William Stein
{{{id=5| /// }}}Defining Number Fields
Remark: Magma (which you may also want to learn) is very similar.
{{{id=86| %magma RRemark: Pari (which you also want to learn something of) is different.
{{{id=101| gp.nfinit? /// }}} {{{id=84| %gp k = nfinit(x^4 - 2*x^2 - 1); k /// [x^4 - 2*x^2 - 1, [2, 1], -1024, 1, [[1, -1.5537739740300373073441589530631469482, -0.64359425290558262473544343741820980891, 1.4142135623730950488016887242096980786; 1, 1.5537739740300373073441589530631469482, 0.64359425290558262473544343741820980891, 1.4142135623730950488016887242096980786; 1, 0.E-38 - 0.64359425290558262473544343741820980893*I, 0.E-38 + 1.5537739740300373073441589530631469482*I, -1.4142135623730950488016887242096980786 + 0.E-38*I], [1, -1.5537739740300373073441589530631469482, -0.64359425290558262473544343741820980891, 1.4142135623730950488016887242096980786; 1, 1.5537739740300373073441589530631469482, 0.64359425290558262473544343741820980891, 1.4142135623730950488016887242096980786; 1, -0.64359425290558262473544343741820980893, 1.5537739740300373073441589530631469482, -1.4142135623730950488016887242096980786; 1, 0.64359425290558262473544343741820980893, -1.5537739740300373073441589530631469482, -1.4142135623730950488016887242096980786], [1, -2, -1, 1; 1, 2, 1, 1; 1, -1, 2, -1; 1, 1, -2, -1], [4, 0, 0, 0; 0, 4, 4, 0; 0, 4, -4, 0; 0, 0, 0, 8], [8, 0, 0, 0; 0, 8, 4, 0; 0, 0, 4, 0; 0, 0, 0, 4], [2, 0, 0, 0; 0, 1, 1, 0; 0, 1, -1, 0; 0, 0, 0, 1], [2, [0, 2, 0, 0; 1, 0, 0, 2; 1, 0, 0, 0; 0, 1, 1, 0]]], [-1.5537739740300373073441589530631469482, 1.5537739740300373073441589530631469482, 0.E-38 - 0.64359425290558262473544343741820980893*I], [1, x, x^3 - 2*x, x^2 - 1], [1, 0, 1, 0; 0, 1, 0, 2; 0, 0, 0, 1; 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 2; 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0; 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 1, -1, 0; 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]] }}} {{{id=83| gp.nfbasis? /// }}}Special kinds of number fields:
{{{id=25| K. = QuadraticField(5); K /// Number Field in a with defining polynomial x^2 - 5 }}} {{{id=4| a^2 /// 5 }}} {{{id=28| K = CyclotomicField(15); K /// Cyclotomic Field of order 15 and degree 8 }}} {{{id=27| z = K.gen(); z /// zeta15 }}} {{{id=29| z^15 /// 1 }}} {{{id=104| 1/((1+2*z)^3) /// -8878336/36264691*zeta15^7 + 14376704/36264691*zeta15^6 - 12283104/36264691*zeta15^5 + 5069520/36264691*zeta15^4 + 870160/36264691*zeta15^3 - 9827128/36264691*zeta15^2 + 10831182/36264691*zeta15 - 5302797/36264691 }}} {{{id=103| /// }}}Relative extensions (warning -- basic arithmetic is very slow in some relative extensions, due to the toy implementation. See trac 9541.)
{{{id=108| K.Elements
|
Fractional Ideals
The Ring $\mathcal{O}_K$ of Integers
Class Groups
{{{id=75| var('x') K.(Bug in how the class group prints above: see trac 10141.)
{{{id=21| a = sqrt(1+sqrt(2)) f = RR(a).algdep(4); f /// x^4 - 2*x^2 - 1 }}} {{{id=23| K. = NumberField(f); K /// Number Field in a with defining polynomial x^4 - 2*x^2 - 1 }}} {{{id=22| K.class_number() /// 1 }}} {{{id=9| /// }}}(Massive) Efficiency Tricks
This would take forever:
{{{id=81| K.maximal_order() /// ^CTraceback (most recent call last): File "