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1 Introduction

In this paper we investigate Gaussian composition. Furthermore, we study
the correspondence theorem of ideal classes and classes of binary quadratic
forms. We also show a generalization of this correspondence and composition
to higher dimensions recently discovered by Manual Bhargava. Along with
this generalization, Gaussian composition is one of at least 14 such corre-
spondences. Although, more is known about Gaussian composition than the
higher dimensional models, such a correspondence makes particular questions
more relevant than ever before.

Amazingly, although Gauss studied composition of quadric forms, he did
so almost a century before ideas were studied. There are two ways to view
these two phenomena: The first is to see the correspondence, which relates
ideal classes and classes of binary quadratic forms, as the more important of
the two. This correspondence allows us to relate the two objects and bring
the tools used in one realm to bear on the problems in the other. For exam-
ple, this correspondence defines a group on the classes of binary quadratic
forms by simply looking the the ideal class corresponding to each form and
pulling back the group structure. On the other hand, the composition can be
viewed as more important. Then the correspondence simply gives us another
language with which to see how composition works.

1.1 Outline

In section 2 we will lay out basic properties of quadratic forms that we will
use, and in section 3 we’ll lay out the properties of quadratic rings and their
ideas that we will use. Section 4 shows the correspondence between these two
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objects, and how the properties about forms and rings previously described
relate. In section 5 we show another type of correspondence and composition
defined over cubes of integers.

1.2 Resources

Many of the proofs are left incomplete, and the reader may for other reason
be interested in learning more about this topic.

Stein’s notes are a good source for an overview the correspondence of
ideals classes and classes binary quadratic forms in the case of ideals of
maximal rings (rings of integers of a quadratic field). Sections 2 is taken
mostly from these notes, as a good portion of section 3 and 4.

Cassel’s text offers an exposition of Dirichlet’s proof of the composition
law on primitive binary quadratic forms. This reference is special in that it
does not use ideals in any way. Section 2.2 is an quick glance of Cassel’s
exposition.

The article by Bhargava gives a very brief overview of new correspondence
and composition laws discovered and discusses their future potential.

The lecture notes of Bhargava’s class on quadratic forms at Harvard con-
tain the proof of the higher composition law given in section 5 and also
provided a clear but brief picture of Gauss composition.

The texts of Jones and Cohl both layout the composition law by first
showing the correspondence between ideals classes and quadratic forms.

2 Quadratic Forms

We start off by defining quadratic forms and paying particular attention to
facts that will play a role when we want to compose such forms.

Definition 1 A quadratic form f(x1, . . . , xn) is a degree 2 homogeneous
polynomial. That is to say that

f(x1, . . . , xn) =
∑

i,j

ai,jxixj

In this paper we’ll deal with only binary quadratic formulas, so n = 2.
Forms of higher spaces are usually written out using a symmetric n×n matrix
M so that

f(x) = xT Mx
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We instead write a binary quadratic form as

f(x, y) = ax2 + bxy + cy2

which we will often denote [a, b, c] for notational convenience.

Definition 2 We say that a form is integral if it can be expresses as
∑

i,j ai,jxixj

with ai,j ∈ Z for all i and j.

This definition is one of two that are commonly used. The other is to
define a form as integral if

f(x) = xT Mx

where the entries of M all lie in Z. Under this definition [a, b, c] can only be
integral if b is even because the symmetric matrix associated with [a, b, c] is
[

a b/2
b/2 c

]

. This is the definition that Gauss used, but in most modern

texts, the more general definition, which we have adopted, is used.

Definition 3 We say that a binary quadratic form f(x, y) represents a num-
ber n ∈ Z if there exists x0, y0 ∈ Z such that f(x0, y0) = n.

Although we will not discuss it here, much work has been done to study
what numbers a particular form represents. The work along these lines is
amazingly rich and beautiful.

Definition 4 We say that a binary quadratic form is primitive if gcd(a, b, c) =
1.

Definition 5 We define the determinant of a quadratic form [a, b, c] to be
b2 − 4ac.

Now we want to set up a notion of equivalence on forms.

