Adèles and the Finiteness of the Class Number

Andrei Jorza

February 18, 2005

Abstract

This note is trying to be slick, so all the proofs are most efficient and neat.

1 Adèles

Let K be a number field, i.e., an extension K / \mathbb{Q} of degree n.
For each prime ideal \mathfrak{p} of \mathcal{O}_{K}, the ring of integers of K, we have a valuation $v_{\mathfrak{p}}: K \rightarrow \mathbb{Z}$ given by $v_{\mathfrak{p}}(x)$ is the exponent of \mathfrak{p} in the prime decomposition of the ideal $x \mathcal{O}_{K}$. Each $v_{\mathfrak{p}}$ has an associated metric $|x|_{\mathfrak{p}}^{\prime}=2^{-v_{\mathfrak{p}}(x)}$. The field K is not complete with respect to the metric $v_{\mathfrak{p}}$ so we can take $K_{v_{\mathrm{p}}}$ to be the completion of K.

There exist embeddings $i_{1}, \ldots, i_{r_{1}}: K \hookrightarrow \mathbb{R}$ and $j_{1}, \ldots, j_{r_{2}}: K \hookrightarrow \mathbb{C}$ (then $\left.r_{1}+2 r_{2}=n=[K: \mathbb{Q}]\right)$ and natural inclusions $i_{\mathfrak{p}}: K \hookrightarrow K_{v_{\mathfrak{p}}}$. We will call each $i_{k}, j_{k}, v_{\mathfrak{p}}$ a place and we will denote a general place by v. If v is of the form i_{k} we call it a real place and if it is of the form j_{k} we will call it a complex place. We will call these infinite places; each place v of the form $v_{\mathfrak{p}}$ is called a finite place and the valuation $v_{\mathfrak{p}}$ will be denoted simply by v; it has the property that $v(x y)=v(x)+v(y)$ and $v(x+y) \geq \min (v(x), v(y))$.

Every finite place has, by definition, an associated prime ideal \mathfrak{p}_{v}. We will write K_{v} for the completion of K. Consider the ring of integers $\mathcal{O}_{v}=\{x \in$ $\left.K_{v} \mid v(x) \geq 0\right\}$ which is a local ring with maximal ideal $\wp_{v}=\left\{x \in K_{v} \mid v(x)>0\right\}$. It is a principal ideal domain and a generator π_{v} of \wp_{v} is called a uniformizer of K_{v}. Every fractional ideal of \mathcal{O}_{v} is generated by π_{v}^{m} for some $m \in \mathbb{Z}$. Let $k_{v}=\mathcal{O}_{v} / \wp_{v}$ be the (finite) residue field at v and let $q_{v}=\# k_{v}$.

For each real place v we write $K_{v}=\mathbb{R}$ and for each complex place we write $K_{v}=\mathbb{C}$. Each field K_{v} has a canonical norm on it. For v real it is $|x|_{v}=\left|i_{v}(x)\right|$ where i_{v} is the real embedding. For v complex it is $|x|_{v}=\left|i_{v}(x)\right|^{2}$, where i_{v} is the complex embedding. For v finite it is $|x|_{v}=q_{v}^{-v(x)}$.

Let S be a finite set of places that includes all the infinite places. Define

$$
\mathbb{A}_{K, S}=\prod_{v \in S} K_{v} \prod_{v \notin S} \mathcal{O}_{v} .
$$

Endow $\mathbb{A}_{K, S}$ with the product topology.

Define the ring of adèles over K to be

$$
\mathbb{A}_{K}=\bigcup_{S} \mathbb{A}_{K, S}
$$

together with the topology consisting of sets U such that $U \cap \mathbb{A}_{K, S}$ is open in $\mathbb{A}_{K, S}$ for all finite sets S that contains the infinite places.

Lemma 1.1. 1. The ring \mathbb{A}_{K} is Hausdorff.
2. The ring \mathbb{A}_{K} is locally compact.

