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Abstract

This note is trying to be slick, so all the proofs are most efficient and
neat.

1 Adèles

Let K be a number field, i.e., an extension K/Q of degree n.
For each prime ideal p of OK , the ring of integers of K, we have a valuation

vp : K → Z given by vp(x) is the exponent of p in the prime decomposition
of the ideal xOK . Each vp has an associated metric |x|′p = 2−vp(x). The field
K is not complete with respect to the metric vp so we can take Kvp

to be the
completion of K.

There exist embeddings i1, . . . , ir1 : K ↪→ R and j1, . . . , jr2 : K ↪→ C (then
r1 + 2r2 = n = [K : Q]) and natural inclusions ip : K ↪→ Kvp

. We will call each
ik, jk, vp a place and we will denote a general place by v. If v is of the form ik
we call it a real place and if it is of the form jk we will call it a complex place.
We will call these infinite places; each place v of the form vp is called a finite
place and the valuation vp will be denoted simply by v; it has the property that
v(xy) = v(x) + v(y) and v(x+ y) ≥ min(v(x), v(y)).

Every finite place has, by definition, an associated prime ideal pv. We will
write Kv for the completion of K. Consider the ring of integers Ov = {x ∈
Kv|v(x) ≥ 0} which is a local ring with maximal ideal ℘v = {x ∈ Kv|v(x) > 0}.
It is a principal ideal domain and a generator πv of ℘v is called a uniformizer
of Kv. Every fractional ideal of Ov is generated by πmv for some m ∈ Z. Let
kv = Ov/℘v be the (finite) residue field at v and let qv = #kv.

For each real place v we write Kv = R and for each complex place we write
Kv = C. Each field Kv has a canonical norm on it. For v real it is |x|v = |iv(x)|
where iv is the real embedding. For v complex it is |x|v = |iv(x)|2, where iv is

the complex embedding. For v finite it is |x|v = q
−v(x)
v .

Let S be a finite set of places that includes all the infinite places. Define

AK,S =
∏

v∈S
Kv

∏

v/∈S
Ov.

Endow AK,S with the product topology.
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Define the ring of adèles over K to be

AK =
⋃

S

AK,S ,

together with the topology consisting of sets U such that U ∩ AK,S is open in
AK,S for all finite sets S that contains the infinite places.

Lemma 1.1. 1. The ring AK is Hausdorff.

2. The ring AK is locally compact.

Proof. 1. Points in AK are sequences (xv) such that xv ∈ Ov for almost
all v. Let (xv) 6= (yv) be two such points and assume that xµ 6= yµ for
some finite place µ. Then consider Uµ 3 xµ and Vµ 3 yµ be disjoint
neighborhoods (The rings Ov are metric spaces and so Hausdorff). Then
the preimages of Uµ and Vµ under the projection map to the µ component
will separate (xv) and (yv).

2. Around each point (xv) the neighborhood
∏
v=∞{xv}

∏
v<∞Ov is com-

pact by Tychonov’s theorem.

An annoying to prove, but true, fact is that AK is a topological group under
component-wise addition and multiplication. Define A×K to be the multiplicative
subgroup of AK , consisting of all sequences (xv) such that v(xv) = 0 for almost
all finite v. The topology on A×K is the direct limit product topology on the
multiplicative groups K×v and O×v .

For every x ∈ K there are only finitely many prime ideals that divide xOK
so K ↪→ AK but also K× ↪→ A×K .

2 Topology

We would like to understand the topological properties of K ⊂ AK and K× ⊂
A×K .

Proposition 2.1. K is discrete in AK and AK/K is compact.

Proof. We will interpret K and OK as embedded in AK . Let A∞ =
∏
v=∞Kv.

By the Chinese Remainder Theorem we essentially get that AK = K + AK,∅.
Clearly K ∩ AK,∅ = OK . But OK is discrete in A∞ so it is discrete in AK,∅ so
K is discrete in AK .

