Exercise Set 1:

G-Modules

Math 582e, Winter 2010, University of Washington

Due Wednesday, January 13, 2010

- 1. Give a complete detailed proof that the functor $A\mapsto A^G$ on the category of G-modules is left exact.
- 2. Let $G = S_n$ (the symmetric group) and $A = \mathbf{Z}$ equipped with the trivial G-action, so s.a = a for all $a \in A$. What are $H^0(G, A)$ and $H^1(G, A)$?
- 3. An exact sequence $0 \to A \xrightarrow{f} B \to C \xrightarrow{g} 0$ is *split* if there exists a morphism $h: C \to B$ such that $g \circ h = 1_C$.
 - (a) Give an example of a short exact sequence $0 \to A \to B \to C \to 0$ with A, B, and C finite abelian groups that is not split.
 - (b) Prove that if $0 \to A \to B \to C \to 0$ is split, then B is isomorphic to $A \oplus C$.
- 4. Let $G = GL_2(\mathbb{F}_2)$ and $A = \mathbb{F}_2 \oplus \mathbb{F}_2$ equipped with the natural left matrix action of G on A. Use cocycles and coboundaries to determine $H^0(G, A), H^1(G, A)$, and $H^2(G, A)$. [[I'm not sure doing H^2 might be hard?]]
- 5. Suppose G is a group, B is a G-module, and X is an abelian group. Prove that there is an isomorphism of G-modules:

$$\operatorname{Hom}_{\mathbb{Z}}(B,X) \to \operatorname{Hom}_{G}(B,\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],X))$$

induced by

$$f \mapsto (b \mapsto (s \mapsto f(s.b))).$$