
Colin Dilworth
June 3, 2011

Math 480A – Sage Software
Abstract
 RSA encryption is a very valuable tool for sending information in a safe, clever way, and

is also valuable for signing messages. As was said in class, the problem of being able to send

messages without “the enemy” knowing what you are saying or doing has been a quandary as

long as warfare has existed. Computer scientists Rivest, Shamir and Adleman invented RSA in

the 70’s. It is still used today for signing messages as well as encryption. The mathematical

principles involved in RSA encryption are the manipulation of large primes and modular

arithmetic, making it a particularly interesting topic for number theorists, as well as

organizations interested in security, such as the CIA and NSA. RSA has also, at least partly,

sparked the race to find large primes because the use of larger primes in the encryption algorithm

makes the messages much harder to decrypt by those who don’t have the correct key.

Personal Motivation

 I, as an aspiring mathematician, am not particularly interested in sending secret messages

to soldiers on the front lines, or organizing a coup of a foreign totalitarian regime by activating a

militia with a secret password. I was first introduced to RSA encryption last year in a number

theory class I took at Colgate University. The professor had just finished teaching us about

modular arithmetic (ice. Chinese Remainder Theorem, congruence relations, etc.) when she told

us that we would spend the last half of class learning about something fun. I thought that the

class had been pretty fun and interesting up to that point, so I was excited. She showed us how

RSA worked (which I will explain later), and it was very curious that you could transport

information in such a way as to keep it completely secret from anyone hearing what you’re

sending. I was hooked. As noted above, though, I wasn’t particularly interested in using it for

anything, and didn’t know if it would even come up in any of my classes again. I’m very glad

that it did, though in a more indirect way. I do not claim to be a seasoned computer scientist, but

I find this system of encryption pretty amazing, and not too difficult to implement, even for an

amateur mathematician or number theorist. The main catch with the system, I found, is that the

algorithm you write needs to be able to handle large primes.

History1

 Before I explain how the process of RSA encryption works, let me first explain a brief

history of RSA encryption and the people who brought it about. Ronald Rivest, Aid Shamir and

Leonard Adleman were the three computer scientists who came up with the encryption system

that bears their last initials (Rivest, Shamir, Adleman). They first publicly presented the

encryption system at MIT in 1978. They went on to receive a patent for the system in 1983.

There has been some controversy about the system, however, because a British mathematician

named Clifford Cocks also came up with a similar system in the early 1970’s. If he had come out

with his conclusions, RSA encryption would probably not have come about in the way that it did.

The Procedure

 Step 1: Compute two distinct prime numbers. They must be distinct, or the algorithm

won’t work. This was a major bug early on in the development of my algorithm. So we have

p, q such that no number in the integers divides p or q.

 Step 2: The modulus for both the public and private key is found by getting multiplying p

and q. So we have:

n = pq
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 This	
 information	
 is	
 from	
 the	
 Wikipedia	
 page	
 on	
 RSA,	
 as	
 well	
 as	
 the	
 pages	
 on	
 Rivest,	

Shamir	
 and	
 Adleman.	

 Step 3: We now compute the totient2 of pq, which we will use to compute the other parts

of our private and public keys. Since all numbers less than p and q are coprime to p and q, and p

and q are coprime to each other, we have:

φ(pq) = φ(p) φ(q) = (p-1) (q-1)

 For convenience, we’ll call this number t.

 Step 4: We now find e, our public key, such that e is less than and coprime to the totient

of pq. So we have:

e < t

 How do we know if e is coprime to (p-1)(q-1)? If we pick e to be prime and see that it

doesn’t divide the totient of pq that will suffice. So we have:

e is prime; e does not divide t

 Step 5: We now find the multiplicative modular inverse of e modulo t. That is, we find

the number d such that ed = 1 modulo t. So we have:

d such that t | ed – 1

 d can be very hard to find in this case. In researching this problem, I found that it’s very

tedious, if not impossible without the use a computer. My friend and I worked on a formula for d

for hours, but came up with very little of any substance. So, the easiest way to find d is with a

simple while loop.

 Step 6: Pretend Arthur has come up with all of these calculations, and he sends e and t to

Patsy, who is aware of how this system works. Patsy then comes up with a secret message, m,

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 Also	
 called	
 Euler’s	
 phi	
 function,	
 the	
 totient	
 of	
 n	
 computes	
 the	
 number	
 of	
 integers	
 less	
 than	
 	

and	
 coprime	
 to	
 n.	
 For	
 instance,	
 the	
 totient	
 of	
 8	
 is	
 5	
 because	
 1,	
 3,	
 5,	
 6	
 and	
 7	
 are	
 all	
 coprime	

to	
 8.	
 This	
 information	
 is	
 from	
 the	
 course	
 in	
 number	
 theory	
 that	
 I	
 took	
 last	
 year.	

for Arthur. Patsy hides m by taking me(mod n) and sending that number to Arthur3. So Arthur

gets sent:

c = me(mod n)

 Part 7: Arthur then decodes c by taking cd(mod n), so he can see that:

m = cd(mod n)

 Arthur now knows how to trick the knight at the Bridge of Death.

Conclusion

 This is a very powerful tool for use in computer science and security. Aside from that, it

is also just an interesting for mathematicians to study. How does it work? Well, we have that

ed = 1 + kt
at=1(mod n)

Then med = m1 + kt = m(mt)k = m(mod n) = m4 (That is a footnote, not m to the
fourth power.).5

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 Different	
 schemes	
 are	
 used	
 for	
 hiding	
 messages	
 in	
 numbers.	
 An	
 obvious	
 one	
 would	
 be	
 to	

have	
 the	
 letters	
 of	
 the	
 alphabet	
 correspond	
 to	
 the	
 numbers	
 1	
 through	
 26.	

4	
 Voytko,	
 J.	
 (2008,	
 January	
 8).	
 “Why	
 Does	
 RSA	
 Work?”	
 Jake	
 Voytko.	

http://www.jakevoytko.com/blog/2008/01/06/why-­‐does-­‐rsa-­‐work/#euler_corollary,	
 and	

the	
 Wikipedia	
 page	
 on	
 RSA.	

5	
 Note	
 also	
 that	
 the	
 text	
 is	
 bigger	
 for	
 readability	
 of	
 exponents.	

