
An Explicit Construction of Abelian Extensions via Formal Groups

Danielle Li

May 25, 2004

Abstract

We introduce method of approaching local class field theory from the perspective of
Lubin-Tate formal groups. Our primarily aim is to demonstrate how to construct
abelian extensions using these groups.

1 Introduction

Local class field theory centers about the study of abelian extensions of local fields, most notably
the p-adic numbers. Traditionally, local class field theory has been approached either as an offshoot
of global, or classical class field theory, or in more recent tradition of Nakayama and Hochschild,
from a cohomological perspective as in Artin [1] or Serre [5]. In the mid 1960s, Lubin and Tate [3]
showed that many theorems of local class field theory could be deduced from formal groups over
local fields, particularly their valuation rings. This paper seeks to provide a basic introduction to
that approach.

Although all the results we present are by Lubin and Tate, we follow primarily the exposition of
Iwasawa [2] and Milne [4]. Iwasawa’s work follows more closely the original Lubin-Tate paper and
does so in more generality. He begins with the maximal unramified extension of K, which we, like
Milne, exclude when introducing formal group constructions. The primary benefit of this approach
is that it makes our notation less cumbersome.1 Our expository innovation is to begin with a
motivational example of how formal groups can be used to generate abelian extensions, presented
in Section 2. Section 3 provides an introduction to formal groups in general and specifically Lubin-
Tate formal groups. Finally, Section 4 uses these formal groups to construct abelian extensions of
a local field K.

1In general, I found Milne’s exposition to be more clear, although both works cover the preliminarly material in

roughly the same detail. Iwasawa, however, relies on formal groups in the rest of his book, proving the main theorems

of local class field theory from this perspective, while Milne’s discussion is primarily a digression on the construction

of abelian groups.

1



2 Motive

To get a feel for Lubin and Tate’s insight about how formal groups can generate abelian extensions,
we first consider an incomplete, unrigorous, but enlightening example.

Let K be a locally compact non-archimeadean field. We define the following objects that act
on K.

Definition 1 The multiplicative group Gm is a functor from the category of fields to the category
of groups which gives us the units in a field. That is,

Gm(L) = L∗

where L∗ is the group of units.

We also define a subfunctor, µpn that takes fields to their roots of unity. That is, µpn(L) is
group of pnth roots of unity contained in L. When we write µpn, we mean all roots of unity.

We say that µpn is the pn-torsion of Gm because µpn(L) is the pnth torsion of Gm(L). These
are exactly the elements that are killed when we raise to the pnth power in the image of Gm.

Now, consider An = Aut(µpn) and let zn be a primitive nth root of unity. zn generates µpn so
that any automorphism of µpn is defined by where it sends zn. The map

zn → za
n

defines an automorphism of µpn as long as a is a unit in Z/pnZ so that

An = (Z/pn)∗

Further, we have the reduction map

π : An → An−1

defined by taking a, a unit mod pn and mapping it to a mod pn−1. Letting n vary, we choose zn,
zn+1, etc., such that

zp
n = zn−1

In this way, we define all the An’s to be compatible. The advantage of this construction is that we
can now take the inverse limit.

Definition 2 Consider a sequence of groups {Gi}
∞
i=1 which are related by surjective homomor-

phisms fi : Gi → Gi−1 such that:

G1
f2

← G2
f3

← G3 . . .
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We define the inverse limit of (Gi, fi), denoted lim inf Gi to be the subset of
∏

∞

i=1 Gi consisting
of sequences

(g1, g2, g3, . . .)

such that fi(gi) = gi−1.

We define another function associated with inverse limits.

Definition 3 We define the Tate Module Tp which takes a group to the inverse limit of its pn-
torsion.

In our case,
TpGm = lim inf µpn .

It consists of infinite sequences x = (x1, x2, . . .) such that xi is a pith root of unity and xp
i = xi−1.

Now let G =Gal(K̄/K) for some field K of char6= p. We have that xi ∈ K̄ for all i. Thus, any
element g ∈ G acts on xi by the Galois action. Using this, we can define a natural Galois action
on TpGm by

gx = g(x1, x2, . . .) = (gx1, gx2, . . .)

