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I thank Helena Verrill and William Stein for their help in getting this account
of my talks at Park City into print. After Helena typed up her original notes of
the talks, William was a great help with the editing, and put them in the canonical
format for this volume.

The somewhat inefficient organization of this account is mainly a result of the
fact that, after the first talk had been given with the idea that it was to be the
only one, a second was later scheduled, and these are the notes of the material in
the two talks in the order it was presented.

The bible for this subject is Serre [6], in conjunction with [5] or [1]. Haber-
land [2] is also an excellent reference.

1. Group modules

Consider a group G and an abelian group A equipped with a map

G × A → A,

(σ, a) 7→ σa.

We use notation σ, τ, ρ, . . . for elements of G, and a, b, a′, b′, . . . for elements of A.
To say that A is a G-set means that

τ(σa) = (τσ)a and 1a = a,

for all σ, τ ∈ G and a ∈ A, where 1 is the identity in G. To say that A is a G-module

means that, in addition, we have

σ(a + b) = σa + σb,

for all σ ∈ G and a, b ∈ A. This is all equivalent to giving A the structure of
Z[G]-module.

Given a G-module A as above, the subgroup of fixed elements of A is

AG := {a ∈ A | σa = a for all σ ∈ G} .
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2 J. TATE, GALOIS COHOMOLOGY

We say G acts trivially on A if σa = a for all a ∈ A; thus AG = A if and only if the
action is trivial. When Z, Q, Q/Z are considered as G-modules, this is with the
trivial action, unless stated otherwise.

If we take G = Gal(K/k), with K a Galois extension of k of possibly infinite
degree, then we have the following examples of fixed subgroups of G-modules:

A AG

K+ as an additive group k+

K∗ as a multiplicative group k∗

E(K), where E/k is an elliptic curve E(k).

The action on E(K) above is given by σ(x, y) = (σx, σy) for a point P = (x, y),
if E is given as a plane cubic. In general, if C is a commutative algebraic group
over K, we can take A = C(K), and then AG = C(k).

2. Cohomology

We now define the cohomology groups Hr(G, A), for r ∈ Z. Abstractly, these are
the right derived functors of the left exact functor

{G-modules} → {abelian groups}
that sends A 7→ AG. Since AG = HomZ[G](Z, A), we have a canonical isomorphism

Hr(G, A) = Extr
Z[G](Z, A).

More concretely, the cohomology groups Hr(G, A) can be computed using the
“standard cochain complex” (see, e.g., [1, pg. 96]). Let

Cr(G, A) := Maps(Gr , A);

an element of Cr(G, A) is a function f of r variables in G,

f(σ1, . . . , σr) ∈ A,

and is called an r-cochain. (If, in addition, A and G have a topological structure,
then we instead consider continuous cochains.) There is a sequence

· · · → 0 → 0 → C0(G, A)
δ→ C1(G, A)

δ→ C2(G, A)
δ→ · · ·

Here C0(G, A) = A, since an element f of C0(G, A) is given by the single element
f0(•) ∈ A, its value at the unique element • ∈ G0. The maps δ are defined by

(δf0)(σ) = σf0(•) − f0(•),
(δf1)(σ, τ) = σf1(τ) − f1(στ) + f1(σ),
(δf2)(σ, τ, ρ) = σf2(τ, ρ) − f2(στ, ρ) + f2(σ, τρ) − f2(σ, τ),

and so on. Note that δ ◦ δ = 0. The cohomology groups are given by

Hr(G, A) = ker δ/ im δ ⊂ Cr(G, A)/ im δ.

Cocycles are elements of the kernel of δ, and coboundaries are elements of the image
of δ. We have

H0(G, A) = AG,

H1(G, A) = crossed-homomorphisms
principal crossed-homomorphisms

= Hom(G, A), if action is trivial,
H2(G, A) = classes of “factor sets”.
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The groups H2(G, A) and H1(G, A) arise in many situations. Perhaps the
simplest is their connection with group extensions and their automorphisms. Given
a G-module A, suppose G is a group extension of G by A, that is, G is a group
which contains A as a normal subgroup such that G/A ∼= G, where the given action
of G on A is the same as the conjugation action induced by this isomorphism.
Construct a 2-cocycle aσ,τ as follows. For each element σ ∈ G, let uσ ∈ G be a
coset representative corresponding to σ. Then G =

∐
σ Auσ, i.e., every element of

G is uniquely of the form auσ. Thus

uσuτ = aσ,τuστ

for some aσ,τ ∈ A. The map (σ, τ) 7→ aσ,τ is a 2-cocycle.

