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1 Introduction

Conventional classical modular forms are defined over some finite extension of the rationals. One
question that one can ask is if equivalent objects exist over the p-adics, in the sense that they truly
reflect the p-adic topology and not just an extension of the base field.

Serre in the 1970s was the first to formalize such a question on the way to constructing p-adic
L-functions, by way of developing the notion of a p-adic modular form to be the p-adic limit of
some compatible family of q-expansions of classical modular forms. Katz came along fairly soon
afterwards and generalized the theory to a much more geometric context, and showed that Serre’s
p-adic forms exist as a special case of a much wider family of p-adic objects. The theory has been
further refined since then by Dwork, Hida, and most recently, Coleman, leading to the modern
theory of overconvergent modular forms.

We will detail Serre’s construction, prove one of the initial fundamental results, state two of
the major theorems as outlined in his foundational paper [Se73], and give an example of a p-adic
modular form. Katz’s generalization of the theory will be mentioned briefly afterwards, but since
it’s exposition is somewhat more opaque than Serre’s we will refrain from diving in too deeply here.

Unless otherwise stated in this paper p will denote a fixed rational prime ≥ 5. The cases of p = 2
and 3 require modified constructions in both Serre’s and Katz’s theory; for the sake of simplicity
we will sometimes omit these. For more information, see [Go88, §1]
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2 Serre’s Construction

Serre was interested in developing the theory of p-adic L-functions, for which it sufficed to use a
q-expansion-based construction of p-adic modular forms.

For ease of exposition we restrict ourselves to classical modular forms defined over Q and (p-adic
forms over Qp) of level N = 1, although all the following results can be extended to forms of higher
levels over number fields.

Definition 2.1. Let νp be the standard p-adic valuation on Qp, i.e. νp(
r
s) = ordp(r)− ordp(s) for

r
s ∈ Q, and extend in the natural way. Let f =

∑
n anq

n ∈ Q[[q]] be a formal power series in q over
Q. Then we define

νp(f) = inf
n
νp(an).

Serre’s construction is perhaps surprisingly elementary:

Definition 2.2. Let Mk be the space of modular forms of level 1 and weight k. A q-expansion

f =
∞∑
n=0

anq
n ∈ Qp[[q]]

is a Serre p-adic modular form if there exists a sequence of classical modular forms fi ∈Mki such
that

νp(f − fi)→∞ as i→∞.

Note that we do not require the fi to have fixed weight; in fact, the following theorem will have
as a corollary that that the weights ki of the fi converge p-adically in the nicest possible way.

Theorem 2.3. Let f1 and f2 be two (classical) modular forms with coefficients in Q of weight k1
and k2 respectively, with f1, f2 6= 0 and νp(f1) = 0. If there exists a positive integer m such that

νp(f1 − f2) ≥ m,

then

k1 ≡ k2 (mod (p− 1)pm−1) if p ≥ 3,

k1 ≡ k2 (mod 2m−2) if p = 2.

Proof. Serre’s proof relies on the structure of the space of classical modular forms modulo p, as
determined by Swinnerton-Dyer [SD73].
We provide a proof here for the case m = 1 i.e. f1 ≡ f2 (mod p) ⇒ k1 ≡ k2 (mod p − 1); for the
full proof see [Se73, pp. 197-200].

We have three cases:

i p = 2

Trivial, since f1 and f2 are obviously congruent modulo 1.
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ii p = 3:

Again trivial, since if f1, f2 6= 0, then k1 and k2 must both be even (as nontrivial classical
modular forms of level 1 exist only for even weights).

ii p ≥ 5:

We will need a bit of background to prove this case.

Recall that the (classical) Eisenstein series Ek of weight k, normalized so that the constant
coefficient is 1, has q-expansion

Ek = 1 +
2k

Bk

∑
n≥1

σk−1(n)qn,

where Bk is the kth Bernoulli number, and

σr(n) =
∑
d|n

dr

is the rth power divisor function. In particular, let

Q = E4 = 1− 240
∑
n≥1

σ3(n)qn and

R = E6 = 1− 504
∑
n≥1

σ5(n)qn.

Definition 2.4. A polynomial is called isobaric if all monomials appearing in the polynomial
have the same weight according to some given weight function on the indeterminates.

Let M be the graded algebra of classical modular forms over Q, i.e.

M =
⊕
k

Mk.

A standard result is that Q and R are algebraically independent and generate M,
i.e. M' Q[Q,R], and any f ∈Mk can be written uniquely as the isobaric polynomial

f =
∑

ca,bQ
aRb

for some finite set of pairs (a, b) such that 6a+ 4b = k; i.e. Q has weight 4 and R weight 6.
For example, Ramanujan’s ∆ function, a cusp form of weight 12, is given by

∆ = q
∏
n≥1

(1− qn)24 =
1

1728
(Q3 −R2).