Proof. 1. Points in \mathbb{A}_{K} are sequences $\left(x_{v}\right)$ such that $x_{v} \in \mathcal{O}_{v}$ for almost all v. Let $\left(x_{v}\right) \neq\left(y_{v}\right)$ be two such points and assume that $x_{\mu} \neq y_{\mu}$ for some finite place μ. Then consider $U_{\mu} \ni x_{\mu}$ and $V_{\mu} \ni y_{\mu}$ be disjoint neighborhoods (The rings \mathcal{O}_{v} are metric spaces and so Hausdorff). Then the preimages of U_{μ} and V_{μ} under the projection map to the μ component will separate $\left(x_{v}\right)$ and $\left(y_{v}\right)$.
2. Around each point $\left(x_{v}\right)$ the neighborhood $\prod_{v=\infty}\left\{x_{v}\right\} \prod_{v<\infty} \mathcal{O}_{v}$ is compact by Tychonov's theorem.

An annoying to prove, but true, fact is that \mathbb{A}_{K} is a topological group under component-wise addition and multiplication. Define \mathbb{A}_{K}^{\times}to be the multiplicative subgroup of \mathbb{A}_{K}, consisting of all sequences $\left(x_{v}\right)$ such that $v\left(x_{v}\right)=0$ for almost all finite v. The topology on \mathbb{A}_{K}^{\times}is the direct limit product topology on the multiplicative groups K_{v}^{\times}and \mathcal{O}_{v}^{\times}.

For every $x \in K$ there are only finitely many prime ideals that divide $x \mathcal{O}_{K}$ so $K \hookrightarrow \mathbb{A}_{K}$ but also $K^{\times} \hookrightarrow \mathbb{A}_{K}^{\times}$.

2 Topology

We would like to understand the topological properties of $K \subset \mathbb{A}_{K}$ and $K^{\times} \subset$ \mathbb{A}_{K}^{\times}.
Proposition 2.1. K is discrete in \mathbb{A}_{K} and \mathbb{A}_{K} / K is compact.
Proof. We will interpret K and \mathcal{O}_{K} as embedded in \mathbb{A}_{K}. Let $\mathbb{A}_{\infty}=\prod_{v=\infty} K_{v}$. By the Chinese Remainder Theorem we essentially get that $\mathbb{A}_{K}=K+\mathbb{A}_{K, \emptyset}$. Clearly $K \cap \mathbb{A}_{K, \emptyset}=\mathcal{O}_{K}$. But \mathcal{O}_{K} is discrete in \mathbb{A}_{∞} so it is discrete in $\mathbb{A}_{K, \emptyset}$ so K is discrete in \mathbb{A}_{K}.

Let $C=\prod_{v=\mathbb{R}}[-1 / 2,1 / 2] \prod_{v=\mathbb{C}}\{|z| \leq 1 / 2\} \prod_{v<\infty} \mathcal{O}_{v}$ which is compact by Tychonov. Then note that $\mathbb{A}_{K, \emptyset}=\mathcal{O}_{K}+C$, again by the Chinese Remainder Theorem and so $\mathbb{A}_{K}=K+C$. This means that $\mathbb{A}_{K} / K=(K+C) / K$ is compact being a closed subset of a compact set.

Locally compact groups, such as \mathbb{A}_{K} have something called a Haar measure, which is a $d \mu(x)$, which is unique up to multiplication. As such, for every $y \in \mathbb{A}_{K}$ if we look at $d \mu(y x)$ we get another measure, so by uniqueness there exists a scalar $|y| \in \mathbb{R}_{>0}$ such that $d \mu(y x)=|y| d \mu(x)$. Then we have the property that

$$
|x|=\prod_{v}\left|x_{v}\right|_{v}
$$

where $x=\left(x_{v}\right)$. Note that $|x|$ is convergent since almost all terms in the product at ≤ 1.
Lemma 2.2. Let $\mathbb{A}_{K}^{1} \subset \mathbb{A}_{K}^{\times}$be the set $\left\{x \in \mathbb{A}_{K}^{\times}| | x \mid=1\right\}$ whose topology is inherited from \mathbb{A}_{K} and \mathbb{A}_{K}^{\times}(the inherited topologies are the same). Then $K^{\times} \hookrightarrow \mathbb{A}_{K}^{1}$.

Proof. Conceptually this is a simple problem. But we will use the neatest method.

Since \mathbb{A}_{K} / K is compact, it will have a finite volume relative to $d \mu(x)$. But for every $y \in K$ we have $\alpha_{y}: x \mapsto y x$ is an automorphism of \mathbb{A}_{K} / K. (If $x \in K$ then $x y \in K$ and vice-versa so it is well-defined.) Therefore,

$$
\int_{\mathbb{A}_{K} / K} d \mu(x)=\int_{\mathbb{A}_{K} / K} d \mu\left(\alpha_{y}(x)\right),
$$

since all we are doing is a change of variables. But then $\int_{\mathbb{A}_{K} / K} d \mu(x)=$ $|y| \int_{\mathbb{A}_{K} / K} d \mu(x)$ so $|y|=1$.

