculate the number of points on the curve
mod p for several small primes p which do not divide the discriminant of the
curve. Since the torsion subgroup of E(Q) injects into each of these groups,

466 D. Doud

its size must divide each of the orders. Thus, we get a bound b on the order
of the torsion subgroup. In fact the order of the torsion subgroup divides b.

If b = 1, then the torsion subgroup is trivial. We output this fact, and
finish.

If 46 | b, then by Mazur’s Theorem we know that the torsion subgroup is
cyclic of order at most 10. For each n ≤ 10 and dividing b (beginning with
the largest possible) we calculate a torsion point of order n on the iden-
tity component (corresponding to ω1/n), and check whether it is a rational
torsion point. If it is then it is a generator of the torsion subgroup E(Q),
and we output this fact and finish the algorithm. If it is not, and its order is
even, it may differ from a rational torsion point by a two torsion point on
the non-identity component, so we calculate two more torsion points (cor-
responding to ω1/n + ω2/2 and ω1/n + ω1/2 + ω2/2) and check whether
either is rational. If one is, then it is a generator, and we output it and finish.
If we complete this step without finding any rational torsion points, then the
torsion subgroup is trivial; we output this fact and finish.

In the case where 4|b, the torsion subgroup may not be cyclic. We cal-
culate the two-torsion of the elliptic curve over C and check to see whether
the points are rational.

If there is no two-torsion, then the torsion subgroup is cyclic of odd
order, and must be entirely contained within the identity component of the
real curve. We go through the odd divisors n of b less than or equal to 11 in
descending order, and check whether ω1/n corresponds to a rational torsion
point. The first one which does is a generator; we output it and finish. If
none of these points are rational, the torsion subgroup is trivial: we output
this fact and finish.

If there is a single two torsion point, then the torsion subgroup is cyclic
and we proceed to calculate it as in the case where 46 | b, except that we need
only check points of even order.

If there is more than one two torsion point, then we know that the torsion
subgroup is non-cyclic. We may take a two torsion point on the non-identity
component as one generator, and a point on the identity component of order
8,6,4 or 2, as the other generator. We compute the points corresponding
to ω1/8, ω1/6 and ω1/4 for rationality. The first one which is rational is
the second generator. If none is rational, then the second generator is the
two torsion point on the identity component (which we have previously
calculated).

6. Time analysis

To analyze the running time of the algorithm, we first need to know the size
of the points with which we must work. We will assume that the curve is

A procedure to calculate torsion of elliptic curves over Q 467

given in the form y2 = 4x3 +Ax+B. By the Lutz–Nagell theorem and the
isomorphism of this curve with the curve y2 = x3 + 4Ax + 16B, we see
that the y coordinate of a torsion point must satisfy y2 ≤ |162(A3 +27B2)|.
Further, the x-coordinate of a torsion point will be a root of 4x3 + Ax +
(B − y2), and will thus have absolute value at most max(|A|, |B − y2|) ≤
max(|A|, |B| + 162|A3 + 27B2|). Thus, in computing torsion, we only
need to consider points with coordinates which are O(max(|A3|, |B2|))
in magnitude. Let C = 213 max(|A3|, |B2|). Arithmetic computations with
numbers of magnitude O(C) require O(log2 C) bit operations. In computing
with points on an elliptic curve, a bounded number of arithmetic operations
are needed for each group operation on the curve, and in the entire algorithm,
a bounded number of group operations are needed. Thus, the time to perform
group operations in the algorithm is O(log2 C).

The majority of the algorithm’s running time is spent actually computing
the points on the curve using the ℘ function. We note the following formula
for ℘(z) ([2], p. 389):

℘(z) =
(

2πi

ω1

)2 (
1
12

+
u

(1 − u)2

+
∞∑

n=1

qn

(
u

(
1

(1 − qnu)2
+

1
(qn − u)2

)
− 2

(1 − qn)2

))
,

where ω1, ω2 is a basis for the lattice Λ, τ = ω2/ω1, q = e2πiτ , u = e2πiz/ω1 .
In fact, by adjusting our basis for Λ, we may choose τ to have imaginary part
at least

√
3/2, so that |q| ≤ k, where k = e−2π

√
3/2 = 4.33 × 10−3. Also,

by choosing z in a fundamental parallelogram for ω1, ω2, we guarantee that
|q| < |u| ≤ 1. Note that for the basis ω1, ω2 found by the AGM algorithm,
the adjustment of the basis is extremely easy, requiring at most that we add
one of the basis elements to the other.

