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1 Introduction 
Prime numbers are widely studied in the field of number theory. One approach to investigate 

prime numbers is to study numbers of a certain form. For example, it has been proven that there 

are infinitely many primes in the form a + nd, where d ≥ 2 and gcd(d, a) = 1 (Dirichlet’s 

theorem). On the other hand, it is still an open question to whether there are infinitely many 

primes of the form n2 + 1. 

In this paper, we will discuss in particular numbers of the form 2 + 1 where n is a 

nonnegative integer. They are called Fermat numbers, named after the French mathematician 

Pierre de Fermat (1601 – 1665) who first studied numbers in this form. It is still an open problem 

to whether there are infinitely many primes in the form of 2 + 1. We will not be able to answer 

this question in this paper, but we will prove some basic properties of Fermat numbers and 

discuss their primality and divisibility. We will also briefly mention numbers of the form 2n – 1 

where n is a positive integer. They are called Mersenne numbers, named after the French 

mathematician Marin Mersenne. In section6, we will see how Mersenne numbers relate to the 

primality of Fermat numbers. 

 

                       
       Pierre de Fermat (1601 – 1665)                             Marin Mersenne (1588 – 1648) 
[pictures from http://en.wikipedia.org/Pierre_de_Fermat & http://en.wikipedia.org/wiki/Marin_Mersenne] 
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2 Background of Fermat Numbers1 
Fermat first conjectured that all the numbers in the form of 2 + 1 are primes. However, in 

1732, Leonhard Euler refuted this claim by showing that F5 = 232 + 1 = 4,294,967,297  

= 641 x 6,700,417 is a composite. It then became a question to whether there are infinitely many 

primes in the form of 2 + 1. Primes in this form are called Fermat primes. Up-to-date there are 

only five known Fermat primes. (See section4 for more details on the current status of Fermat 

numbers.) 

 

                        
 Leonhard Paul Euler (1707 – 1783)                      Carl Friedrich Gauss (1977 – 1855) 

[pictures from http://en.wikipedia.org/wiki/Euler & http://en.wikipedia.org/wiki/Gauss] 
 
 

In 1796, the German mathematician Carl Friedrich Gauss (1977 – 1855) found an interesting 

relationship between the Euclidean construction (i.e. by ruler and compass) of regular polygons 

and Fermat primes. His theorem is known as Gauss’s Theorem. 

 

Gauss’s Theorem2. There exists an Euclidean construction of the regular n-gon if and only if 

n = 2ip1p2···pj, where n ≥ 3, i ≥ 0, j ≥ 0, and p1, p2,…, pj are distinct Fermat primes. 

                                                            
1 All historical information in this section is from Reference1 Chapter1. 
2 A proof of Gauss’s Theorem can be found in Reference1 Chapter16. 
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Gauss’s theorem implies that all 2n-gons for n ≥ 2 are constructible. Moreover, since so far 

only five Fermat numbers are known to be prime, it implies that for n odd, there are only  

5C1 + 5 C1 + 5C1 + 5C1 + 5C1 = 31 n-gons that are known to be Euclidean constructible. If it turns 

out that there is only a finite number of Fermat primes, then this theorem would imply that there 

is only a finite number of Euclidean constructible n-gons for n odd. The figure below shows five 

Euclidean constructible n-gons. 

 

 
Triangle, pentagon, heptadecagon, 257-gon and 65537-gon. 

[figure from Reference1 Chapter4] 
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3 Geometric Interpretation of Fermat Numbers 
As Gauss’s theorem suggests, Fermat numbers might be closely related to some of the 

problems in Geometry. It is hence useful if we can understand what they mean geometrically. 

A Fermat number Fn = 2 + 1 (for n ≥ 1) can be thought of as a square whose side length is 

2  plus a unit square (see figure1). Hence, determining whether a (Fermat) number is a 

composite or not is equivalent to determining whether we can rearrange the unit-square blocks to 

form a rectangle (see figure2). Moreover, determining whether an integer d divides a (Fermat) 

number is the same as deciding whether we can reorganize the blocks to form a rectangle with 

base d; or alternatively, we can also think of it as determining whether we can “fill” the area with 

a number of r·d unit-square blocks for some integer r (see figure3). 