Further, we have that every element of G induces an automorphism of mupn since g ∈ G is a Galois
automorphism of K̄ and thus respects multiplication in µpn . So we get the maps:

φn : G → Aut(µpn) = (Z/pn)∗

This formulation gives us a bit more in fact. Let Ker(φn) = Gn be a subgroup of the Galois
group G. Let Kn be the fixed field of Gn. From group theory, we have that G/Ker(φn) = G/Gn =
Im(G). But since we are also dealing with Galois groups, we also have that G/Gn = Gal(Kn/K).
So we have that

Gal(Kn/K) = Im(G)

a subgroup of (Z/pn)∗. But subgroups of abelian groups are abelian and so we have constructed
an abelian extension of K.

The inverse limit allows us to recover all this information from the map:

φ : G → Aut(TpGm) = Z∗
p

Thus, we can get these abelian extensions back as well.

We now show that we can get these same abelian extensions from a formal group law as well.
This is desireable because TpGm is pretty unwieldy, but the formal group we will find is very explicit.
Although the abelian extensions we just found do not represent all possible abelian extensions,
(although, by Kronecker-Weber, this is true in the case of Q), this is a good starting point for the
remainder of the paper where we do construct an arbitrary extension.
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Recall that we are in K a locally compact non-archimedean field. Note that this means K is
complete, discrete, and has finite residue field. Further, its finite extensions L are complete with
respect to the unique extension of our underlying valuation.

We will define a formal group in more generality later, but for now, consider the function:

f(X, Y ) = X + Y + XY

Loosely, we call something a formal group as opposed to a group because a formal group is just
the composition law, without the actual set. Thus, we can consider f(X, Y ) as a way of defining a
binary operation on a set by:

x +f y = f(x, y) = x + y + xy

We will take our x,y as elements of mL, the maximal ideal in the valuation ring OL of a finite
extension of K. Recall that we define OL = {x ∈ L||x| ≤ 1} and mL = {x ∈ L||x| < 1}.

Proposition 1 mL together with the composition defined by f(X, Y ) is a group.

Proof :
1. Closure. |x + y + xy| ≤ max{|x|, |y|, |x||y|} < 1
2. Inverses. If |x| ≤ 1, then |1/x| = 1/|x| < 1
3. Identity. 0 works.

Thus, we can define F as the functor from the category of finite extensions, L, to the category
of groups (mL, +f ) where f defines a binary operation on the set mL, the maximal ideal of OL.
That is,

F (L) = (mL, +f )

Theorem 1 TpF , the inverse limit of the pn-torsion of F is isomorphic to TpGm.

Proof :
Here is a roadmap of our proof.
1. We show that the set 1 + mL with multiplication is a subgroup of L∗ = Gm(L).
2. We show that (mL, +f ) ∼= (1 + mL, ∗)
3. We show that the pn-torsion of F (L) = (mL, +f ) is contained in the pn-torsion of Gm(L) = L∗.
4. We show the other inclusion.
This will allow us to conclude that TpGm is isomorphic to TpF because we defined them to be the
inverse images of the pn torsion.

Proof of 1. The set 1 + mL with multiplication is a subgroup of L∗ = Gm(L).
It is clearly a subset so we just need to show that it’s a group.
1. Closure. Consider x, y ∈ mL. So 1+x, 1+ y are in 1+mL. Then (1+x)(1+ y) = 1+x+ y +xy
but x + y + xy ∈ mL by the composition law on mL. Thus, the product is in 1 + mL.
2. Inverses. 1

1+x
= 1 − x + x2 − x3 + . . . but −x + x2 − x3 + . . . converges in mL because |x| < 1
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and we know that L is complete.
3. Identity. 1=1+0 and 0 ∈ mL.

Proof of 2. (mL, f) ∼= (1 + mL, ∗) by the map h : x → 1 + x. The map is clearly bijective and
h(x +f y) = h(x + y + xy) = 1 + x + y + xy = (1 + x)(1 + y) = h(x) ∗ h(y).