Definition 6 We say that two binary quadratic forms f and g are improp-
erly equivalent if there exists a matrix A ∈ GL2(Z) such that

f(A

(

x

y

)

) = g(x, y)
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First note that equivalence is an equivalence relation. The reason is that
we define equivalence in this way is explained by the following proposition.

Proposition 7 If f and g are improperly equivalent binary quadratic forms,
then they represent the same numbers.

Proof: If f represents n than there exists x0, y0 ∈ Z such that f(x0, y0) = n,
but there exists A ∈ GL2(Z) such that f(x, y) = g(A

(

x

y

)

) so g represents n
also.

Proposition 8 If f and g are improperly equivalent binary quadratic forms,
then they have the same discriminant.

This follows from that fact that

disc

(

g(A

(

x

y

)

)

)

= disc (g(x, y)) · disc (A)2

which can be verified by arithmetic, so we will not show the computation
here. See [Ste03] for the details. �

At first “improperly equivalent” seems like it should be the correct defini-
tion. However, later on we will see that even a stricter notion of equivalence
works, and so we will want to use that. It turns out that this stricter defini-
tion is vital to understanding forms, but we will not see any applications in
this paper. One example is studying the genera of forms.

Definition 9 We say that two binary quadratic forms f and g are properly
equivalent if there exists a matrix A ∈ SL2(Z) such that

f(A

(

x

y

)

) = g(x, y)

We want that the forms are equivalent in this higher sense, and we note
that the discriminant cannot tell if two forms are improperly, or properly
equivalent. Also, note here that f(x, y) is always improperly equivalent to
f(y, x), but not necessarily properly equivalent. So the proper part of equiv-
alence is an ordering condition on the variables.

4



Example 10 f = [1, 0, 3] is properly equivalent to g = [31,−40, 13] because

g

([

2 1
3 2

]

x

)

=

([

2 1
3 2

]

x

)T [

31 −20
−20 13

] ([

2 1
3 2

]

x

)

=

xT

[

2 3
1 2

] [

31 −20
−20 13

] [

2 1
3 2

]

x = xT

[

1 0
0 3

]

x

Example 11 f = [3, 0, 1] is improperly, but not properly equivalent to g =
[31,−40, 13]. The previous example shows that [1, 0, 3] and g are improperly

equivalent. We know that f and [1, 0, 3] are improperly equivalent, so it
follows that f and g are improperly equivalent.

However, supposed that they are properly equivalent. Then by transitiv-
ity [1, 0, 3] and f are also properly equivalent. However

f

([

a b
c d

]

x

)

= xT

[

a b
c d

]T [

1 0
0 3

] [

a b
c d

]

x =

xT

[

a2 + 3c2 ab + 3cd
ab + 3cd b2 + 3d2

]

x

for this to be the form [3, 0, 1] it must be that a2 + 3c2 = 3 ⇒ a = 0, c = 1,

and b2 + 3d2 = 1 ⇒ b = 1, d = 0. But

∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

= −1. So f and [1, 0, 3] are

not properly equivalent.

2.1 Addition Properties of the Discriminant

The discriminant will be central to our treatment of binary quadratic forms.
The sign of the discriminant is very important.

Definition 12 We say that a binary quadric form f is definite if disc(f) <
0.

Proposition 13 Definite forms either represent only positive numbers, or
only negative numbers, but never both.
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Proof: Let f(x, y) = ax2 + bxy + cy2. Then

4a(f(x, y)) = 4a(ax2 + bxy + cy2) = 4a2x2 + 4abxy + 4acy2

= (2ax + by)2 + (4ac − b2)y2 ≥ 0

Another relevant fact is that the discriminant is always ≡ 0, 1 mod 4.
This follows easily from that fact that the only quadratic residues mod 4 are
0 and 1, and the discriminant = b2 − 4ac ≡ b2 mod 4. Moreover, for any
possible discriminant, a number ≡ 0, 1 mod 4, we can find a form with that
discriminant.

In fact, there are a special set of forms, called the principal forms, which
correspond to each possible discriminant.

Definition 14 The principal form of discriminant d is [1, 0,−d/4] if d ≡ 0
mod 4, and [1, 1,−(d − 1)/4] if d ≡ 1 mod 4.

