Math 581g, Fall 2011, Homework 6

William Stein (wstein@uw.edu)

Due: Friday, NOVEMBER 18, 2011

There are 4 problems. Turn your solutions in on November 18. You may work with other people and you can find the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ of this file at http://wstein.org/edu/ $2011 / 581 \mathrm{~g} / \mathrm{hw} /$. I will have office hours $11-3$ in Padelford C423 on November 17.

1. (Warm up) Using the formula from class (or the book), compute the genus of the modular curve $X(54)$. Be prepared: what is the genus of $X(2012)$?
2. Consider the map $j: X(N) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}$ for $N \geq 3$. Following the argument presented in class, prove that

$$
\# j^{-1}(1728)=\frac{\# \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})}{4}
$$

3. Explicitly compute the sets $\Gamma_{0}(N) \backslash \mathbf{P}^{1}(\mathbf{Q})$ for $N=3, N=9$, and $N=54$, using the method I described in class. [Hint: You should double check your work with Sage: Gamma0(N).cusps(), but don't just get the answer this way.]
4. Let N be a positive integer. Prove that

$$
\# \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})=N^{3} \cdot \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)
$$

where the product is over the prime divisors of N. [Hint: First reduce to the prime power case, by noting that $\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z}) \cong \prod_{p \mid N} \mathrm{SL}_{2}\left(\mathbf{Z} / p^{\nu_{p}} \mathbf{Z}\right)$. Next, compute the cardinality of $\mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ using the exact sequence

$$
1 \rightarrow K \rightarrow \mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} / p \mathbf{Z}) \rightarrow 1
$$

where K is by definition the kernel, which has a simple description as

$$
K=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+A: A \in p M_{2 \times 2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)\right\}
$$

so it is easy to compute $\# K$. Finally, relate the cardinality of $\mathrm{SL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ to that of $\mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ and simplify the big mess you get to obtain the desired formula.]