  

 
Figure1. F2 = 42 + 1 = 17 

 

           
Figure2. F2 = 17 is not a composite because no matter 

how you rearrange the blocks, you cannot get a rectangle. 
 

 
Figure3. F2 = 17 is not divisible by 3. 

 
 

Some of the properties we will prove in section5 can be easily understood if we interpret 

them geometrically. The reader should pay close attention. We will also make remarks on several 

of them. 
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4 Factoring Status of Fermat Numbers3 (as of February 3, 2010) 

The below table only shows the factoring status of Fermat numbers up to n = 200. For larger 

Fermat numbers and other details, see http://www.prothsearch.net/fermat.html#Summary. 

 

Prime  
Composite with no known factors  
Composite with complete factorization  
Composite with incomplete factorization  
Unknown  

 

 0 
1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 
71 72 73 74 75 76 77 78 79 80 
81 82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 97 98 99 100 
101 102 103 104 105 106 107 108 109 110 
111 112 113 114 115 116 117 118 119 120 
121 122 123 124 125 126 127 128 129 130 
131 132 133 134 135 136 137 138 139 140 
141 142 143 144 145 146 147 148 149 150 
151 152 153 154 155 156 157 158 159 160 
161 162 163 164 165 166 167 168 169 170 
171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 
191 192 193 194 195 196 197 198 199 200 

 

Total number of Fn primes known 5 
Largest Fn prime known F4 = 65537 
Total number of Fn composites known 243 
Largest ten Fn composites known F476624, F495728, F567233, F585042, F617813, 

F67205, F960897, F2145351, F2167797, F2478792 
                                                            
3 All information from this section is from Reference2 http://www.prothsearch.net/fermat.html#Summary 
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5 Basic Properties of Fermat Numbers 
In this section, we will prove some basic properties of Fermat numbers. 

 

Theorem14. For n ≥ 1, Fn = (Fn-1 – 1)2 + 1. 

Proof. (Fn-1 – 1)2 + 1 = (2 + 1 – 1)2 + 1 = 2 + 1 = Fn                                                             □ 

 

Remark1. This theorem is obvious if we interpret it geometrically: 

 
Figure4. Any Fermat number Fn is exactly a square with side length Fn-1 – 1 plus a unit square. 

 

Theorem25. For n ≥ 1, Fn = F0···Fn-1 + 2. 

Proof. We will prove this by induction. 

When n = 1, we have F0 + 2 = 3 + 2 = 5 = F1. 

Now assume Fn = F0···Fn-1 + 2. 

Then, F0···Fn + 2 = F0···Fn-1· Fn + 2 

                      = (Fn – 2)·Fn + 2                                                            (induction hypothesis) 

                      = (2 – 1)·( 2  + 1) + 2 

                      = 2  + 1 = Fn+1                                                                                         □ 

                                                            
4 Theorem is found in Reference3. Proof is due to the author. 
5 Theorem is found in Reference3. Proof is due to the author. 
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Remark2. To understand the proof of Theorem2 geometrically, we can think of Fn – 2 as a 

square with side length Fn-1 – 1 minus a unit square (see figure5). It is divisible by  

Fn-1 = 2  + 1 because we can form a rectangle by moving the top row and make it a column 

on the right (see figure6). To see that it is also divisible by Fn-k for 2 ≤ k ≤ n, we can use the 

induction hypothesis that Fn-k divides Fn-1 – 2 = 2  – 1. It means that we can fill each column 

of the rectangle in figure5 evenly by r·Fn-k number of blocks for some integer r (see figure7). 

 

             
         Figure5. A 2  x 2  square                   Figure6. A (2  – 1) x (2  + 1) rectangle 

minus a unit square             
                                                                                                  

 
Figure7. Each column can be filled evenly by Fn-k. 

