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Abstract 
 RSA encryption is a very valuable tool for sending information in a safe, clever way, and 

is also valuable for signing messages. As was said in class, the problem of being able to send 

messages without “the enemy” knowing what you are saying or doing has been a quandary as 

long as warfare has existed. Computer scientists Rivest, Shamir and Adleman invented RSA in 

the 70’s. It is still used today for signing messages as well as encryption. The mathematical 

principles involved in RSA encryption are the manipulation of large primes and modular 

arithmetic, making it a particularly interesting topic for number theorists, as well as 

organizations interested in security, such as the CIA and NSA. RSA has also, at least partly, 

sparked the race to find large primes because the use of larger primes in the encryption algorithm 

makes the messages much harder to decrypt by those who don’t have the correct key. 

 

Personal Motivation 

 I, as an aspiring mathematician, am not particularly interested in sending secret messages 

to soldiers on the front lines, or organizing a coup of a foreign totalitarian regime by activating a 

militia with a secret password. I was first introduced to RSA encryption last year in a number 

theory class I took at Colgate University. The professor had just finished teaching us about 

modular arithmetic (ice. Chinese Remainder Theorem, congruence relations, etc.) when she told 

us that we would spend the last half of class learning about something fun. I thought that the 

class had been pretty fun and interesting up to that point, so I was excited. She showed us how 

RSA worked (which I will explain later), and it was very curious that you could transport 

information in such a way as to keep it completely secret from anyone hearing what you’re 



sending. I was hooked. As noted above, though, I wasn’t particularly interested in using it for 

anything, and didn’t know if it would even come up in any of my classes again. I’m very glad 

that it did, though in a more indirect way. I do not claim to be a seasoned computer scientist, but 

I find this system of encryption pretty amazing, and not too difficult to implement, even for an 

amateur mathematician or number theorist. The main catch with the system, I found, is that the 

algorithm you write needs to be able to handle large primes. 

History1 

 Before I explain how the process of RSA encryption works, let me first explain a brief 

history of RSA encryption and the people who brought it about. Ronald Rivest, Aid Shamir and 

Leonard Adleman were the three computer scientists who came up with the encryption system 

that bears their last initials (Rivest, Shamir, Adleman). They first publicly presented the 

encryption system at MIT in 1978. They went on to receive a patent for the system in 1983. 

There has been some controversy about the system, however, because a British mathematician 

named Clifford Cocks also came up with a similar system in the early 1970’s. If he had come out 

with his conclusions, RSA encryption would probably not have come about in the way that it did. 

The Procedure 

 Step 1: Compute two distinct prime numbers. They must be distinct, or the algorithm 

won’t work. This was a major bug early on in the development of my algorithm. So we have 

p, q such that no number in the integers divides p or q. 

 Step 2: The modulus for both the public and private key is found by getting multiplying p 

and q. So we have: 

n = pq 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  This	
  information	
  is	
  from	
  the	
  Wikipedia	
  page	
  on	
  RSA,	
  as	
  well	
  as	
  the	
  pages	
  on	
  Rivest,	
  
Shamir	
  and	
  Adleman.	
  



 Step 3: We now compute the totient2 of pq, which we will use to compute the other parts 

of our private and public keys. Since all numbers less than p and q are coprime to p and q, and p 

and q are coprime to each other, we have: 

φ(pq) = φ(p) φ(q) = (p-1) (q-1) 

 For convenience, we’ll call this number t. 

 Step 4: We now find e, our public key, such that e is less than and coprime to the totient 

of pq. So we have: 

e < t 

 How do we know if e is coprime to (p-1)(q-1)? If we pick e to be prime and see that it 

doesn’t divide the totient of pq that will suffice. So we have: 

e is prime; e does not divide t 

 Step 5: We now find the multiplicative modular inverse of e modulo t. That is, we find 

the number d such that ed = 1 modulo t. So we have: 

d such that t | ed – 1 

 d can be very hard to find in this case. In researching this problem, I found that it’s very 

tedious, if not impossible without the use a computer. My friend and I worked on a formula for d 

for hours, but came up with very little of any substance. So, the easiest way to find d is with a 

simple while loop. 

 Step 6: Pretend Arthur has come up with all of these calculations, and he sends e and t to 

Patsy, who is aware of how this system works.  Patsy then comes up with a secret message, m, 
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  Also	
  called	
  Euler’s	
  phi	
  function,	
  the	
  totient	
  of	
  n	
  computes	
  the	
  number	
  of	
  integers	
  less	
  than	
  	
  
and	
  coprime	
  to	
  n.	
  For	
  instance,	
  the	
  totient	
  of	
  8	
  is	
  5	
  because	
  1,	
  3,	
  5,	
  6	
  and	
  7	
  are	
  all	
  coprime	
  
to	
  8.	
  This	
  information	
  is	
  from	
  the	
  course	
  in	
  number	
  theory	
  that	
  I	
  took	
  last	
  year.	
  



for Arthur. Patsy hides m by taking me(mod n) and sending that number to Arthur3. So Arthur 

gets sent: 

c = me(mod n) 

 Part 7: Arthur then decodes c by taking cd(mod n), so he can see that: 

m = cd(mod n) 

 Arthur now knows how to trick the knight at the Bridge of Death. 

 

Conclusion 

 This is a very powerful tool for use in computer science and security. Aside from that, it 

is also just an interesting for mathematicians to study. How does it work? Well, we have that 

ed = 1 + kt 
at=1(mod n) 
 
Then med = m1 + kt = m(mt )k = m(mod n) = m4 (That is a footnote, not m to the 
fourth power.).5 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Different	
  schemes	
  are	
  used	
  for	
  hiding	
  messages	
  in	
  numbers.	
  An	
  obvious	
  one	
  would	
  be	
  to	
  
have	
  the	
  letters	
  of	
  the	
  alphabet	
  correspond	
  to	
  the	
  numbers	
  1	
  through	
  26.	
  
4	
  Voytko,	
  J.	
  (2008,	
  January	
  8).	
  “Why	
  Does	
  RSA	
  Work?”	
  Jake	
  Voytko.	
  
http://www.jakevoytko.com/blog/2008/01/06/why-­‐does-­‐rsa-­‐work/#euler_corollary,	
  and	
  
the	
  Wikipedia	
  page	
  on	
  RSA.	
  
5	
  Note	
  also	
  that	
  the	
  text	
  is	
  bigger	
  for	
  readability	
  of	
  exponents.	
  