A quick calculation shows that the primitive form of discriminant d, in-
deed has discriminant d. This gives us an explicit bijection between possible
discriminants and a particular set of binary quadratic forms. These forms
will play a special role in the correspondence between binary quadratic forms
and ideals later.

2.2 A Look Toward Composition

Gauss proved that that proper equivalence classes of primitive binary quadratic
forms with the same determinant have a group structure.

The basic idea is that any two forms of the same determinant are properly
equivalent to two forms with the same middle coefficient and with leading
coefficients that are relatively prime. So given two primitive binary quadratic
forms f1(x, y) = a1x

2 + b1xy + c1y
2 and f2(x, y) = a2x

2 + b2xy + c2y
2 such

that disc(f1) = disc(f2), we can find properly equivalent forms f ′
1
(x, y) =

a′
1
x2 + bxy + c′

1
y2 and f ′

2
(x, y) = a′

2
x2 + bxy + c′

2
y2 of f1 and f2 respectively,

where a′
1

and a′
2

are relatively prime. Note that the middle coefficients are
the same, and also that if a 6= 0, then c is completely determined by a, b,
and the determinant.

The composition of the class of f1 and the class of f2 is the same as the
composition of the class of f ′

1
and f ′

2
. And we define class of the composition
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of these forms to be the class of f ′
3

= a′
1
a′

2
x2 + bxy + c3y

2 where c3 is what it
needs to be to make f3 have the same determinant as f1 and f2. Notice we
multiply the leading coefficients, and leave the middle one the same.

This gives intuition that the “principal” forms are the identity elements
of the group. Say that [1, b, c] is a principal form. Then b = 0 or b = 1.
Because the leading coefficient of the principal form is 1, we find a properly

equivalent form [1, b+2k, c] for any k ∈ Z by applying the matrix

[

1 k
0 1

]

to

the form. Now any form [a′, b′, c′] of the same discriminant must have b′ ≡ b
mod 2.

So given any form [a′, b′, c′] of the same discriminant as the principal
form [1, b, c], there is a form [1, b′, c′′] properly equivalent to [1, b, c]. Then
the composition of [a′, b′, c′] and [1, b′, c′′] is [a′, b′, c′] (because 1 · a′ = a′ and
b′ = b′), thus showing the the principal from is the identity.

Although, this is the original way that Gauss proceeded, we will take a
different route. We will create a bijection between classes of quadratic forms
of discriminant d, and ideal classes of quadratic rings with discriminant d.
Then, the group structure of the ideal classes of the rings will endow the
proper equivalence classes of binary quadratic forms of determinant d with
a group structure.

3 Ideals of Quadric Rings

In this section we describe the properties of quadratic rings and their ideals
that are necessary to understand the composition. Many texts only describe
the correspondence for maximal rings (rings which are the ring of integers for
some quadratic field), but this leaves a ting of desire. Gauss’s original worked
for any primitive forms, not simply forms with discriminant’s corresponding
to discriminants of quadratic fields. Moreover this limitation is not inherent
to the problem, and we can avoid it by looking at quadratic rings more
generally.

Definition 15 A quadratic ring is a commutative and associative ring with
identity of free rank 2 as a Z-module.

If S is a quadratic rings, then S = 〈1, τ〉 where 1 · 1 = 1, 1 · τ = τ , and
τ 2 = a+bτ . Now because adding k ∈ Z to τ adds 2k to b we can always make
it so that b = 0 or b = 1. For if τ 2 = a+bτ , then (τ+k)2 = (a+k2)+(2k+b)τ .
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Definition 16 The discriminant of S = 〈1, τ〉 is b2 + 4a, the discriminant
of the characteristic polynomial of τ , τ 2 − bτ − a = 0.

We can embed any quadratic ring into C in exactly two ways by letting τ
be the two solution to the characteristic polynomial (unless a = b = 0). We
will implicitly ignore this special case for the rest of the paper.

Note again here that the discriminant is always 0, 1 mod 4. And that
we can get any discriminant by setting b = 0, a = d/4 if d ≡ 0 mod 4 and
b = 1, a = (d − 1)/4 if d ≡ 1 mod 4.