 

Corollary2.1. [Reference1, p.27] For n ≥ 1, Fn ≡ 2 (mod Fk) for all k = 0, 1, … , n – 1. 

Proof. It is equivalent to say that Fk | Fn – 2, which is implied by Theorem2.                               □ 

Corollary2.2. [Reference1, p.28] For n ≥ 2, the last digit of Fn is 7. 
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Proof. It follows directly from Corollary2.1 that Fn ≡ 2 (mod 5). Since all Fermat numbers are 

odd, it follows that Fn ≡ 7 (mod 10).                                                                                               □ 

 

Corollary2.3. No Fermat number is a perfect square. 

Proof. F0 = 3 and F1 = 5 are obviously not a perfect square. For Fn where n ≥ 2, by Corollary2.2, 

Fn ≡ 7 (mod 10). But only numbers that are congruent to 0, 1, 4, 5, 6, or 9 (mod 10) can be a 

perfect square.                                                                                                                                  □ 

 

Remark2.3. This is quite intuitive if we think of Fn as a square plus a unit square block. You 

can’t possibly rearrange the block to form a perfect square. 

 

Corollary2.4. [Reference1, p.31] Every Fermat number Fn for n ≥ 1 is of the form 6m – 1. 

Proof. It is equivalent to show that Fn + 1 is divisible by 6. From Theorem2, we have 

Fn + 1 = 3·F1···Fn + 2 + 1 = 3·(F1···Fn + 1), where F1···Fn + 1 is an even number.                         □ 

 

Theorem36. For n ≥ 2, Fn = F2
n-1 – 2·(Fn-2 – 1)2.  

Proof. F2
n-1 – 2·(Fn-2 – 1)2 = (2 + 1)2 – 2·(2  – 1 + 1)2  

                              = 2 + 2·2 + 1 – 2·2  

= 2 + 1 = Fn                                                                                         □ 

 

 

 

 

 

 

 

 

 

                                                            
6 Theorem is found in Reference3. Proof is due to the author. 
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Theorem47. For n ≥ 2, Fn = Fn-1 +2 ·F0···Fn-2. 

Proof. We will prove this by induction. 

When n = 2, we have F1 + 22·F0 = 5 + 22·3 = 17 = F2. 

Now assume Fn = Fn-1 +2 ·F0···Fn-2. 

Then, Fn + 2 ·F0···Fn-1 = Fn + 2 ·(2 ·F0···Fn-2)·Fn-1 

                                         = Fn + 2 · Fn-1·(Fn – Fn-1)                               (induction hypothesis) 

                                = 2 + 1 + 2 ·(2 + 1)·(2  – 2 ) 

                                = 2 + 1 + 2 ·(2 + 1)· 2 ·( 2  – 1) 

                                = 2 + 1 + 2 ·(2  – 1) 

                                = 2 + 1 + 2  – 2  

                                = 2  + 1 = Fn+1                                                                               □ 

 

Theorem5. [Reference1, p.28] For n ≥ 2, every Fermat number has infinitely many 

representations in the form x2 – 2y2, where x and y are both positive integers. 

Proof. First, from Theorem3, (x0 , y0) = (Fn-1 , Fn-2 – 1) gives one such representation. Now 

notice that (3x + 4y)2 – 2·(2x + 3y)2 = 9x2 + 24xy + 16y2 – 8x2 – 24xy – 18y2 = x2 – 2y2. If x and y 

are both positive, then 3x + 4y > x and 2x + 3y > y are also positive. This means that we can find 

(xi , yi) recursively by setting (xi , yi) = (3xi-1 + 4yi-1, 2xi-1 + 3y-1). The set of all points (xm , ym) we 

find will be infinite, and each point will give a representation for Fn in the desired form.            □ 

 

Theorem6. [Reference3] No two Fermat numbers share a common factor greater that 1. 