Exercise 2.1. Using the associative law, check that aσ,τ is a 2-cocycle, and if G ′

is another extension of G by A, then there is an isomorphism G ′ ∼= G that induces
the identity on A and G if and only if the corresponding 2-cocycles differ by a
coboundary.

Exercise 2.2. Conversely, show that every 2-cocycle arises in this way. For exam-
ple, in the trival case, if aσ,τ = 1 for every σ and τ , then we can take G to be the
semidirect product G n A.

Therefore we may view H2(G, A) as the group of isomorphism classes of exten-
sions of G by A with a given action of G on A.

Exercise 2.3. Show that an automorphism of G that induces the identity on A
and on G = G/A is of the form auσ 7→ abσuσ with σ 7→ bσ a 1-cocycle, and it
is an inner automorphism induced by an element of A if and only if σ 7→ bσ is a
coboundary.

2.1. Examples

Given a finite Galois extension K/k, and a commutative algebraic group C over k,
the following notation is frequently used:

Hr(K/k, C) := Hr(Gal(K/k), C(K)).

We have H0(K/k, C) = C(k) as above, and

H1(K/k,Gm) = H1(K/k, K∗) = 0,

H2(K/k,Gm) = Br(K/k) ⊂ Br(k)

The first equality is Hilbert’s Theorem 90. In the second equality Br(k) is the
Brauer group of k; this is the group of equivalence classes of central simple algebras
with center k that are finite dimensional over k; two such algebras are equivalent
if they are matrix algebras over k-isomorphic division algebras.

The map from H2(K/k,Gm) to Br(K/k) is defined as follows. Given a 2-
cocycle aσ,τ , define a central simple algebra over k by A = ⊕Kuσ, which is a vector
spaces over K with a basis {uσ} indexed by the elements σ ∈ G. Multiplication is
defined by the same rules as for group extensions above (with A = K∗), extended
linearly.
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2.2. Characterization of Hr(G,−)

For fixed G and varying A the groups Hr(G, A) have the following fundamental
properties:

1. H0(G, A) = AG.
2. Hr(G,−) is a functor

{G-modules} → {abelian groups} .

3. Each short exact sequence

0 → A′ → A → A′′ → 0

gives rise to connecting homomorphisms (see below)

δ : Hr(G, A′′) → Hr+1(G, A′)

from which we get a long exact sequence of cohomology groups, functorial
in short exact sequences in the natural sense.

4. If A is “induced” or “injective”, then Hr(G, A) = 0 for all r 6= 0.

These properties characterize the sequence of functors H i equipped with the δ’s
uniquely, up to unique isomorphism.

For c ∈ Hr(G, A′′), define δ(c) as follows. Let c1 : Gr → A′′ be a cocycle
representing c. Lift c1 to any map (cochain) c2 : Gr → A. Since δ(c1) = 0, the map
δ(c2) : Gr+1 → A has image in A′, so defines a map δ(c2) : Gr+1 → A′, and thus
represents a class δ(c) ∈ Hr+1(G, A′).

For an infinite Galois extension, one uses cocycles that come by inflation from
finite Galois subextensions. This amounts to using continuous cochains, where
continuous means with respect to the Krull topology on G and the discrete topology
on A.

Abstracting this situation leads to the notion of the cohomology of a profi-
nite group G (i.e., a projective limit, in the category of topological groups, of
finite groups Gi) operating continuously on a discrete module A. Without loss of
generality the Gi can be taken to be the quotients G/U of G by its open normal
subgroups U , and then A is the union of its subgroups AU . The cohomology groups
Hr(G, A) computed with continuous cochains are direct limits, relative to the in-
flation maps (see Section 6), of the cohomology groups Hr(G/U, AU ) of the finite
quotients, because the continuous cochain complex C∗(G, A) is the direct limit of
the complexes C∗(G/U, AU ). Also, it is easy to see that the groups {Hr(G,−)}r

are characterized by δ-functoriality on the category of discrete G-modules.

