
ON FERMAT’S LAST THEOREM FOR N = 3 AND N = 4

R. ANDREW OHANA

Abstract. A solution to Fermat’s equation, xn + yn = zn, is called trivial if

xyz = 0. In this paper we will prove Fermat’s Last Theorem, which states all

rational solutions are trivial for n > 2, when 3 | n or 4 | n. For n = 3 we will
show all solutions in the Eisenstein Field, Q(

√
−3), are trivial. Our proof is in

the same vain as Gauss’ proof, but argued towards a different contradiction.

For n = 4 we will show all solutions in the Gaussian Field, Q(i), are trivial.
We will follow Hilbert’s proof given in [3] which has the flavor of argument

made by Gauss with the Eisenstein Field.
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1. Introduction

Let n > 0 be an integer, then

xn + yn = zn

is called Fermat’s equation. While we can consider equation can be considered over
any ring, we will focus on solutions which lie in the integers while exploring other
rings as the need arises. When starting to study a diophantine equation, we first
ask whether a solution exists, here we can see that for any n there are infinitely
many solutions, specifically we can let x = 0 and y = z ∈ Z. Our next question, is
this all of our solutions?

The answer is a bit muddled, clearly it isn’t all our solutions, we can let y = 0
and x = z ∈ Z or for n odd let z = 0 and x = −y ∈ Z, so we will restate this
question: Do all solutions to Fermat’s equation have at least one of x, y, z = 0?
Since the integers form an integral domain, we can state this condition as xyz = 0,
for further discussion we will refer to these solutions of Fermat’s equation as trivial
solutions.

We also can see that if there is a solution (a, b, c), then (a/d, b/d, c/d) is a solution
where d = gcd(a, b, c), hence existence of a non-trivial solution can be reduced to
existence of a non-trivial coprime solution, we call coprime solutions primitive. We
will now start our investigation with n = 1.
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Proposition 1.1. There are an infinite number of non-trivial primitive solutions
to Fermat’s equation for n = 1.

Proof. Let k be any non-zero non-unit integer, and let x = k, y = k + 1 and
z = 2k + 1, then x + y = z is a primitive solution to Fermat’s equation when
n = 1. �

With n = 2 Fermat’s equation is simply the Pythagorean Theorem, the integer
solutions to the Pythagorean Theorem are called Pythagorean triples. Euclid in
[2] gave a complete characterization of primitive Pythagorean triples, which as
a corollary shows there are an infinite number of non-trivial primitive solutions
to Fermat’s equation for n = 2. We present a more modern proof of Euclid’s
characterization.

Proposition 1.2. Let P = (a, b, c) ∈ Z3
>0, then P is a non-trivial primitive

Pythagorean triple if and only if there exist unique coprime m,n ∈ Z>0 with n < m
and different parity such that

a = m2 − n2

b = 2mn

c = m2 + n2,

up to symmetry in a and b.

Proof. Our parameterization is clearly a primitive Pythagorean triple, so we simply
need to show every Pythagorean triple is represented uniquely in our parameteri-
zation. Let (a, b, c) be a non-trivial primitive Pythagorean triple, then (a/c, b/c) is
a rational solution on the first quadrant of the unit circle,

(1) u2 + v2 = 1.

u-axis

v-axis

(−1, 0)

(a/c, b/c)

v = n
m (u+ 1)

u2 + v2 = 1

Figure 1. Parameterizing Pythagorean triples with the unit circle.
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Hence there exists a unique line with rational slope n/m < 1 reduced with m,n > 0
through (−1, 0),

v =
n

m
(u+ 1).

Since this line intersects the unit circle at (−1, 0) and (a/c, b/c) solving for the
second we get

a

c
=
m2 − n2

m2 + n2

b

c
=

2mn

m2 + n2
.