Proof. Assume for contradiction that there exist Fi and Fj such that a > 1 divides both of them. 

Also, without loss of generality, assume that Fj > Fi. 

From Theorem4, we know that Fj = Fj-1 + ·F0···Fi···Fj-2. Since a divides Fi and Fj, a also 

divides Fj-1 and hence F0···Fi···Fj-1. Then, a has to divide the difference Fj – F0···Fj-1, which 

equals 2 by Theorem2. It follows that a = 2, but all Fermat numbers are obviously odd.             □          

 

                                                            
7 Theorem is found in Reference3. Proof is due to the author. 
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We can in fact use Theorem6 to prove that there are infinitely many primes. Although there 

are already proofs about the infinitude of primes without using the concept of Fermat numbers, it 

is interesting and worthwhile to see an alternative proof. 

 

Corollary6. [Reference3] There are infinitely many primes. 

Proof. Define a sequence {pi} in the following way: 

i) if Fi is a prime, then define pi = Fi; 

ii) if Fi is a composite, then define pi = a prime factor of Fi. 

All the pi’s are distinct by Theorem6. Hence, the set {pi : i = 1, 2, 3 …} contains infinitely many 

primes.                                                                                                                                             □ 

 

Theorem7. [Reference1, p.29] No Fermat number Fn for n ≥ 2 can be expressed as the sum of 

two primes. 

Proof.  Assume for contradiction that there exists n ≥ 2 such that Fn could be expressed as the 

sum of two primes. Since Fn is odd, one of the primes must be 2. Then the other prime would 

equal Fn – 2 = 2  – 1 = (2  + 1)·(2  – 1), which is not a prime.                                        □ 
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6 Primality of Fermat Numbers 

Recall that we have defined Fermat numbers to be numbers in the form of 2  + 1 where n is 

a nonnegative integer. There is actually another definition for Fermat numbers, namely numbers 

in the form of 2n + 1 where n is a nonnegative integer. We have chosen the former definition 

because it seems to be more commonly used and it gives the properties that we have proved 

earlier. Notice that Theorem6 is false if we had chosen the other definition. A counterexample is 

21 + 1 = 3 and 23
 + 1 = 9 have a common factor 3.  

However, if we are only interested in Fermat numbers that are primes, then it does not matter 

which definition we use, as we will see from the next theorem. 

 

Theorem8. [Reference3] If 2n + 1 is a prime, then n is a power of 2. 

Proof. Suppose n is a positive integer that is not a power of 2. Then we can write n = 2r·s for 

some nonnegative integer r and some positive odd integer s. Also recall the identity   

an – bn = (a – b)·(an-1 + an-2b + ··· + abn-1 + bn-1), 

which implies that a – b divides an – bn. Now substituting a = 2r, b = –1 and n = s, we have 2r + 1 

divides 2rs – (–1)s = 2n + 1. However, r < n, which means that 2n + 1 is not a prime. Hence, n 

must be a power of 2 in order for 2n + 1 to be a prime.                                                                   □ 

 

The next two theorems concern the properties of Fermat primes. 

 

Theorem9. [Reference1, p. 31] No Fermat prime can be expressed as the difference of two pth 

powers, where p is an odd prime. 

Proof. Assume for contradiction that there is such a Fermat prime. Then, Fn = ap – bp  

= (a – b)·(ap-1 + ap-2b + ··· + abp-1 + bp-1), where a > b and p is an odd prime. Since Fn is a prime, it 

must be the case that a – b = 1. Moreover, by Fermat’s Little Theorem, ap ≡ a (mod p) and bp ≡b 

(mod p). Thus, Fn = ap – bp ≡ a – b = 1 (mod p). This implies p | Fn – 1 = 2 , which is 

impossible because the only integer that divides 2  is 2.                                                              □ 
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Theorem10. [Reference1, p.30] The set of all quadratic nonresidues of a Fermat prime is equal to 

the set of all its primitive roots. 