Proof of 3. From 1, and 2, we have that F (L) = (mL, +f ) ∼= (1 + mL, ∗) ⊂ L∗. Thus the pn

torsion of F (L) must be contained in the pn torsion of Gm(L) = L∗, which we already said is µpn(L).

Proof of 4. We need to show the other inclusion, that the pn torsion of Gm(L) is contained in
the pn torsion of F (L). To show this, consider the map

φ : OL → OL/mL

the reduction to the residue field. This induces another map from φ′ : O∗
L → (OL/mL)∗ because we

know that a ring homomorphism maps units to units. Here, 1 + mL is exactly the kernel of φ′.
Since K is a local field, we know that both OK/mK and OL/mL are finite fields, and further, OL/mL

is a field extension of OK/mK . Since OK/mK is finite, it has character p, as does OL/mL, its ex-
tension. But then it has no nontrivial pnth roots of unity. To see this, notice that xp −1 = (x−1)p

mod p. Thus, in going from O∗
L to (OL/mL)∗, we’ve lost all the pn torsions of Gm(L) = L∗. They

must be in the kernel then. This shows that the pn torsion of Gm(L) = L∗ is contained in 1 + mL.
This concludes the proof.

Thus, we have that TpGm
∼= TpF . This is a remarkable result because we can use TpGm to

recover the the specific class of abelian extension of our local field K that we constructed in the
beginning. But the whole point of local class field theory is to study the abelian extensions of K.
Using our formal group, we can recover the exact abelian extension we looked at earlier and get a
far more explicit description!

So now we try to do this in more generality.

3 Formal Groups

In general, a formal group is a law of composition that satisfies the group axioms, but without the
set. We can use them to create groups from sets as we did with mL and the operation defined by
f(X) = X + Y + XY in section 2.

Definition 4 Let R be a commutative ring with unit. A power series F (X, Y ) in R[[X, Y ]] is called
a formal group over R if it satisfies:
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1. F (X, Y ) ≡ X + Y moddeg 2

2. F (F (X, Y ), Z) = F (X, F (Y, Z))

3. F (X, Y ) = F (Y, X)

Note that these definitions tell us that the operation is associative and commutative. We will
be especially interested in the case where A = OK where K is a nonarchimedean local field (that
is, K is locally compact with respect to a nontrivial valuation - this also means that K is complete,
| · | is discrete, and has finite residue field).

Definition 5 For each prime element, π, of K, let Fπ denote the family of power series f(X) in
A[[X]] such that :

f(X) ≡ πXmod deg 2 f(X) ≡ Xqmodπ

For example, the polynomial πX + Xq is an element of Fπ.

Proposition 2 Let f , g be power series in Fπ and let φ1(X1, . . . , Xn) be a linear form with coef-
ficients in A. Then there is a unique φ ∈ A[[X1, . . . , Xn]] such that:

φ(X1, . . . , Xn) = φ1mod deg 2

f(φ(X1, . . . , Xn)) = φ(g(X1), . . . , g(Xn)).

Proof : See [4], [2], or [3].

Proposition 3 For each f ∈ Fπ, there exists a unique formal group Ff (X, Y ) over A admitting f
as an endomorphism.

Proof : We apply Propostion 2 for f = g, and L(X, Y ) = X + Y to get that there exists a unique
power series Ff (X, Y ) in A[[X, Y ]] such that:

Ff (X, Y ) ≡ X + Y moddeg 2

f(Ff (X, Y )) = Ff (f(X), f(Y )).

If Ff (X, Y ) defines a formal group, we are done because the above means that f acts as an
endomorphism on Ff (X, Y ). We claim that this Ff (X, Y ) is a formal group law.
1. Commutativity. We let G = Ff (Y, X) then we have that:

G(X, Y ) ≡ X + Y moddeg 2
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f(G(X, Y )) = f(Ff (Y, X)) = Ff (f(Y ), f(X)) = G(f(X), f(Y )).

But by Proposition 2, Ff (X, Y ) is the only power series with this property, so we must have that
G(X, Y ) = Ff (Y, X) = Ff (X, Y ).