This gives us a bijective function S : Z̃ ↔ quadratic rings, where Z̃ =
{x ∈ Z : x ≡ 0, 1 mod 4}.

Let R be a quadratic ring, and I an idea of R.

Definition 17 We define the norm of I to be |R/I| when considering the
additive group structure of R and I.

Proposition 18 If I ⊆ R is an ideal with basis [α, β] and d is the discrim-
inant of R then

∣

∣

∣

∣

α α′

β β′

∣

∣

∣

∣

= d · N(I)2

Proof: There exists a 2 × 2 integer matrix A such that

A

(

a1

a2

)

=

(

α

β

)

where (a1, a2) is a basis for R as a Z module. But then

∣

∣

∣

∣

α α′

β β′

∣

∣

∣

∣

= det

(

A

[

a1 a′
1

a2 a′
2

])2

= det(A)2d = N(I)2d

Definition 19 We define the norm of an element α ∈ R to be α · α′ ∈ Z

where α and α′ are the two embeddings of α in to C.

Two ideals I and J of a quadratic ring R are considered equivalent if
there exist elements α, β ∈ R so that αI = βJ and N(αβ) > 0

Furthermore, because any quadratic ring R is isomorphic to a free Z-
module: Z⊕Z, we know that any ideal of R can generated by two elements.
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So we can write any ideal I as I = [α, β] so that I = {xα + yβ : x, y ∈
Z}. Now in setting up the equivalence, it will be important that we not
arbitrarily order the basis of an ideal. This corresponds to quadratic forms
being “properly” equivalent. In our correspondence, we will set up something
like N(αx + βy). If we did not order α and β, then N(αx + βy) would be
equivalent to N(βx + αy), which would mean in our correspondence that
f(x, y) is always properly equivalent to f(y, x). The point here is that well
ordering on bases, and proper equivalence will end up being the same thing,
but one deals with forms, and the other with ideals.

Definition 20 A basis [α, β] of an I ⊆ R is correctly ordered if

αβ′ − βα′

d
> 0

where d is the discriminant and α′, and β′ are the other embedding into the
complex numbers of α and β.

Similarly to with the case of quadratic forms we have the following propo-
sition.

Proposition 21 Any two correctly ordered bases of an ideal I ⊆ R are equiv-
alent by an element of SL2(Z) and conversely, any basis that are equivalent
by an element of SL2(Z) to an correctly ordered basis, is well ordered.

The proof is easy enough, so we omit it. See [Ste03] for the details. �

4 Correspondence

We are now ready to show the correspondence between ideals and binary
quadratic forms. First we explicitly state the correspondence.

Definition 22 Given an ideal I, with an ordered basis [α, β] we define

Q(I) =
N(αx + by)

N(I)

Definition 23 Given a binary quadratic form Q = ax2 +bxy+cy2 we define

I(Q) = [a,
b −

√
d

2
]

where d = b2 − 4ac, the discriminant.
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Note that the ideal we obtain does not depend on c. The agrees with how
we composed forms before.

Proposition 24 If [α, β] is an ideal I ⊆ R, then Q(I) is a integral quadratic
form with the same discriminant as R.

Proof: Q(I) = N(αx + by)/N(I) = [a, b, c] , and N(αx + by) = (αx +
βy)(α′ + β′y) = αα′x2 + (αβ′ + α′β)xy + ββ′y2 = Ax2 + Bxy + Cy2. Now
A, B, and C are in Z because they are norms and traces. Also they are each
elements of II ′ = N(I) and so [a, b, c] is an integral form.

We also want to show that the discriminant of this form is that of R. But
disc([a, b, c]) = b2−4ac = (B2−4AC)/N(I)2 = (αβ′−βα)2/N(I)2 = d. The
last step follows from Proposition 18.

This shows that at least we don’t land too far from our goal. We show
that the same is true for the mapping in the opposite direction.

Proposition 25 Let Q = [a, b, c] be a quadratic form of discriminant d (if
d < 0 assume that Q is positive definite), then I(Q) is an ideal of a quadratic
ring of discriminant d.