Proof. First let a be a quadratic nonresidue of the Fermat prime Fn and let e = ordFna. According 

to Fermat’s little theorem, a(Fn – 1)
 ≡ 1 (mod Fn), so e | Fn – 1 = 2 . It follows that e = 2k for 

some nonnegative integer k ≤ 2n. On the other hand, by Euler’s criterion, /  =  

≡ –1(mod Fn). Hence, if k < 2n, then 2k | 2  and so  ≡ 1 (mod Fn), which is a 

contradiction. So, k = 2n and ordFna = 2 . Therefore, a is a primitive root modulo Fn. 

Conversely, suppose r is a primitive root modulo Fn. It follows that r(Fn – 1)/2
 ≠ 1 (mod Fn), and 

so by Euler’s criterion, r cannot be a quadratic residue.                                                                 □ 

 

Now recall that Fermat’s little theorem can be used to test whether a number is a prime or not. 

However, it does not work for Fermat numbers if we choose the base to be 2, as we will see in 

Theorem11. 

 

Lemma11. [Reference1, p.36] For m ≤ 2n – 1, Fm | 2  – 2. 

Proof. 2  – 2 = 2(2 – 1) = 2(2 + 1 – 2) = 2(  – 2) = 2F0···  (Theorem2).               □ 

 

Theorem11. [Reference1, p.36] All Fermat numbers are primes or pseudoprimes to base 2. 

Moreover, if 2n + 1 is a pseudoprime to the base 2, then n is a power of 2.  

Proof. Since n ≤ 2n – 1, from Lemma11, Fn | 2  – 2. Since Fn ≠ 2, we have Fn | 2  – 1, which 

is equivalent to say that 2   ≡ 1 (mod Fn).  

Now suppose 2n + 1 is a pseudoprime to the base. Then we have 2 ≡ 1 (mod 2n + 1). Notice 

that 2n ≡ –1 (mod 2n + 1), so 22n ≡ 1 (mod 2n + 1). Now let e = (2). First e ≥ n + 1 for 

otherwise we will have 2e ≤ 2n < 2n + 1. Moreover, e | 2n, so it follows that e = 2n. But e | 2 , 

which is only possible if n is a power of 2.                                                                                     □ 
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Theorem11 is not true, however, for other bases in general. For examples, F5 = 4294967297 

is not a pseudoprime to base 5 or 6, since we have 54294967296
 ≡ 2179108346 (mod 4294967297) 

and 64294967296
 ≡ 3029026160 (mod 4294967297). Hence, it is still possible to use Fermat’s little 

theorem to test the primality of a Fermat number as long as we do not choose 2 to be our base. 

 

Other than Fermat’s little theorem, there are various other primality tests that can be used to 

test whether a Fermat number (or any number in general) is a prime or not. In the rest of this 

section, we will discuss in particular two of them. The first one is called Selfridge’s test 

(Theorem13), and the second one is a generalized version of Pepin’s test (Theorem14). The 

proof for the latter involves the use of the Jacobi symbol, which we will introduce here. 

 

Definition. [Reference1, p.25] Let a be an integer and suppose n ≥ 3 is an odd integer. Write  

n = p1·p2···pr, where the pi’s are odd primes but not necessarily distinct. Then the Jacobi symbol 

 is defined by  = ∏ , where  is the Legendre symbol. 

  

The Jacobi symbol has properties very similar to those of the Legendre symbol. We state six 

of them in the following theorem. To familiarize ourselves with the Jacobi symbol, we will prove 

two of the properties stated. The reader should verify the rest himself. They can be proved using 

the properties of the Legendre symbol. 
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Theorem12. [Reference1, p.25] Let m > 1 and n > 1 be odd integers and let a and b be integers. 

Then we have the following: 

i) if a ≡ b (mod n), then   =  ; 

ii)  =    ; 

iii)  =   ; 

iv)  = 1,  = 1 / ; 

v)  = 1 / ; 

vi)  = 1 / .  