2. Associativity. Now let

G1(X, Y, Z) = Ff (X, Ff (Y, Z)), G2(X, Y, Z) = Ff (Ff (X, Y ), Z)

Then, for i = 1, 2,
Gi(X, Y, Z) ≡ X + Y + Zmod deg 2

Gi(f(X), f(Y ), f(Z)) = f(Gi(X, Y, Z)).

Proposition 2 says that for φ(X, Y, Z) = X +Y +Z, there is a unique power series G(X, Y, Z) that
satisfies these criterion. Thus, G1 = G2.

Thus, Ff (X, Y ) satisfies all the axioms of a formal group over A. This concludes the proof of
the theorem.

These Ff (X, Y ) are the Lubin-Tate formal group laws.

Example 1 Let Kv = Qp and π = p. We define f = (1 + X)p − 1. Notice that f ∈ Fp. We
also define Ff (X, Y ) = X + Y + XY . As we showed in section 1, Ff (X, Y ) admits f as an
endomorphism. By the above proposition, we now know that Ff (X, Y ) is unique.

4 Constructing Extensions with Formal Groups

Now, let a ∈ A and let f , g again be a power series in Fπ. Applying Proposition 2 for φ(X) = aX,
we get that there exists a unique power series, call it [a]g,f in A[[X]] such that

[a]g,f (X) ≡ aXmod deg 2

g ◦ [a]g,f = [a]g,f ◦ f.

Proposition 4 [a]g,f is a homomorphism from Ff (X, Y ) → Fg(X, Y ).

Proof :
Since I am lazy, let’s denote [a]g,f by h. We want to show that

h(Ff (X, Y )) = Fg(h(X), h(Y )).
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It follows from the definition of h that h(Ff (X, Y )) ≡ aX + aY moddeg 2 ≡ Fg(h(X), h(Y )).
We also have that:

h(Ff (f(X), f(Y ))) = (h ◦ f)(Ff (X, Y )) = g(h(Ff (X, Y )))

Fg(f(f(X)), h(f(Y ))) = Fg(g(h(X), g(h(Y ))) = g(Fg(h(X), h(Y ))).

Again, we can use Proposition 2 to get uniqueness.

Further, we have that:

[a + b]g,f = [a]g,f +Fg [b]g,f , [ab]g,f = [a]h,g ◦ [b]g,f

and that for u ∈ A∗ a unit, [u]f,g and [u−1]g,f ] are inverse isomorphisms. The proofs of these
assertions follow by writing out the properties of the associated power series and using uniqueness
as we did in the last few proofs.

This means that for f, g ∈ Fπ, Ff (X, Y ) ∼= Fg(X, Y ). If we take f = g, then we get that there
exists a unique endomorphim [a]f : Ff → Ff such that

[a]f (X) ≡ aXmod deg 2

and
f ◦ [a]f = [a]f ◦ f.

Thus we get an injection A → End(Ff ) given by a → [a]f .

Now consider mK̄ where K̄, the algebriac closure of K and mK̄ is the maximal ideal of the
valuation ring. As in section 2, we use mK̄ as the set on which we define operations derived from
our formal group.

Proposition 5 mK̄ is an A-module with the operations:
1. For x, y ∈ mK̄ , let x + Ffy = Ff (x, y).
2. For a ∈ A and x ∈ mK̄ , let a ∗ x = [a]fx. When we refer to mK̄ as an A-module, we call it Wf .

Proof : To show this, we need to show that mK̄ under addition forms an abelian group. The proof
is identical to the one given in section 2, except that we are working with a more general power
series. The only thing we need to add is that we can be assured that Ff (x, y) converges because
|x|, |y| < 1. To show that it satisfies the rest of the module axioms is straightforward if we keep
the fact of convergence in mind.

Associated to Wf , we define:
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Definition 6 Denote by Wn
f the submodule of Wf defined as the set:

Wn
f = {x ∈ Wf |[π]nf ∗Ff

x = 0}

where [π]f is defined to be unique power series in A[[X]] such that

[π]f (X) ≡ πXmod deg 2

f ◦ [π]f = [π]f ◦ f.