If m,n have different parity, we can easily verify the right hand sides are reduced,
so we are done. If m,n are both odd, then let p = m+n

2 and q = m−n
2 , then we can

see

a

c
=

2pq

p2 + q2

b

c
=
p2 − q2

p2 + q2
,

and that p, q are coprime and have different parity, hence this is now a reduced
expression. Hence we have obtained our parameterization. �

Corollary 1.3. There are an infinite number of non-trivial primitive solutions to
Fermat’s equation for n = 2.

Proof. For each n ∈ Z>0 there exists a distinct solution of Fermat’s equation for
n = 2 by Proposition 1.2 by using the parameterization with m = n+ 1. �

So far for every case we have looked at, we have found an infinite number of
non-trivial primitive solutions to Fermat’s equation, so we might start thinking
there are an infinite number of non-trivial solutions for Fermat’s equation equation
in general. This conclusion, however, is false, in fact it turns out that there doesn’t
exist a single non-trivial solution for Fermat’s equation when n > 2.

Theorem 1 (Fermat’s Last Theorem). All solutions to Fermat’s equation are triv-
ial for n > 2.

This theorem was conjectured nearly 400 years, by Pierre de Fermat who proved
a single case, specifically there are only trivial solutions to Fermat’s equation for
n = 4. Progress made towards this theorem proved slow over the centuries, where
progress was made a single case at a time. This first substantial work towards a
general theorem was made in the 1800s, by Sophie Germain. Her technique was
ultimately abandoned as work in algebraic number theory developed and appeared
more promising. The theorem was finally proved in 1995, when Andrew Wiles
proved enough of the modularity theorem to prove Fermat’s Last Theorem.

Our presentation of Fermat’s Last Theorem for cases n = 3 and n = 4 will follow
the special cases that were studied in 1800s, relying on the development algebra.
Most of these proofs rely on the minimality principle, and as such constructing from
a solution a smaller solution is key. Specifically, our proof for both the n = 3 and
n = 4 case relies on the following lemma.
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Lemma 1.4. Let R be a UFD, if x, y ∈ R are coprime with

xy = zn,

for some z ∈ R and n ∈ Z>0, then there exist u, v ∈ R and a ∈ R× such that

x = aun

y = a−1vn.

Proof. For xy ∈ R× ∪ {0} this is trivial, so suppose x is a non-unit. Let coprime
x, y ∈ R be values for which the lemma fails to hold such that the length of the
irreducible decomposition of x, which we will denote as l(x), is minimal. Let w ∈ R
be an irreducible divisor of x, then since w | zn and since R is a UFD, we must
have w | z. But thus wn | zn = xy and since w | x and x, y are coprime, we must
have wn | x. Hence the lemma fails to hold for x/wn, y, but this contradicts the
minimality of l(x) since l(x/wn) = l(x)− n < l(x). �

2. For n = 3

Our proof of Fermat’s Last Theorem for n = 3 will follow [1], however we will
assume a greater mathematical background, and thus simply the proof where possi-
ble. We will show Fermat’s Last Theorem for n = 3 by considering solutions in the
Eisenstein integers. The Eisenstein integers, denoted Z[ζ3], is the integral span over{

1, e2πi/3
}

, this set forms a Euclidean Domain with units ±1,±ζ3,±ζ−1
3 . Fermat’s

equation is particularly interesting in this ring, since we can factor in various ways,
for example

x3 + y3 = (x+ y)(x+ ζ3y)(x+ ζ−1
3 y).