Proof: It is easy to see that I(Q) is an ideal of S(d) because b−
√

d
2

is the
root of the characteristic polynomial of the quadratic ring S(d).

Before proceeding further, we explicitly state the goal.

Theorem 26 There is a bijection between classes of properly equivalent bi-
nary quadratic forms of discriminant d and ideal classes of S(d), (where we
take the positive definite forms if d < 0).

The proof consists of showing that I(Q(I)) is equivilent (in the same
ideal class as) I, and that Q(I(Q)) is properly equivalent to Q. The proof
is long and not very enlightening, so we omit it here, but refer the reader to
[Jon67]. �

This correspondence works pretty well flawlessly. But, composition on
binary quadratic forms was studied before this correspondence was known.
In a sense, the correspondence is just an easy way of seeing the composition,
and Gauss discovered the more fundamental results when he found the com-
position law on binary quadratic forms. However, it is the correspondence
that gives many applications for the composition.
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5 The Cube Law

What we are really seeing here is that modulo SL2(Z) the binary quadratic
forms have a group structure when the discriminant is fixed. Also, the dis-
criminant is an invariant of the action of SL2(Z).

We now extend these properties to an larger object than binary quadratic
forms. Again we will find a group structure on the forms with the same
discriminant, and again we will define the discriminant to be an invariant of
an action on the objection.

The objects that we will look at are elements of Z2 ⊗Z2 ⊗Z2. These can
be thought of as cubes of integers. That is, a, b, c, d, e, f, g ∈ Z looking like

e-----f

/| /|

a-|---b |

| g---|-h

|/ |/

c-----d

We again set up an equivalence using SL2(Z), but this time SL2(Z) can act
on it in three different ways, so we define an action of SL2(Z)3 on Z2⊗Z2⊗Z2.
To show how this works, we define the following matrices, which are just the
faces of the cube.

M1 =

(

a b
c d

)

N1 =

(

e f
g h

)

M2 =

(

a c
e g

)

N2 =

(

b d
f h

)

M3 =

(

a e
b f

)

N3 =

(

c g
d h

)

Then the first component of SL2(Z)3 acts on M1 and N1 adding linear com-
binations of them. The second component of SL2(Z)3 acts on M2 and N2,
and the third on M3 and N3.

We can also define three quadratic forms from this cube.

Qi(x, y) = −Det(Mix − Niy)

Proposition 27 Q1, Q2, and Q3 all have the same discriminant.
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The proof only involves arithmetic, and so we omit it. �

Proposition 28 Q1 an invariant of the action {e} × SL2(Z) × SL2(Z)

Proof: By looking at the cube, we can see that actions of the form {e} ×
SL2(Z) × {e} act on M2 and N2, or the right at left sides of the cube. The
corresponds to acting on the column of M1 and N1 by the same action of
SL2(Z). Similarly actions of the form {e}×{e}×SL2(Z) action on the rows
of M1 and N1. We know that operations of SL2(Z) on the rows or columns
of a matrix do not change the determinant.

A similar fact holds for Q2 and Q3.

Proposition 29 disc(−Det(M1x−N1y)) is an invariant of the action SL2(Z)3

Proof: This follows from the previous proposition and that fact that when
SL2(Z) acts on M1 and N1, we will get a different Q1 which is properly
equivalent to previous one. And they therefore have the same discriminant.

To show the laws of composition, we first create a correspondence, and
then gives the cubes the same composition as the obvious composition on
the equivalent algebraic objects.

5.1 The Correspondence

We first need another definitions.

Definition 30 Fractional ideals I1, I2, I3 ⊆ R are collinear ideas if I1 · I2 ·
I3 ⊆ S and N(I1)N(I2)N(I3) = 1.

Now we state the goal:

Theorem 31 There is a bijection natural

Z2 ⊗ Z2 ⊗ Z2

SL2(Z)3
↔ (S, (I1, I2, I3))

where S is a quadratic ring and I1, I2, I, 3 are a triple of collinear ideals.
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Proof: Suppose we have (S, (I1, I2, I3)) as described above. Then s =<
1, τ > where τ 2 = D/4 if D = disc(S) ≡ 0 mod 4, and τ 2 = τ + (D − 1)/4
if D = disc(S) ≡ 1 mod 4. Then let I1 =< α1, α2 >, I2 =< β1, β2 >, and
I3 =< γ1, γ2 >.