However, note that this means [π]f (X) = f(X) because we defined f(X) ∈ Fπ to satisfy these
requirements. We have uniqueness as a consequence of Proposition 4.

Wn
f is, in fact, exactly the [π]nf -torsion of Wf ! We can also notice that Wn

f is equivalently the set
of roots of [π]nf = fn in mK̄ .

Example 2 Continuing our previous example, we now take

Wn
f = {x ∈ Z̄p|(x − 1)pn

= 1} = {ζ|ζpn

− 1}

this is exactly equal to µpn.

Lemma 1 [π]nf = fn(X) is a monic, separable polynomial of degree qn in A[X] and Wn
f is the set

of all roots of fn(X) in K̄. So the order of Wn
f is qn.

Proof : We know that Wn
f consists of the roots of fn in Wf , equal to mK̄ as a set. We claim that

Wn
f is actually the set of all roots of fn in K̄. First, recall that

fn = f ◦ . . . ◦ f

For illustrative purposes,footnotewe don’t need this form to prove the proposition - all we require
is that f(X) ∈ Fπ, but it is easier to the calculation this way. suppose that f(X) takes the form:

f(X) = πX + . . . + Xq

Then we have

(f ◦ f)(X) = f(f(X)) = π(πX + . . . + Xq) + . . . + (πX + . . . + Xq)q = πX2 + . . . + Xq2

By induction, we get that:
fn = πnX + . . . + Xqn

Now suppose that x ∈ K̄ were a root. We would have |πnx + . . . + xqn
| = 0 which implies that

|x|q
n
≤ max{|x|lesserpowers} and so |x| ≤ 1 so x ∈ mK̄ .

The following is a structure theorem for certain modules that we will take for granted:
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Proposition 6 Let A be a principal ideal domain with only one prime up to conjugation (notice
that A = OK satisfies these conditions). Then every finitely generated torsion A-module, M ,
decomposes into a direct sum of cyclic modules:

M ∼= A/(πn1) ⊕ . . . ⊕ A/(πnr), n1 ≤ . . . ≤ nr

and the sequence n1, . . . , nr is uniquely determined.

Lemma 2 Let M be an A-module, and let Mn = Ker(πn : M → M). If we have that:
1. If M1 has q := (A : (π)) elements, and
2. π : M → M is surjective,
then Mn

∼= A/(πn); and thus it has qn elements.

It is worth clarifying that by the map πn : M → M , we mean the map that takes x ∈ M to
π ∗ x = [π]nf (x). Proof :
This is done by induction on n.
Base case: n = 1. We want to show that M1

∼= A/(π). From 1, we have that M1 has q elements.
Thus, applying the structure theorem for modules, we can write M1 as a product of cyclic modules.
The only way to do this to write M1

∼= A/(π) because it has q elements (since (π) is a prime and
thus maximal ideal so A/(π) is the residue field which we assumed has order q).
More generally, note that A/(πn) has qn elements.
Induction case: We assume that Mn−1

∼= A/(πn−1). Now consider the sequence:

0 → M1 → Mn →π Mn−1 → 0

Condition 2. implies that this sequence is exact. By the first isomorphism theorem, then, we have:

Mn/M1
∼= Mn−1

Using our hypotheses, this gives:

Mn/(A/(π)) ∼= (A/πn−1)

and so Mn has qn elements. Further, Mn must be cyclic because M1 and Mn−1 are (we need the
above equation to hold). We know from the structure theorem that A/(πn) is the unique module
that satisfies these conditions.

Proposition 7 The A-module, Wn
f is isomorphic to A/(πn). Thus we have that EndA(Wn

f ) =

A/(πn) and AutA(Wn
f ) = (A/(πn))×.

Proof : We will prove this by showing that Wf satisfies the hypothesis for M in the previous lemma.
We already showed that Wf is an A-module. We need to show that:
1. Wf1

= Ker(π : Wf → Wf ) has q elements. Note that Wf1
is just W 1

f by definition. The kernel
of π is precisely the roots of [π]f (X) = f(X) for f(X) ∈ Fπ. It does not matter which f(X) we
pick because an A-isomorphism h : Ff(X,Y ) → Fg(X,Y ) of formal groups induces an isomorphism
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of A-modules Wf → Wg. Thus, we can take f(X) to be of the form πX + . . . + Xq. This is an
Eisenstein polynomial so it has q distinct roots. we have already shown that these roots all have
valuation less than 1 and so they lie in Wf . This means that the kernel of the map π has exactly
q elements, all in Wf .
2. π : Wf → Wf is surjective. This follows because [π]f = f(X) which we showed is an automor-
phism.