Proof8. Unless specified, all the  in this proof represent the Legendre symbol. 

i) If a ≡ b (mod n), then a ≡ b (mod pi) for all prime factors pi of n. Hence,   =    for 

all pi’s and ∏  = ∏ . Thus, the Jacobi symbols  and ; are equal.                □ 

ii) The Jacobi symbol  = ∏  = ∏  = ∏  ∏  =    , where   

and  are the Jacobi symbols.                                                                                           □ 

 

Theorem13. [Reference1, p.42] Let N > 1 and let the prime-power factorization of N – 1 be 

∏ . Then N is a prime if and only if for each prime pi where i = 1, 2, …, r, there exists an 

integer ai > 1 such that ai
N-1

 ≡ 1 (mod N) and ai
(N-1)/pi

 ≠ 1 (mod N). 

Proof. If N is a prime, then there exists a primitive root a that satisfies both conditions. 

Conversely, it suffices to show that Φ(N) = N – 1. Let ei = ordNai. Then ei | N – 1 but  

ei  (N – 1)/pi. Hence, pi
ki | ei. We also have ai

Φ(N) ≡ 1 (mod N) by Euler’s theorem, so ei | Φ(N). 

Consequently, pi
ki | Φ(N) for all i = 1, 2, …, r, and hence, N – 1 | Φ(N). But Φ(N) ≤ N – 1, so  

Φ(N) = N – 1.                                                                                                                                   □ 

 

                                                            
8 Proof is due to the author. 
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Theorem14. [Reference1, p.42] For n ≥ 2, the Fermat number Fn is prime if and only if           

a(Fn – 1)/2 ≡ –1 (mod Fn), where a is an integer such that the Jacobi symbol  = –1 for all n ≥ 2. 

Proof. First assume that Fn is prime. Then the Jacobi symbol   is just the Legendre symbol. 

So by Euler’s criterion, a(Fn – 1)/2 ≡   ≡ –1 (mod Fn). 

Now assume that the congruence holds. Then we have both a(Fn – 1)/2 ≡ –1 (mod Fn) and  

a(Fn – 1) ≡ 1 (mod Fn). Since 2 is the only prime factor of Fn – 1, by Theorem13, Fn is a prime.   □ 

 

Corollary14. [Reference1, p.42] For n ≥ 2, the Fermat number Fn is prime if and only if 

3(Fn – 1)/2 ≡ –1 (mod Fn). 

Proof. It suffices to show that   = –1. From Corollary2.1, Fn ≡ 2 (mod 3). Moreover, since 

Fn ≡ 1 (mod 4), by Theorem12,   =  (–1)(3 – 1)(4k + 1 – 1)/4  =    =    = –1.                          □ 
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7 Mersenne Numbers and Fermat Numbers 
Recall that we have defined Mersenne numbers to be numbers of the form 2n – 1 where n is a 

positive integer. Some definitions require n to be a prime. However, like the case of Fermat 

numbers, if we are only interested in Mersenne numbers that are primes, then it does not matter 

which definition we choose. We can see that in the following theorem. 

 

Theorem15. [Reference4] A Mersenne number Mn = 2n – 1 is prime only if n is a prime. 

Proof. Recall the identity 2ab – 1 = (2a – 1)·(1 + 2a + 22a + ··· + 2(b-1)a). Hence if n = ab is not a 

prime, then Mn = 2n – 1 is divisible by 2a – 1 ≠ 1.                                                                           □ 

 

The next two theorems show how Mersenne numbers relate to the primality of the associated 

Fermat numbers. 

 

Lemma16. [Reference1, p.44] If p is a prime, then all Mersenne numbers Mp are prime or 

pseudoprimes to the base 2. 