3. Kummer theory

Let ksep be a separable closure of a field k, and put Gk = Gal(ksep/k). Let m ≥ 1
be an integer, and assume that the image of m in k is nonzero. Associated to the
exact sequence

0 −→ µm −→ (ksep)∗
m−→ (ksep)∗ −→ 0,

we have a long exact sequence

0 // µm ∩ k // k∗ m
// k∗

EDBC
GF@A

//____ H1(Gk , µm) // H1(Gk, (ksep)∗) = 0,
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where the last equality is by Hilbert’s Theorem 90. Thus H1(Gk, µm) ∼= k∗/(k∗)m.
Now assume that the group of mth roots of unity µm is contained in k. Then

H1(Gk, µm) = Homcont(Gk, µm),

so

k∗/(k∗)m ∼= Homcont(Gk, µm).

Using duality, this isomorphism describes the finite abelian extensions of k whose
Galois group is killed by m. For example, consider a Galois extension K/k such
that G = Gal(K/k) is a finite abelian group that is killed by m. Since G is a
quotient of Gk = Gal(ksep/k), we have a diagram

k∗/(k∗)m
∼=

// Homcont(Gk, µm)

B
∼=

//

OO

Ĝ := Hom(G, µm),

OO

where B is the subgroup of k∗/(k∗)m corresponding to Ĝ under the isomorphism.

Exercise 3.1. Show that

K = k(
m
√

B) = k({ m
√

b | b ∈ B}),
and [K : k] = #B.

The case when G cyclic is the crucial step in showing that a polynomial with
solvable Galois group can be solved by radicals.

For the rest of this section, we assume that k is a number field and continue
to assume that k contains µm. Let S be a finite set of primes of k including all
divisors of m and large enough so that the ring OS of S-integers of k is a principal
ideal ring.

Exercise 3.2. Show that the extension K( m
√

B) above is unramified outside S if
and only if B ⊂ USk∗m/k∗m ∼= US/Um

S , where US = O∗
S is the group of S-units

of k.

Exercise 3.3. Let kS be the maximal extension of k which is unramified outside S,
and let GS = Gal(kS/k). Then Homcont(GS , µm) = US/Um

S . It follows that
Homcont(GS , µm) is finite, because US is finitely generated.

Now let E be an elliptic curve over k. The m-torsion points of E over k form
a group Em = Em(k) ≈ (Z/mZ)2. Suppose that, in addition to the conditions
above, S also contain the places at which E has bad reduction. Then it is a fact
that E(kS) is divisible by m, so we have an exact sequence

0 → Em → E(kS)
m−→ E(kS) → 0.

Taking cohomology we obtain an exact sequence

0 → E(k)/mE(k) → H1(kS/k, Em) → H1(kS/k, E)m → 0,

where the subscript m means elements killed by m. Thus, to prove that E(k)/mE(k)
is finite (the “weak Mordell-Weil theorem”), it suffices to show that H1(kS/k, Em)
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is finite. Let k′ = k(Em) be the extension of k obtained by adjoining the coordi-
nates of the points of order m. Then k′/k is finite and unramified outside S. Hence
H1(k′/k, Em) is finite, and the exact inflation-restriction sequence (see Section 6)

0 → H1(k′/k, Em) → H1(kS/k, Em) → H1(kS/k′, Em)

shows that it suffices to prove H1(kS/k, Em) is finite when k = k′. But then

H1(kS/k, Em) ∼= Homcont(GS , Em) ∼= Homcont(GS , µm)2

is finite by Exercise 3.3.

Exercise 3.4. Take k = Q and let E be the elliptic curve y2 = x3 − x. Let m = 2
and S = {2}, US = 〈−1, 2〉, and show (E(Q) : 2E(Q)) ≤ 16. (In fact, E(Q) = E2

is of order 4, killed by 2, but to show that we need to examine what happens over R

and over Q2, not just use the lack of ramification at the other places.)

Exercise 3.5. Suppose S ′ = S ∪ {P1, P2, . . . , Pt} is obtained by adding t new
primes to S. Then US′

∼= US × Zt. Hence H1(kS′/k, E)m
∼= H1(kS/k, E) ×

(Z/mZ)2t. Hence H1(k, E) contains an infinite number of independent elements of
order m. Hilbert Theorem 90 is far from true for E.

4. Functor of pairs (G,A)

A morphism of pairs (G, A) 7→ (G′, A′) is given by a pair of maps φ and f ,

G G′
φ

oo and Aφ
f

// A′ ,

where φ is a group homomorphism, and f is a homomorphism of G′-modules, and
Aφ means A with the G′ action induced by φ. A morphism of pairs induces a map

Hr(G, A) → Hr(G′, A′)

got by composing the map Hr(G, A) → Hr(G′, Aφ) induced by φ with the map
Hr(G′, Aφ) → Hr(G′, A′) induced by f . We thus consider Hr(G, A) as a functor
of pairs (G, A).