For f ∈Mk such that νp(f) ≥ 0, we may consider f̃ , the reduction of f modulo p, i.e

f̃ =
∑
n

ãnq
n ∈ Fp[[q]],
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where ãn is just the nth Fourier coefficient of f reduced modulo p.

Let M̃k be the set of formal power series f̃ over Fp, where f ranges over all f ∈ Mk such
that νp(f) ≥ 0, and let

M̃ =
∑
k

M̃k.

M̃ is called the algebra of modular forms modulo p.
Note that νp(Q) ≥ 0 and νp(R) ≥ 0, so Q̃, R̃ ∈ M̃.
The proof that f1 ≡ f2 (mod p) ⇒ k1 ≡ k2 (mod p − 1) for p ≥ 5 requires us to fully deter-

mine the structure of M̃.

Let f =
∑
ca,bQ

aRb be a modular form of weight k such that νp(f) ≥ 0. One can show then
that the ca,b are all rational and νp(ca,b) ≥ 0 (proven by induction on k, using that ∆ is a
linear combination of Q3 and R2 satisfying this condition).

Hence M̃k has as a basis the monomials Q̃aR̃b, where 6a + 4b = k, and M̃ is generated by
the reduced q-expansions Q̃ and R̃. However, these are no longer necessarily algebraically
independent. That is, we have

M̃ ' Fp[X,Y ]/a

for the ideal a ⊂ Fp[X,Y ] of relations between Q̃ and R̃ i.e. those polynomials f for which

f(Q̃, R̃) = 0.

Claim: The ideal a is principal and generated by A − 1, where A ∈ Fp[X,Y ] is the isobaric

polynomial of weight p− 1 such that A(Q̃, R̃) = Ẽp−1.

For example, in the case of p = 7, then Ep−1 = E6 = R, so the fundamental relation is R̃ = 1,

and M̃ = F7[Q̃].
And when p = 11 one has E10 = QR, so the fundamental relation is Q̃R̃ = 1.

Recall that Ep−1 = 1+ 2(p−1)
Bp−1

∑
n≥1 σp−2(n)qn. We have that νp(Bp−1) = −1 (see for example

[BS67, p. 431]); hence Ep−1 ≡ 1 (mod p).
Let a′ be the ideal generated by A − 1. Then by the above a′ ⊂ a, since by definition
A(Q̃, R̃)− Ẽp−1 = 0. Furthermore, one can show that A− 1 is irreducible; hence a′ is prime.

Now since M̃ is an integral domain we have that a is prime;
Also, a is not maximal, since if it were M̃ would be finite, which it clearly is not (for example,
the monomials Q̃R̃ of a given weight are linearly independent).
So let m be a maximal ideal containing a. We then have the chain of prime ideals

0 ⊂ a′ ⊂ a ⊂ m.

If a′ 6= a this would be a chain of length 3, violating the fact that M is Krull dimension 2.
Hence a′ = a, proving the claim.
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Consider again Fp[X,Y ] equipped with the grading where X has weight 4 and Y weight 6.
Since A− 1 has weight p− 1, the ideal a it generates is of weight 0 (mod p− 1);
We may thus pass to the quotient and equip Fp[X,Y ] with the grading of values in Z/(p−1)Z
(i.e. where the weights are reduced modulo p− 1), and deduce that a has weight 0 under this

grading. Hence the quotient algebra M̃ = Fp[X,Y ]/a is graded with degree group Z/(p−1)Z.
We conclude that

M̃ =
⊕

α∈Z/(p−1)Z

M̃α, where M̃α =
⋃

k≡α (mod p−1)

M̃k.

Finally, we return to our modular forms f1 and f2 such that f1 ≡ f2 (mod p), i.e. f̃1 = f̃2.

But then the above decomposition of M̃ yields that ∃ α ∈ Z/(p−1)Z such that f̃1 = f̃2 ∈ M̃α.
Thus k1 ≡ k2 (mod p− 1), completing the proof.

Let us now define

Xm =

{
Z/(p− 1)pm−1Z p ≥ 3

Z/2m−2Z p = 2

and X = lim←−
m

Xm ' Zp × Z/(p− 1)Z by the Chinese Remainder Theorem,

then we obtain the following beautiful corollary of the above theorem, the first nontrivial property
Serre p-adic modular forms:

Corollary 2.5. Let f be a Serre p-adic modular form and fi a sequence of classical modular forms
with coefficients in Q and weights ki that converge p-adically to f . Then there exists a unique k ∈ X
such that ki converges to k. Moreover, k is independent of the choice of fi. We call k the weight
of f .

Proof. Since νp(f − fi)→∞ the above theorem holds, and we may set k = lim←− ki. Then k ∈ X by
definition, and is unique and independent of the specific choice of fi by standard results.

A useful result is that in order to construct a Serre p-adic modular form, it suffices to obtain a
family fi of classical modular forms of compatible weights whose an converge uniformly for n ≥ 1;
i.e. having done so we get the constant term ‘for free’. The result is formalized in the following:

Theorem 2.6 (Serre). Let fi =
∑

n≥0 ai,nq
n be a sequence of p-adic modular forms of weights ki

such that

• for n ≥ 1, the ai,n converge uniformly to some an ∈ Qp,

• ki converge to some k ∈ X.