Let C =
∏
v=R[−1/2, 1/2]

∏
v=C{|z| ≤ 1/2}∏v<∞Ov which is compact by

Tychonov. Then note that AK,∅ = OK + C, again by the Chinese Remainder
Theorem and so AK = K+C. This means that AK/K = (K+C)/K is compact
being a closed subset of a compact set.
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Locally compact groups, such as AK have something called a Haar measure,
which is a dµ(x), which is unique up to multiplication. As such, for every y ∈ AK
if we look at dµ(yx) we get another measure, so by uniqueness there exists a
scalar |y| ∈ R>0 such that dµ(yx) = |y|dµ(x). Then we have the property that

|x| =
∏

v

|xv|v,

where x = (xv). Note that |x| is convergent since almost all terms in the product
at ≤ 1.

Lemma 2.2. Let A1
K ⊂ A×K be the set {x ∈ A×K ||x| = 1} whose topology

is inherited from AK and A×K (the inherited topologies are the same). Then
K× ↪→ A1

K .

Proof. Conceptually this is a simple problem. But we will use the neatest
method.

Since AK/K is compact, it will have a finite volume relative to dµ(x). But
for every y ∈ K we have αy : x 7→ yx is an automorphism of AK/K. (If x ∈ K
then xy ∈ K and vice-versa so it is well-defined.) Therefore,

∫

AK/K
dµ(x) =

∫

AK/K
dµ(αy(x)),

since all we are doing is a change of variables. But then
∫
AK/K dµ(x) =

|y|
∫
AK/K dµ(x) so |y| = 1.

We also have a discrete embedding K× ↪→ A1
K by the above Lemma.

Lemma 2.3. Let a ∈ AK such that

|a| > vol(AK/K)

vol(C)
.

Prove that there exists an xa ∈ K such that |xa|v ≤ |av|v.

Proof. Let Aa = aC. Then vol(Aa) > vol(AK/K). Therefore the map aA →
AK/K is not an injection so there exist u, v ∈ Aa such that u − v ∈ K. But
then by construction of C we have

|(u− v)|v ≤ |av|v,

for every place v so u− v ∈ aA ∩K.

Proposition 2.4. A1
K/K

× is a compact topological group.
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Proof. This is no longer as simple as AK/K compact, but it is of a similar
flavor. Instead of taking the surjection K + C → AK/K to imply that AK/K
is compact, we will look for a compact set W and a surjection W → A1

K/K
×.

Take W = {x ∈ A×K ||xv|v ≤ |av|v} where a ∈ A×K such that

|a| > vol(AK/K)

vol(C)
.

By the previous Lemma the map W → A1
K/K

× must be surjective because if
t ∈ A1

K then there exists xa such that |xa|v ≤ |av/tv|v so xat ∈W .

3 The Finiteness of the Class Number of K

Let Cl(K) be the class group of K and let I(K) be the group of fractional ideals
of K.

Consider the map id : A×K → I(K) defined by

id : (xv) 7→
∏

v<∞
pv(xv)
v .

This map is well-defined because the product of prime ideals is a finite one.
Moreover, if we restrict to id : A1

K → I(K) we get a surjection because the
preimage of

∏
pevv can be taken to be a ∈ AK such that av = 1 for all infinite

places v 6= i1, av = qevv for all finite places v and ai1 ∈ R to be whatever is
needed to make a ∈ A1

K .
The kernel of this map is clearly A∞

∏
v<∞O×v so we get a bijection

id : A1
K/(A∞

∏

v<∞
O×v )→ I(K).

We get a projection id : A1
K/(A∞

∏
v<∞O×v )→ Cl(K) = I(K)/K×. What

is its kernel? We need all a ∈ A1
K such that a = (av) maps to a principal ideal.

But principal ideals correspond to a factorization xOK =
∏
v<∞ p

v(x)
v and

the (unique) preimage via the injective map id in A1
K/(A∞

∏
v<∞O×v ) is x ∈

K×. Therefore we get a bijection

(A1
K/K

×)/(A∞
∏

v<∞
O×v )→ Cl(K).

Note that A∞
∏
v<∞O×v is open in A1

K/K
× which is compact so Cl(K) must

be finite.
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