If G′ is a subgroup of G then there are maps

Hr(G, A)
restriction

--
Hr(G′, A).

corestriction

mm

Here the corestriction map (also called the “transfer map”) is defined only if the
index [G : G′] is finite.

When r = 0 the corestriction map is the trace or norm:

K
G′

BB
BB

BB
BB

G

��

K ′

||
||

||
||

k

AG res
// AG′

cores

ll

∑

g∈{coset reps for G/G′}

ga a.�oo

Corollary 4.1. If G is of finite cardinality m, then

mHr(G, A) = 0 for r 6= 0.
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Proof. Letting G′ = {1}, we have

(corestriction) ◦ (restriction) = [G : G′] = [G : {1}] = m.

Since Hr({1}, A) = 0 for r 6= 0, this composition is 0, as claimed.

Exercise 4.2. Restriction to a p-Sylow subgroup is injective on the p-primary
component of Hr(G, A).

5. The Shafarevich group

Let k be a number field, ν a place of k, and kν the completion of k at ν. Let kν be
an algebraic closure of kν and let k be the algebraic closure of k in kν . These four
fields are illustrated in the following diagram.

kν

Gν

@@
@@

@@
@

��
��

��
��

k kν

k

Gk

????????

}}}}}}}}

Let E be an elliptic curve over k. We have natural morphisms of pairs

(Gk, E(k)) → (Gν , E(kν)),

for each place ν, hence a homomorphism

H1(k, E) →
∏

ν

H1(kν , E),

where the product is taken over all places of k. The kernel of this map is the
Shafarevich group X(k, E), which is conjectured to be finite.

If you can prove that X is finite, then you will be famous, and you will have
shown that the descent algorithm to compute the Mordell-Weil group, which seems
to work in practice, will always work. Until 1986, there was no single instance
where it was known that X was finite! Now much is known for k = Q if the rank
of E(Q) is 0 or 1; see [3] and [4] for results in this direction. Almost nothing is
known for higher ranks.

6. The inflation-restriction sequence

Recall that a morphism of pairs

(G, A) → (G′, A′)

is a map G′ → G and a G′-homomorphism A → A′, where G′ acts on A via
G′ → G. In particular, we can take G′ to be a subgroup H of G. Here are three
special instances of the above map:

1) restriction Hr(G, A) → Hr(H, A)
2) inflation Hr(G/H, AH) → Hr(G, A)

(for H / G, G → G/H, AH ⊂ A)

3) conjugation Hr(H, A)
σ̃→ Hr(σHσ−1, A), σ ∈ G

(for σhσ−1 7→ h and a 7→ σa)
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Theorem 6.1. If σ ∈ H, then the conjugation map σ̃ is the identity.

Exercise 6.2. Given a commutative algebraic group C defined over k one some-
times uses the notation Hr(k, C) := Hr(ksep/k, C), where k is a separable alge-
braic closure of k. Show that this makes sense, in the sense that if ks

1 and ks
2

are two separable closures of k, then the isomorphism Hr(Gal(ks
1/k), C(ks

1))
∼=

Hr(Gal(ks
2/k), C(ks

2)) induced by a k-isomorphism ϕ : ks
1 → ks

2 is independent of
the choice of ϕ.

Theorem 6.3. If H is a normal subgroup of G, then there is a “Hochschild-Serre”

spectral sequence

Ers
2 = Hr(G/H, Hs(H, A)) ⇒ Hr+s(G, A)

By Theorem 6.1, G acts on Hr(H, A) and H acts trivially, so this makes sense.
(The profinite case follows immediately from the finite one by direct limit; cf. the
end of Section 2.2.) The low dimensional corner of the spectral sequence can be
pictured as follows.

E02

EE
EE

EE
EE

E01

EE
EE

EE
EE

E11

EE
EE

EE
EE

E00 E10 E20

Inflation and restriction are “edge homomorphisms” in the spectral sequence. The
lower left corner pictured above gives the obvious isomorphism AG ∼= (AH)G/H ,
and the exact sequence

0 // H1(G/H, AH)
inf

// H1(G, A)
res

// H1(H, A)G/H

EDBC
GF

d

@A
//̂^^^ H2(G/H, AH)

inf
// H2(G, A).