Proof. Let Mp = 2p – 1 be a Mersenne number where p is a prime. If Mp is a composite, then p is 

odd. By Fermat’s little theorem, (Mp – 1)/2 = 2p-1 – 1 ≡ 0 (mod p). So (Mp – 1)/2 = kp for some 

positive integer k. Hence, Mp = 2p – 1 | 2kp – 1 = 2(Mp – 1)/2 – 1. It is equivalent to say that           

2(Mp – 1)/2 ≡ 1 (mod Mp), which implies that 2Mp – 1 ≡ 1 (mod Mp).                                                    □ 

 

Theorem16. [Reference1, p.45] Let p be a prime such that p ≡ 3 (mod 4). Then the Fermat 

number Fp is prime if and only if Mp
(Fp – 1)/2 ≡ –1 (mod Fp), where Mp is the associated Mersenne 

number.  

Proof. By Theorem14, it suffices to show that   = –1. 

By Lemma16, 2  ≡ 1 (mod Mp), and multiplying 2 to both sides we get 2  ≡ 2  

(mod Mp). This implies that Fp = 2·2  + 1 ≡ 5 (mod Mp). Moreover, since p ≡ 3 (mod 4), 

Mp = 2p – 1= 24k+3 – 1 = 8·24k – 1 ≡ 3·1 – 1 = 2 (mod 5). Thus, by Theorem 12,  

 =   =   =  =   = –1.                                                                                                 □    
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Theorem17. [Reference1, p.45] Let p be a prime such that p ≡ 3 or 5 (mod 8). Then the Fermat 

number Fp is prime if and only if Mp
(Fp+1 – 1)/2 ≡ –1 (mod Fp+1), where Mp is the associated 

Mersenne number. 

Proof. Again by Theorem14, it sufficies to show that   = –1. 

By the same argument in Theorem16, we can show that Fp ≡ 5 (mod Mp). Then by Theorem1, 

Fp+1 = (Fp – 1)2 + 1 = 42 + 1 = 17 (mod Mp). First we assume p ≡ 3 (mod 8), then Mp = 28k+3 – 1 = 

8·162k – 1 ≡ 8 – 1 = 7 (mod 17). Hence,   =    =     =   =   = –1. 

Now if we assume p ≡ 5 (mod 8), then Mp = 28k+5 – 1 ≡ 25 – 1 = –3 ≡ 14 (mod 17). Hence, 

   =   =   = –1.                                                                                                                □ 
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8 Infinitude of Fermat Primes 
As we have noted before, there are only five known Fermat primes so far. In fact, it has been 

shown that Fn is composite for 5 ≤ n ≤ 32 and many other larger n (from section4). Whether 

there is an infinite number of Fermat primes is still an open question, and below shows a 

heuristic argument that suggests there is only a finite number of them. This argument is to due to 

Hardy and Wright [Reference1, p.158]. 

 

There is only a finite number of Fermat primes. 

Recall that the Prime Number Theorem says π(x) ~ , where π(x) is the number of primes ≤ x. 

Hence π(x) <  for some constant A, and the probability that x is a prime is at most . 

For x = 2  + 1, the probability that it is a prime is ≤ 
 

. 

Hence, the expected number of primes in this form is ∑ 2A which is a finite number. 

 

We can use the same reasoning to argue that there are infinitely many twin primes. 

 

There are infinitely many twin primes. 

Recall the Prime Number Theorem can be stated using limit: lim
/

. 

Hence give ε > 0, there exists a number X such that 1 – ε < 
/

 for all x > X. 

Thus, the probability that n and n+2 are both primes is  

·  · 1  1  for n > X. 

So the expected number of twin primes is > ∑ 1  ∑ 1  which diverges. 

 

However, we must be careful that there two arguments do not prove that there are really only 

finitely many Fermat primes or infinitely many twin primes. After all, they are only heuristic, as 

we can see in a similar argument below. 

 



  20 
 

 

There are infinitely many primes in the form of 2n + 1. 

Using the exact same argument as above, the expected number of primes in this form is  

∑ 1  ∑ 1  which diverges.  

 

But we know from Theorem8 that the sets {2n + 1: it is a prime} and {2  + 1: it is a prime} 

are the same set. This latter argument suggests Hardy and Wright’s argument does not take into 

account of the properties of Fermat numbers. It is to say that the variable x is not that random. It 

works largely because gaps between successive Fermat numbers are extremely large. 