Thus, we apply the lemma on Wf to get that Wn
f
∼= A/(πn). It follows immediately that the

action of A on Wn
f induces an isomorphism A/(πn) → EndA(Wn

f ). The automorphisms, then, are

the subset which are isomorphisms, that is, (A/(πn))×.

Lemma 3 Let L be a finite Galois extension of K, a local field with Galois group G. The, for any
F ∈ OK [[X1, . . . , Xn]] and x1, . . . , xn ∈ mL, we have that:

F (τα1, . . . , ταn) = τF (α1, . . . , αn)

for all τ ∈ G

Proof : We know that the valuation on K extends uniquely to L. We also know that | · | makes
L a topological field (addition, multiplication, and inverses are continuous). Thus τ is a field
isomorphism that fixes OK . For F a polynomial (not infinite), this is enough to show that F
behaves properly. Now if F is a power series, we use the fact that τ is continuous. So it preserves
limits:

lim
m→∞

xm = L → lim
m→∞

τxm = τL.

We approximate F by the polynomials Fm such that F = Fm + deg ≥ m + 1. Then we have:

τ(F (x1, . . .)) = τ( lim
m→∞

Fm(x1, . . .)) = lim
m→∞

τF (x1, . . .) = lim
m→∞

F (τx1, . . .) = F (τx1, . . .).

Theorem 2 Consider K[Wn
f ] a field extension of K a non-archimedean local field with residue

field Fq. The following holds:

1. For each n, K[Wn
f ]/K is of degree (q − 1)qn−1

2. The action of OK on Wn
f defines an isomorphism:

(OK/mK)× → Gal(K[Wn
f ]/K).

In particular, K(Wn
f )/K is an abelian extension.

Proof :
We assume that f is a polynomial of the form πX + . . .+Xq (this is okay because any other f ∈ Fπ

would result in an isomorphic result). Choose a nonzero root, π1 of f(X). The choose a nonzero
root π2 of f(X)−π1. π2 is an element of Wf as well (by Newton’s polygon, which is an application
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of Hensel’s Lemma). Inductively, we choose πn a nonzero root of f(X) − πn−1. We get the chain
of extensions:

K ⊂ K[π1] ⊂ . . . ⊂ K[πn] ⊂ K[Wn
f ]

where the first extension is of degree q − 1 and the rest are of degree q. By the Tower Law,
[K[Wn

f ] : K] = (q − 1)qn−1.

To show 2, remember that Wn
f is the set of roots of fn in K̄. Thus, K[Wn

f ] is the splitting field
of fn. Thus, K[Wn

f ]/K is a Galois extension and we can identify Gal(K[Wn
f ]/K) with the group

of permutations of Wn
f (because these are exactly the roots of f). Now we can apply Lemma 3.

This allows us to think of each element of Gal(K[Wn
f ]/K) as OK-module isomorphism acting on

Wn
f . Because of this, the image of Gal(K[Wn

f ]/K) in Sym(Wn
f ) must be contained in

EndOK
(Wn

f ) = (OK/(πn))×.

Thus,
(q − 1)qn−1 ≥ #Gal(K[Wn

f ]/K) = [K(Wn
f ) : K]

But we also have:
[K[Wn

f : K] ≥ [K[Wn
f ] : K] = (q − 1)qn−1

So #Gal(K[Wn
f ]/K) = [K(Wn

f ) : K] = (q − 1)qn−1

But if the order of Gal(K[Wn
f )]K) is exactly (q − 1)qn−1 and it fits inside EndOK

(Wn
f ) =

(OK/(πn))×, then they must be isomorphic. Thus, K[Wn
f ]/K is an abelian extension.
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