Real-axis

Imaginary-axis

Figure 2. The Eisenstein integers on the complex plane

Specifically, we will show that there must exist a smaller solution by looking at
the quotient rings for various powers of the irreducible element 1− ζ3. The highest
power necessary for our proof is (1− ζ3)4, so we will start with a lemma describing
the group structure of the units in this ring.
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Lemma 2.1. (Z[ζ3]/((1− ζ3)4))× ∼= C2 × C3
3

Proof. Since C2 × C3
3 is the only cyclic decomposition of abelian groups of order

54 for which all elements have order dividing 6, it is sufficient to show α6 ≡ 1
(mod (1 − ζ3)4) for α ∈ Z[ζ3] coprime to 1− ζ3. Note that (Z[ζ3]/((1 − ζ3)2))× ∼=
Z[ζ3]×, hence for α coprime to 1 − ζ3, we conclude α2 = (1 − ζ3)2β + ζk3 for some
k ∈ Z/(3) and β ∈ Z[ζ3]. But thus α6 = (1 − ζ3)4((1 − ζ3)2β3 + 3β2 − ζ−1

3 β) + 1,
hence α6 ≡ 1 (mod (1− ζ3)4). �

We next need to see how 1 − ζ3 divides the left side of Fermat’s equation, the
surprising result is that we can ‘bootstrap’ the divisibility, i.e. if we have can divide
by a certain power of 1− ζ3, then we can divide by a larger power of 1− ζ3. This
is very difficult to prove in more generality, but for our proof we require only one
case.

Lemma 2.2. If 1 − ζ3 - α, β and (1 − ζ)3 | α3 + ζr3β
3 for some r ∈ Z/(3), then

r = 0 and (1− ζ3)4 | α3 + β3.

Proof. From Lemma 2.1 we know there are two elements of order no more than
2, namely 1 and −1. Since 1 − ζ3 - α, β, we know that there then must exist
a, b ∈ Z/(2) such that

(2)
α3 ≡ (−1)a (mod (1− ζ3)4)

β3 ≡ (−1)b (mod (1− ζ3)4),

hence

0 ≡ α3 + ζr3β
3 ≡ (−1)a + ζr3 (−1)b (mod (1− ζ3)3).

But since ∣∣(−1)a + ζ3(−1)b
∣∣ ≤ 2 < 3

√
3 = |1− ζ3|3 ,

we in fact know

(−1)a + ζr3 (−1)b = 0.

Rearranging we find ζr3 = (−1)a+b+1, from which we know r = 0 and a + b = 1.
But thus (−1)a + (−1)b = 0, hence from (2) we conclude (1− ζ3)4 | α3 + β3. �

The next thing to notice is that we can rewrite Fermat’s equation as x3 + y3 +
(−z)3 = 0, so if we can show there are no non-trivial solutions to x3 + y3 + z3 = 0,
then Fermat’s Last Theorem holds for n = 3. Using this with our last lemma we
can conclude that a fair amount on the divisibility of a solution with respect to
1− ζ3.

Lemma 2.3. If α, β, γ ∈ Z[ζ3] are pairwise coprime with

(1− ζ3)4 | α3 + β3 + γ3,

then up to symmetry

(1− ζ3)2 | γ
1− ζ3 | α+ β.

Proof. Since δ3 ≡ δ (mod 1− ζ3), we have

(3) α+ β + γ ≡ α3 + β3 + γ3 ≡ 0 (mod 1− ζ3).
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If 1− ζ3 - α, β, γ, then since their sum is divisible by 1− ζ3, there exists k ∈ Z/(2)
and λ, µ, ν ∈ Z[ζ3] such that

α = (1− ζ3)λ+ (−1)k

β = (1− ζ3)µ+ (−1)k

γ = (1− ζ3)ν + (−1)k.

Let ξk = λk + µk + νk, then notice

δ =
α3 + β3 + γ3

3
= (1− ζ3)((ξ1 + (−1)kξ2)− (ξ3 + (−1)kξ2)ζ3) + (−1)k,

hence 1 − ζ3 - δ. But since 3(−ζ3)(1 − ζ3) = (1 − ζ3)3 | 3δ, we have 1 − ζ3 | δ, a
contradiction, thus we conclude 1 − ζ3 | γ up to symmetry. From (3) and Lemma
2.2 we conclude (1 − ζ3)4 | α3 + β3, hence (1 − ζ3)4 | γ3, and thus (1 − ζ3)2 | γ.
Finally, from (3) we get 1− ζ3 | α+ β. �

We finally have the necessary lemmas to derive a contradiction from the existence
of a non-trivial solution.