Nevertheless, given any number (even a number of a particular form), it is more likely to be a 

composite than prime. Therefore, bounding the probability of it being a prime by a lower bound 

gives a weaker argument that bounding it from above. 
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9 Divisibility of Fermat Numbers 

In the last two sections, we focused on the primality of Fermat numbers and the properties of 

Fermat primes. However, if a Fermat number is found to be composite, we are interested in what 

its factorization is, or at least, what properties do its divisors have to have. We will end our 

discussion of Fermat numbers in this section by proving several theorems about their divisors. 

 

Theorem 18. [Reference1, p.37] Let q = pm be a power of an odd prime p, where m ≥ 1. Then the 

Fermat number Fn is divisible by q if and only if ordq2 = 2n+1.  

Proof. First suppose q | Fn, then q | (2  + 1)·(2  – 1) = 2  – 1, and hence 2 ≡ 1 (mod q). 

It follows that 2n+1 = kordq2 for some positive integer k. Thus, k is a power of 2 and so is ordq2. 

Let e = ordq2 = 2j. If j < n + 1, then we have q | 2  – 1 = 2  – 1. But this is impossible 

because q | 2  + 1 and q ≠ 2. Hence, j = n + 1 and so ordq2 = 2n+1. 

Conversely, if we assume that ordq2 = 2n+1, then q | 2  – 1 = (2  + 1)·( 2  – 1).  Since q 

is an odd prime, q divides either 2  + 1 or 2  – 1. But q cannot divide 2  – 1 because  

2n < ordq2. Hence q | 2  + 1 = Fn.                                                                                                  □ 

 

Theorem19(Euler). [Reference1, p. 38] If p is a prime and p | Fn, then p is of the form 

p = k2n+1 + 1, where k is a positive integer. 

Proof. By Fermat’s little theorem, 2p-1 ≡ 1 (mod p), and it follows that ordq2 | p – 1. Hence, 

k ordq2 = p – 1 for some positive integer k, and by Theorem18, p = kordq2 + 1 = k2n+1 + 1.        □ 
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Theorem20(Lucas). [Reference1, p.59] If n > 1 and a prime p divides Fn, then p is of the form 

p = k2n+2 + 1, where k is a positive integer.  

Proof. Let b = 2  (2  – 1). Since p | Fn = 2  + 1, we have 2  ≡ –1 (mod p). Hence,  

b2 = 2  (2  – 2·2  + 1) ≡ 2  (–1 – 2·2  + 1) = –2·2  ≡ 2 (mod p). It then follows 

that = 2  ≡ –1 (mod p) and thus  ≡ 1 (mod p). Consequently, e = ordpb = 2j for some  

j ≤ n + 2. If j < n + 2, then  – 1 =  – 1 ≡ 2  – 1 ≡ 0 (mod p). This contradicts to the 

previous result that 2  + 1 ≡ 0 (mod p). Hence, j = n + 1 and ordpb = 2n+2. 

Now since b2 ≡ 2 (mod p), it follows that gcd(b, p) =1. By Fermat’s little theorem, bp-1 ≡ 1 

(mod p). Thus, ordpb = 2n+2 | p – 1, and hence p = k2n+2 + 1 for some positive integer k.             □ 

   

Corollary20. [Reference1, p.39] If n > 1, then any divisor d > 1 of a Fermat number Fn is of the 

form k2n+2 + 1, where k is a positive integer. 

Proof. Consider the product (k2n+2 + 1)·(k2m+2 + 1). Without loss of generality, assume m ≥ n. 

Then (k2n+2 + 1)·(k2m+2 + 1) = k22m+n+4 + k2n+2 + k2m+2 + 1 = (k22m+2 + k + k2m-n)2n+2, which is 

also in the form of k2n+2 + 1. Following from Theorem19, all divisors have the form k2n+2 + 1.   □ 
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