The map d is the “transgression” and is induced by d2 : E01
2 → E20

2 .

Exercise 6.4.

1. Show that this last sequence, or at least the first line, is exact by using
standard 1-cocycles.

2. If H1(H, A) = 0, so that Er1
2 = 0 for all r, then the sequence obtained by

increasing the superscripts on the H ’s by 1 is exact.

Consider a subfield K of ksep that is Galois over k, and let C be a commutative
algebraic group over k.

ksep

GK

Gk K

C k.
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The inflation-restriction sequence is

0 // H1(K/k, C(K)) // H1(k, C(ksep)) // H1(K, C(ksep))Gal(K/k)

EDBC
GF@A

//^^^^ H2(K/k, C(K)) // H2(k, C(ksep)).

If C = Gm, then H1(K, C(ksep)) = 0, and there is an inflation-restriction sequence
with (1, 2) replaced by (2, 3):

0 // H2(K/k, K∗) // H2(k, (ksep)∗)) // H2(K, (ksep)∗))Gal(K/k)

EDBC
GF@A

//^^^^ H3(K/k, K∗) // H3(k, (ksep)∗).

An element α ∈ H2(K, (ksep)∗)Gal(K/k) represents a central simple algebra A over K
which is isomorphic to all of its conjugates by Gal(K/k). As the diagram indicates,
the image α in H3(K/k, K∗) is the “obstruction” whose vanishing is the necessary
and sufficient condition for such an algebra A to come by base extension from an
algebra over k.

7. Cup products

7.1. G-pairing

If A, A′, and B are G-modules, then

A × A′ b→ B

is a G-pairing if it is bi-additive, and respects the action of G:

b(σa, σa′) = σb(a, a′).

Such a pairing induces a map b̃

∪ : Hr(G, A) × Hs(G, A′)
b̃→ Hr+s(G, B),

as follows: given cochains f and f ′, one defines (for a given b) a cochain f ∪ f ′ by

(f ∪ f ′)(σ1, . . . , σr+s) = b(f(σ1, . . . , σr), σ1 . . . σrf
′(σr+1, . . . , σr+s)),

and checks the rule

δ(f ∪ f ′) = δf ∪ f ′ + (−1)rf ∪ δf ′.

If δf = δf ′ = 0, then also δ(f ∪ f ′) = 0; i.e., if f and f ′ are cocycles, so is f ∪ f ′.
Similarly one checks that the cohomology class of f ∪f ′ depends only on the classes
of f and f ′. Thus we obtain the desired pairing b̃.

If r = 0 and a ∈ AG is fixed, then a′ 7→ b(a, a′) defines a G-homomorphism
ϕa : A′ → B, and α′ 7→ a ∪ α′ is the map Hr(G, A′) → Hr(G, B) induced by ϕa.

If H is a subgroup of G, and α ∈ Hr(G, A) and β ∈ Hs(H, A′), then we can
form

res(α) ∪ β ∈ Hr+s(H, B).

Suppose that the index of H in G is finite, so that corestriction is defined; then one
can show that

cores(res(α) ∪ β) = α ∪ cores(β) ∈ Hr+s(G, B).
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7.2. Duality for finite modules

If A and B are G-modules, we make the group HomZ(A, B) into a G-module by
defining (σf)(a) = σ(f(σ−1a)). Note then that HomG(A, B) = (HomZ(A, B))G.
Also, the obvious pairing A×HomZ(A, B) → B is a G-pairing. The canonical map

(∗) A → HomZ(HomZ(A, B))

is a G-homomorphism. In case A is finite, killed by m, and B has a unique cyclic
subgroup of order m, the map (∗) is an isomorphism; one can thus recover A from
its “dual” HomZ(A, B) which has the same order as A. There are two especially
important such duals for finite A.

• The Pontrjagin Dual of A is HomZ(A,Q/Z); this equals HomZ(A,Z/mZ)
if mA = 0.

• The Cartier Dual of A is HomZ(A, µ(ksep)); this equals HomZ(A, µm(ksep))
if mA = 0.

In the Pontrjagin case, G is an arbitrary profinite group and acts trivially
on Q/Z. Taking limits, this duality extends to a perfect duality (i.e., an anti-
equivalence of categories) between discrete abelian torsion groups and profinite
abelian groups.