Theorem 2. All solutions to x3 + y3 = z3 are trivial.

Proof. Let (α, β, γ) ∈ Z[ζ3]3 be a non-trivial solution to

(4) α3 + β3 + γ3 = 0

with |αβγ| minimized. Notice that α, β, γ are pairwise coprime, since if ε was a
irreducible common factor of any pair, then from (4) we see that it would divide
the third, hence (α/ε, β/ε, γ/ε) would be a solution to (4) and∣∣∣∣αε βε γε

∣∣∣∣ < |αβγ| .
Now notice from Lemma 2.3 we have (1 − ζ3)2 | γ and 1 − ζ3 | α + β, since

ζ3 ≡ ζ−1
3 ≡ 1 (mod 1−ζ3) we additionally have 1−ζ3 | α+ζ3β and 1−ζ3 | α+ζ−1

3 β.
Hence let

λ =
α+ β

1− ζ3

µ =
α+ ζ3β

1− ζ3

ν =
α+ ζ−1

3 β

1− ζ3
and first notice

(5) λ+ ζ3µ+ ζ−1
3 ν = 0,

thus if σ is a common divisor of any pair in λ, µ, ν, it must divide the third. But
note now that

σ | α = λ− ζ3ν
σ | β = λ− µ,

therefore since α and β are coprime, λ, µ, ν must be pairwise coprime.
Now let

ξ = − γ

1− ζ3
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then from (4) we have

(6) λµν = ξ3,

therefore since λ, µ, ν are pairwise coprime and since −1 is a cube, by Lemma 1.4,
we know there exist ϕ, χ, ψ ∈ Z[ζ3] and m,n ∈ Z/(3) such that

λ = ζ−m−n
3 ϕ3

µ = ζm3 χ
3

ν = ζn3 ψ
3.

Note that ϕ, χ, ψ are pairwise coprime, since otherwise λ, µ, ν would not be, addi-
tionally since 1− ζ3 | ξ (since (1− ζ3)2 | γ), we conlude, up to symmetry, 1− ζ3 | ϕ.
From (5), we have

ϕ3 + ζr3χ
3 + ζ−r3 ψ3 = 0,

where r = 1 + n−m, but thus, since (1− ζ3)3 | χ3 + ζr3ψ
3, from Lemma 2.2 must

have r = 0. Hence (ϕ, χ, ψ) is a non-trivial solution to (4), but from (6) we obtain

|ϕχψ| = |ξ| = |γ|√
3
< |γ| ≤ |αβγ| ,

contradicting the minimality of |αβγ|, hence all solutions to (4) are trivial. Thus
we conclude all solutions to x3 + y3 = z3 are trivial since for any solution (x, y,−z)
is a solution to (4). �

3. For n = 4

Our proof of Fermat’s Last Theorem for n = 4 will follow Ribenboim’s exposition
of Hilbert’s proof given in [4]. We will show Fermat’s Last Theorem by considering
solutions to x4 + y4 = z2 in the Gaussian integers. The Gaussian integers, denoted
Z[i], is the integral span over {1, i}, this set forms a Euclidean Domain with units
±1,±i.

Real-axis

Imaginary-axis

Figure 3. The Gaussian integers on the complex plane
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Unlike the n = 3 case with the Eisenstein integers, it is not possible to completely
factor the left side of Fermat’s equation in the Gaussian integers, this is the main
reason why we consider solutions to x4 + y4 = z2 instead.

Similarly to the Eisenstein integers, we study quotient groups of powers of the
irreducible element 1 + i, unlike 1− ζ3 though, the group structure of the units for
a particular power isn’t enough. Hence, we give the following lemma.

Lemma 3.1. For all α ∈ Z[i] coprime to 1 + i,

α2 ≡ ±1 (mod (1 + i)5)

α4 ≡ 1 (mod (1 + i)7).