Then

• a0,n converge to some a0 ∈ Qp,

• f =
∑

n≥0 anq
n is a Serre p-adic modular form of weight k.
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Example 2.7. Using this theorem, we can construct an example of a Serre p-adic modular form
from the familiar Eisenstein series. Recall that the Eisenstein series Gk of weight k is given by

Gk = −Gk
2k
Ek = −Bk

2k
+
∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number, and σr(n) =
∑

d|n d
r the rth power divisor function.

Let X be defined as before, k ∈ X and n ∈ N≥1. Observe that if d is a positive integer, then
dk−1 ∈ Zp, so we may define

σ∗k−1(n) =
∑
d|n

gcd(n,p)=1

dk−1 ∈ Zp.

So choose k ∈ X is even and nonzero. Then we may certainly find a sequence ki ≥ 4 of positive
even integers whose archimedian absolute value tends to infinity and ki → k p-adically. We then
have that for positive integer d coprime to p, dki−1 → dk−1. in the p-adic norm. Hence

σ∗k−1(n) = lim←−
i

σki−1(n) ∈ Zp,

and this convergence is uniform over all n ≥ 1.

Thus by the above theorem, the Gki converge to a p-adic modular form of weight k, called G∗k,
the p-adic Eisenstein series of weight k, and

G∗k =

(
lim←−
i

−Bk
2k

)
+

∞∑
n=1

σ∗k−1(n)qn.

Interestingly, the weight 2 p-adic Eisenstein series is a p-adic modular form even though the
classical weight 2 Eisenstein series is not a classical modular form.
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3 Katz’s Generalization

In 1973 Katz reformulated the notion of a p-adic modular form from a much more modular point
of view. Recall that classical meromorphic modular forms can be thought of as functions on triples
(E/Z, ω, ι), where E is an elliptic curve over the ring Z, ω a nonvanishing differential on E, and ι a
level structure on E obeying some prescribed transformation laws. If one were to simply copy this
definition but let the base ring be Zp, we simply get Zp tensored with the classical modular forms
over Z [Go88, pg.1].

However, we can define a notion of a truly p-adic modular form by introducing soothing called
the growth condition. Katz’s definition of a p-adic modular form can be thought of as a function
on quadruples of an elliptic curve over a p-adic ring, a nonvanishing differential thereon, a level
structure, and a p-adic constant relating the elliptic curve to the prescribed growth condition. We
will simply state the formal definition of such a p-adic modular form here and leave it at that, since
developing the theory beyond this is a non-trivial matter.

We begin by defining test objects, the tuples on which these p-adic modular forms will operate.
For this we observe that the Eisenstein series Ep−1(E,ω) of weight p − 1 may be interpreted as
functions of pairs of elliptic curves and non-vanishing differentials thereon.

Definition 3.1. Let B be a p-adic ring, and A a complete separated B-algebra. Let r ∈ B be a
constant, and Γ1(N) the usual congruence subgroup of SL2(Z). We define a test object of level
N and growth condition r over B to be a quadruple

(E/A, ω, ι, Y ),

where E is an elliptic curve over A, ω a nonvanishing differential on E, ι a Γ1(N)-invariant structure
on E, and Y ∈ A the value satisfying

Y · Ep−1(E,ω) = r.

Definition 3.2 (Katz). A p-adic modular form over B of weight k, level N and growth condition
r is a rule f which assigns a value in A to a test object (E/A, ω, ι, Y ) over B of level N and growth
condition r, i.e.

f(E/A, ω, ι, Y ) ∈ A,

subject to the following conditions:

i f(E/A, ω, ι, Y ) depends only on the isomorphism class of (E/A, ω, ι);

ii f(E/A, ω, ι, Y ) commutes with base change;

iii for any λ ∈ A∗ we have

f(E/A, ω, ι, λ1−pY ) = λ−kf(E/A, ω, ι, Y ).

The space of p-adic modular forms over B of weight k, level N and growth condition r is denoted

F (B, k,N, r).
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Note that since the space is truly p-adic we immediately have that

lim←−
n

F (B/pnB, k,N, r) = F (B, k,N, r).

The introduction of the growth condition r is equivalent to restricting consideration away from
disks of supersingular curves of radius r. When r = 1 we only consider ordinary curves, and Katz
shows this case is equivalent to Serre’s formulation (see [Ka83]). However, setting r to be a p-adic
unit other than 1 allows for the notion of “overconvergent” p-adic modular forms, for which there
is no analogy in Serre’s theory.

Finally, one should note that the theory of p-adic modular forms has been developed consid-
erably since Katz’s paper, which was published in the early 1980s. Notably, Coleman’s notion of
overconvergent modular forms (for example see [Co96]) further develops Katz’s modular approach.
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