We only need to compute torsion points to the nearest quarter integer
(since if (x, y) is a torsion point on y2 = 4x3 + Ax + B, (4x, 4y) is a
torsion point on y2 = x3 + 4Ax + B, hence is integral), so we must add
enough terms of the series that the remainder is less than 1/8. We note that
each of the fractions inside the sum is bounded by a constant times 1/q2, so
that after adding M terms of the sum, the error is less than K1q

M−2, where
K1 is a constant. This error is multiplied by (2π/ω1)2, so we see that to get
a good estimate of the number of terms we need, we must bound ω1 away
from 0.

From [1], p. 69, we find that

ω3
1 =

2π3

∆1/4 θ2
1(0)θ2

2(0)θ2
3(0)

468 D. Doud

where θ1(0) = 2(q1/8 + q9/8 + q25/8 + ...), θ2(0) = 1 − 2q1/2 + 2q4/2 −
2q9/2+ ..., θ3(0) = 1+2q1/2+2q4/2+2q9/2+ . . . , and ∆ = −A3−27B3.
It is easy to see that for our value of q, |θ2(0)| > 1/2, |θ3(0)| > 1/2, and
|θ1(0)| > |q|1/8. Thus,

|ω1| >
π

2|∆|1/12 |q|1/12.

In order to guarantee that the error,(
2π

ω1

)2

K1|q|M−2 <
4π2|∆|1/6K1q

M−2−1/6

(π/2)2
≤ 16K1|∆|1/6kM−13/6

is less than 1/8, we see easily that we need O(log |∆|) = O(log C) terms.
We compute each term to approximately 2 + log10 C decimal places, since
we know that the rational torsion points will have x-coordinates of size
less than C. If our computation gives a point with coordinates which are too
large, it is ignored, as it can not be a torsion point. On the other hand, if it is of
the appropriate size, then the precision specified is adequate to identify it to
the nearest quarter integer. Since we see that we need to compute O(log C)
terms, using arithmetic operations requiring time O(log2 C), the complexity
of computing the Weierstrass ℘ function is O(log3 C). A similar analysis
with the same result holds for the ℘′ function, and, since we need to compute
a bounded number of points, and all other calculations in the algorithm have
a lower complexity, the running time of the algorithm is O(log3 C).

7. GP-PARI code for the algorithm

The analytic algorithm for computing torsion has been coded in GP-PARI1,
and is available at http://www.math.uiuc.edu/∼doud/torsion.html.
Comparison with other computer algebra systems, which implement the
Lutz–Nagell algorithm, shows that the analytic algorithm is not only faster
for curves with extremely large coefficients, but also for many curves with
small coefficients. We compare the analytic algorithm implemented in GP-
PARI with the following torsion routines which use versions of the Lutz–
Nagell algorithm: The C program torsion implemented by J. Cremona and
following the algorithm in [3], the Maple program APECS (available by
anonymous FTP at math.mcgill.ca) implemented by I. Connell, and the
commercial computer algebra system Magma2 (developed by J. Cannon,
et. al.). Table 1 gives the times in seconds required to compute the torsion
subgroups of the following curves on a Sparc 5 workstation:

1 The algorithm has also been implemented in C++ by John Cremona.

A procedure to calculate torsion of elliptic curves over Q 469

E1 : y2 = x3 − 587044371375x + 173122882731933750,

E2 : y2 = x3 + 337x2 + 20736x,

E3 : y2 = x3 + 4715281x2 + 2520473760000x.

The first curve has torsion subgroup isomorphic to Z/3Z, and the other two
have torsion subgroup isomorphic to Z/2Z × Z/8Z.

Table 1. Running times in seconds

Curve Analytic Cremona APECS Magma
E1 .225 9.1 1.2 5.53
E2 .110 1.15 0 .416
E3 .270 118 10.7 48.4

Note that the second curve is contained in the catalog of curves for
which APECS has precomputed torsion, hence APECS does not compute
the torsion–it looks it up. Also, the table does not include results for the
torsion routine built into GP-PARI, since it was unable to calculate the
torsion for curves E1 and E3 (it needed more stack space). For curve E2 it
took 23.6 seconds to calculate the torsion.

References

1. Chandrasekharan, K.: Elliptic Functions, Berlin–Heidelberg–New York: Springer 1985
2. Cohen, H.: A Course in Computational Algebraic Number Theory, Berlin–Heidelberg–

New York: Springer, 1993
3. Cremona, J.: Algorithms for Modular Elliptic Curves, Cambridge: Cambridge University

Press, 1992
4. Knapp, A.: Elliptic Curves, Princeton: Princeton University Press, 1992
5. Silverman, J.: The Arithmetic of Elliptic Curves, Berlin–Heidelberg–New York:

Springer, 1986

This article was processed by the author using the TEX style file Pjour1g from Springer-Verlag