Proof. Since (Z[i]/((1 + i)3))× ∼= Z[i]×, there exists a β ∈ Z[i] and a ∈ Z/(4) such
that α = (1 + i)3β + ia, hence α2 = (1 + i)5((1 + i)β2 + ia−1β) + i2a. Similarly we
have α4 = (1 + i)7((1 + i)5β4 + 4ia(1 + i)2β3 + 3i2a−1(1 + i)β2 + i2−aβ) + 1, hence
we have our desired equivalences. �

Again, we rewrite the equation we are studying, in this case x4 + y4 = z2, with
zero on the right side, thus x4 + y4 − z2 = 0, so using this along with the previous
lemma we can conclude a bit on the divisibility of a solution by 1 + i.

Lemma 3.2. If α, β, γ ∈ Z[i] are coprime with

(1 + i)5 | α4 + β4 − γ2,
then (1 + i)2 | α up to symmetry.

Proof. Since δn ≡ δ (mod 1 + i), we have

α+ β + γ ≡ α4 + β4 − γ2 ≡ 0 (mod 1 + i),

hence 1 + i must divide one of α, β, γ. If it divides one of the first two, we are done
up to symmetry, so suppose that 1 + i | γ, then there exist λ, µ, ν such that

α = (1 + i)λ+ 1

β = (1 + i)µ+ 1

γ = (1 + i)ν.

Let ξk = λk + µk, then notice

δ =
α4 + β4 − γ2

2
= 2(−ξ4 + (1 + i)3ξ3 + 2iξ2 + (1 + i)ξ1) + iν2 + 1,

hence since (1 + i)2 | δ, we must have ν2 ≡ i (mod (1 + i)2), an impossibility.
Therefore, up to symmetry 1 + i | α. Now since 1 + i - β, we know from Lemma
3.1 that β4 ≡ 1 (mod (1 + i)4), hence γ2 ≡ 1 (mod (1 + i)4). But thus γ ≡ 1
(mod (1 + i)2) since otherwise γ ≡ i (mod (1 + i)2) which would imply for some
ψ ∈ Z[i], γ2 = (1 + i)4ψ2 + 2i(1 + i)2ψ − 1 ≡ −1 (mod (1 + i)4) which is an
impossibility. So let

ψ =
γ − 1

(1 + i)2
,

then note that

γ2 − 1 = (γ − 1)(γ + 1) = (1 + i)2ψ((1 + i)2ψ + 2) = (1 + i)4ψ(ψ + i−1),

hence since either ψ or ψ + i−1 is divisible by 1 + i, we conclude (1 + i)5 | γ2 − 1.
Since from Lemma 3.1 we know (1 + i)5 | β4 − 1, we can conclude (1 + i)5 | α4,
hence (1 + i)2 | α. �
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We now have enough to argue towards a contradiction with the existence of a
non-trivial solution to Fermat’s equation for n = 4. Our argument now contradicts
the minimality of the multiplicity of 1 + i in our factors of our non-trivial solution,
rather than the magnitude of the product of our non-trivial solution as we did with
the Eisenstein integers.

Theorem 3. All solutions to x4 + y4 = z4 are trivial.

Proof. Let (α, β, γ, k) ∈ Z[i]3 × Z be a non-trivial solution to

(7) ((1 + i)kα)4 + β4 = γ2,

such that 1 + i, α, β, γ are coprime and k is minimal. Rearranging we find

(1 + i)4kα4 = (γ + β2)(γ − β2),

and since from Lemma 3.2 we know k > 0, thus (1 + i)4 | (γ + β2)(γ − β2). In fact
we can conclude gcdZ[i](γ + β2, γ − β2) = (1 + i)2:

(1) (1 + i)2 | γ + β2, γ − β2, because γ − β2 ≡ γ + β2 (mod (1 + i)2).
(2) if δ is a common divisor, then