In the Cartier case, G = Gal(ksep/k) or some quotient thereof, and m 6= 0 in k.
(The Cartier dual of a p-group in characteristic p is a group scheme, not just a
Galois module.) If E is an elliptic curve over k and the image of m in k is nonzero,
the Weil pairing Em(ksep) × Em(ksep) → µm identifies Em with its Cartier dual.

8. Local fields

Let k be a local field, i.e., the field of fractions of a complete discrete valuation ring
with finite residue field F . Let K be a finite extension of k.

Fundamental facts:

H1(K/k, K∗) = 0 (Hilbert’s Theorem 90)

H2(K/k, K∗) = Z/[K : k]Z

H2(k,Gm) = Br(k) = Q/Z

The equality Br(k) = Q/Z is given canonically, by the Hasse invariant, as fol-
lows: The group Br(k) is the Brauer group, defined in §2.1. Consider the inflation-
restriction sequence for H2(−,Gm) in the tower of fields

k

kur

k

where kur is the maximal unramified extension of k. Since every central division
algebra over a local field has an unramified splitting field, we have Br(kur) = 0, and
hence an isomorphism

Br(k) ∼= H2(kur/k,Gm) = H2(Frob
bZ, (kur)∗).
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Using the exact sequence

0 // U(kur) // (kur)∗
valuation

// Z // 0

and the fact that the unit group of an unramified extension has trivial cohomology
in dimension 6= 0, we find that we can replace (kur)∗ by Z, and hence

Br(k) ∼= H2(Ẑ,Z) = H1(Ẑ,Q/Z) = Q/Z;

the middle equality comes from the short exact sequence

0 → Z → Q → Q/Z → 0

and the fact that Q, being uniquely divisible, has trivial cohomology in nonzero
dimensions. The resulting map

Br(k) → Q/Z

is the called the Hasse invariant.

Theorem 8.1. Let A be a finite Gk-module of order prime to the characteristic

of k. Let

A∗ = Hom(A,Gm) = Hom(A, µ(k))

be the Cartier dual of A. Then the G-pairing

A × A∗ → k
∗

induces a pairing

Hr(k, A) × H2−r(k, A∗) → H2(Gk , (ksep)∗) = Br(k) = Q/Z.

This is a perfect pairing of finite groups, for all r ∈ Z. It is nontrivial only if

r = 0, 1, 2, since for r ≥ 3,

Hr(k, A) = 0 for all A,

i.e., “the cohomological dimension of a non-archimedean local field is 2.”

Example. By Kummer theory, we have

k∗/(k∗)m = H1(k, µm(k)).

Thus there is a perfect pairing

H1(k,Z/mZ) × H1(k, µm(k)) // Q/Z

Hom(Gk,Z/mZ) × k∗/(k∗)m

The left hand equality is because the action is trivial. Conclusion:

Gab
k /(Gab

k )m ∼= k∗/(k∗)m.

Taking the limit gives Artin reciprocity:

k∗ �

�

// Gab
k ;

the image is dense.
Let E/k be an elliptic curve. In some sense,

E = Ext1(E,Gm)
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in the category of algebraic groups. There is a pairing

Hr(k, E) × Hs(k, E) → Hr+s+1(k,Gm).

For example, taking r = 0 and s = 1, we have the following theorem.

Theorem 8.2. Let E be an elliptic curve over a non-archimedean local field k,

then we have the following perfect pairing between Pontrjagin duals.

H0(k, E) × H1(k, E) // H2(k,Gm) = Q/Z

E(k)
profinite

× H1(k, E)
discrete, torsion

Sketch of Proof. We use the Weil pairing. Letting D denote “Pontrjagin dual”,
we have a diagram

0 // E(k)/mE(k) //

��

H1(k, Em) //

��

H1(k, E)m
//

��

0

0 // H1(k, E)D
m

// H1(k, Em)D // (E(k)/mE(k))D // 0

The rows are exact. The top one from the Kummer sequence, and the bottom is the
dual of the top one. The middle vertical arrow is an isomorphism by Theorem 8.1.
The outside vertical arrows are induced by the pairing of Theorem 8.2. The diagram
commutes, so they are also isomorphisms, and Theorem 8.2 follows by passage to
the limit with more and more divisible m.

It was in trying to prove Theorem 8.2 that I was led to Theorem 8.1 in the late
1950’s. Of course the “fundamental facts” and the Artin isomorphism are a much
older story.
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