αiβjγk = ci,j + ai,jτ (1 ≤ i, j, k ≤ 2) (1)

where the a’s and the c’s are all integers because the ideals are collinear.
Now we let the a’s define a cube in the obvious way. (It will turn out

that the c’s just depend on how we choose τ). With a little work we can see
that applying an element of M ∈ SL2(Z) to the basis of I1 is like applying
M × {e} × {e} to A.

Conversely, suppose we have a cube A, we go backward in the same
manner. We have to show that the c’s are really already determined, and
that the inverse map is the same as the forward one. We do so in two steps.

Step 1: We can write:

αi = ri + siτ

βi = ti + uiτ

γi = vi + wτ

for ri, si, ti, ui, vi ∈ Q because Ii ⊂ S ⊗ Q.
By some arithmetic, we see from the the forward map that disc(A) =

N(I1)
2N(I2)

2N(I3)
2D where D is the discriminant of the quadratic ring that

we are in. (To see this note that N(I1) =

∣

∣

∣

∣

r1 s1

r2 s2

∣

∣

∣

∣

. Because I1, I2, and I3

are collinear we get that disc(A) = D. So we already know the discriminant
of the ring that we are dealing with, and we get a monic quadratic equation
for τ . We multiply out the left side of the equations 1, write it so that the
power of τ is always < 2, and equate the coefficients of τ in order to get the
values of the a’s in terms of these indeterminants.

Step 2: We show that the c’s are determined using the associative law.

(αiβjγk)(αi′βj′γk′) = (αi′βjγk)(αiβj′γk′)

⇒ (cijk + aijkτ)(ci′j′k′ + ai′j′k′τ) = (ci′jk + ai′jkτ)(cij′k′ + aij′k′τ)

If we write out these equations for all 1 ≤ i, j, k ≤ 2 and i 6= i′, j 6= j′,
k 6= k′ we get eight equations. Then equating the coefficients of 1 and τ
gives equations for the c’s in terms of the a’s.
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The ideal classes of I1, I2, and I3 are also determined because I1 = [α1, α2]
where α1 = c1jk + a1jkτ and α2 = c2jk + a2jkτ .

The correspondence then defines a group action on cubes of the same
determinant, because there is a natural group structure on triples of collinear
ideas of a particular quadratic ring, namely multiplying element wise. So
(I1, I2, I3), (J1, J2, J3) (I1J1, I2J2, I3J3)

We now note that this composition is only one of at least 14, which include
Gaussian composition. For a full list of the 14 correspondences, see [Bha].

There is also a neat corollary. For any cube A Q1, Q2, Q3 we can define
the “sum” of Q1, Q2, and Q3 is zero.

Corollary 32 This is Gaussian composition!

This is because under the correspondence of quadratic forms and ideals,
Q1, Q2, Q3 correspond to (I1, I2, I3), the collinear triple of ideals. Therefore,
in a maximal ring, I1 · I2 · I3 = 1.

5.2 Application

In this section we briefly describe one application of correspondence. It is
easier to enumerate the proper equivalence classes of quadratic forms, than
it is do directly compute the ideal class of a quadratic ring. Of course, using
correspondence, we see that each of these problems is actually the same.

Reduction theory has been used to compute the equivalence classes of
quadratic forms of a certain discriminant.

Definition 33 A positive definite quadratic form [a, b, c] is reduced if |b| ≤
a ≤ c and at least on of the two inequalities is an equality.

The use of this definition is that there is only one reduced quadratic
form an any equivalence class. So searching for all equivalence classes of a
particular discriminant is as easy as finding all the reduced forms of a certain
discriminant.

These new correspondences includes cubic rings with ideals. If such a
notion of reduction could be found on the forms which correspond to cubic
rings and an ideal, then it would be likely yield a fast algorithm for finding
the ideal classes of cubic rings.
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