δ | 2γ = (γ + β2) + (γ − β2)

δ | 2β2 = (γ + β2)− (γ − β2).(8)

We can thus conclude (1 + i)4k−2 | γ + β2 and (1 + i)2 | γ − β2 without loss of
generality since (iβ)2 = −β2. Hence let

λ =
γ + β2

(1 + i)4k−2

µ =
γ − β2

(1 + i)2
,

then we can conclude from (7) that

α4 = λµ,

thus since λ, µ are coprime, from Lemma 1.4 there exist ϕ, χ ∈ Z[i] and a ∈ Z/(4)
such that

λ = i−aϕ4

µ = iaχ4.

From (8) we get

(9) i1−a((1 + i)k−1ϕ)4 + ia−1χ4 = β2

hence since k > 1 from Lemma 3.2 we know (1 + i)4 | β2 + ia+1χ4 and from Lemma
3.1 we know (1 + i)4 | i2b + ia+1 for some b ∈ Z/(4). But since

∣∣i2b + ia+1
∣∣ ≤

2 < 4 = |1 + i|4 we know i2b + ia+1 = 0, hence a = 2b + 1. Substituting in b and
rearranging (9) we obtain

((1 + i)k−1ϕ)4 + χ4 = (ibβ)2,

indicating (ϕ, χ, ibβ, k− 1) is a non-trivial solution to (7). Since 1 + i, ϕ, χ, β must
be coprime from how ϕ, χ are defined, we have contradicted the minimality of k,
hence there are no non-trivial coprime solutions to (7).

If (α, β, γ) is a solution to

(10) α4 + β4 = γ2,
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then (λ, µ, ν) = (α/ε, β/ε, γ/ε2) is a solution, where ε = gcdZ[i](α, β). Notice λ, µ, ν

are coprime since λ2, µ2, ν are coprime and any common divisor of λ and ν would
then necessarily divide λ2, µ2. Now from Lemma 3.2 we know that 1 + i divides λ
up to symmetry hence there exists ϕ ∈ Z[i] and k ∈ Z>0 such that λ = (1 + i)kϕ
and 1 + i - ϕ. But now (ϕ, µ, ν, k) is a coprime solution to (7), hence it must be
trivial, thus (α, β, γ) is a trivial solution to (10). But thus we conclude that all
solutions to x4 + y4 = z4 are trivial, since (x, y, z2) is a solution to (10). �

4. Conclusion

With our proofs we have accomplished three things. We have given evidence
for Fermat’s Last Theorem, while Fermat’s Last Theorem is true, this is not proof.
What is more significant is our reduction of the problem, that is to show Fermat’s
Last Theorem, we need only consider Fermat’s equation when n is prime:

Consider Fermat’s equation with n composite, then either there is an odd prime
p | n or n is a power of 2. In the first case, if (a, b, c) is a solution to xn + yn = zn

then (an/p, bn/p, cn/p) is a solution to xp + yp = zp, hence we only need to show all
solutions to Fermat’s equation for p an odd prime are trivial. In the second case,
then since n > 2, we have 4 | n, hence if (a, b, c) is a solution to xn + yn = zn then
(an/4, bn/4, cn/4) is a solution to x4 + y4 = z4, hence it must be (a, b, c) must be
trivial.

Finally, Fermat’s Last Theorem is true not just over the integers, but also over
the rationals, since we can multiply through by the denominators and get a solution
to the integers. With our proofs, we have also shown that over the Gaussian field,
Fermat’s Last Theorem is true for 4 | n, and over the Eisenstein field, Fermat’s
Last Theorem is true for 3 | n. So we might ask the question, given a number field
K, for what n does Fermat’s Last Theorem hold?

As far as the author of this paper is aware, the question goes unstudied. What
is clear though, is the study of Fermat’s equation, one so simple that Fermat’s Last
Theorem can be understood by the general populace, is incredibly intricate and
even the simplest of cases require a substantial amount of machinery to prove.
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