Exercise Set 4:

Applications of the Integers Modulo n

Math 414, Winter 2010, University of Washington

Due Friday, February 5, 2010

1. Let a, m, n be random integers with about 10000 digits each. How long does it take Sage to compute $a^{m}(\bmod n)$? What if they have 100000 digits each? 1000000 digits each?
2. Let φ be the Euler phi function. For what values of n is $\varphi(n)$ even?
3. Explicitly find a primitive root modulo 49 .
4. Prove that if $a, b \in(\mathbb{Z} / k \mathbb{Z})^{*}$ have multiplicative orders n, m, with $\operatorname{gcd}(n, m)=1$, then $a b$ has multiplicative order $n m$.
5. (*) Let p be an odd prime. Prove that there is a primitive root modulo p^{2}. (Hint: Use the result of the previous exercise.)
6. Is the number $n=3^{2011}-40$ prime? You may not directly use the is _prime function in Sage to solve this problem.