We also have a discrete embedding $K^{\times} \hookrightarrow \mathbb{A}_{K}^{1}$ by the above Lemma.
Lemma 2.3. Let $a \in \mathbb{A}_{K}$ such that

$$
|a|>\frac{\operatorname{vol}\left(\mathbb{A}_{K} / K\right)}{\operatorname{vol}(C)}
$$

Prove that there exists an $x_{a} \in K$ such that $\left|x_{a}\right|_{v} \leq\left|a_{v}\right|_{v}$.
Proof. Let $A_{a}=a C$. Then $\operatorname{vol}\left(A_{a}\right)>\operatorname{vol}\left(A_{K} / K\right)$. Therefore the map $a A \rightarrow$ \mathbb{A}_{K} / K is not an injection so there exist $u, v \in A_{a}$ such that $u-v \in K$. But then by construction of C we have

$$
|(u-v)|_{v} \leq\left|a_{v}\right|_{v}
$$

for every place v so $u-v \in a A \cap K$.
Proposition 2.4. $\mathbb{A}_{K}^{1} / K^{\times}$is a compact topological group.

Proof. This is no longer as simple as \mathbb{A}_{K} / K compact, but it is of a similar flavor. Instead of taking the surjection $K+C \rightarrow \mathbb{A}_{K} / K$ to imply that \mathbb{A}_{K} / K is compact, we will look for a compact set W and a surjection $W \rightarrow \mathbb{A}_{K}^{1} / K^{\times}$.

Take $W=\left\{\left.x \in \mathbb{A}_{K}^{\times}| | x_{v}\right|_{v} \leq\left|a_{v}\right|_{v}\right\}$ where $a \in \mathbb{A}_{K}^{\times}$such that

$$
|a|>\frac{\operatorname{vol}\left(\mathbb{A}_{K} / K\right)}{\operatorname{vol}(C)}
$$

By the previous Lemma the map $W \rightarrow \mathbb{A}_{K}^{1} / K^{\times}$must be surjective because if $t \in \mathbb{A}_{K}^{1}$ then there exists x_{a} such that $\left|x_{a}\right|_{v} \leq\left|a_{v} / t_{v}\right|_{v}$ so $x_{a} t \in W$.

3 The Finiteness of the Class Number of K

Let $C l(K)$ be the class group of K and let $I(K)$ be the group of fractional ideals of K.

Consider the map id : $\mathbb{A}_{K}^{\times} \rightarrow I(K)$ defined by

$$
\text { id }:\left(x_{v}\right) \mapsto \prod_{v<\infty} \mathfrak{p}_{v}^{v\left(x_{v}\right)}
$$

This map is well-defined because the product of prime ideals is a finite one. Moreover, if we restrict to id : $\mathbb{A}_{K}^{1} \rightarrow I(K)$ we get a surjection because the preimage of $\prod \mathfrak{p}_{v}^{e_{v}}$ can be taken to be $a \in \mathbb{A}_{K}$ such that $a_{v}=1$ for all infinite places $v \neq i_{1}, a_{v}=q_{v}^{e_{v}}$ for all finite places v and $a_{i_{1}} \in \mathbb{R}$ to be whatever is needed to make $a \in \mathbb{A}_{K}^{1}$.

The kernel of this map is clearly $A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}$so we get a bijection

$$
\text { id }: \mathbb{A}_{K}^{1} /\left(A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}\right) \rightarrow I(K)
$$

We get a projection id : $\mathbb{A}_{K}^{1} /\left(A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}\right) \rightarrow \mathrm{Cl}(K)=I(K) / K^{\times}$. What is its kernel? We need all $a \in \mathbb{A}_{K}^{1}$ such that $a=\left(a_{v}\right)$ maps to a principal ideal.

But principal ideals correspond to a factorization $x \mathcal{O}_{K}=\prod_{v<\infty} \mathfrak{p}_{v}^{v(x)}$ and the (unique) preimage via the injective map id in $\mathbb{A}_{K}^{1} /\left(A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}\right)$is $x \in$ K^{\times}. Therefore we get a bijection

$$
\left(\mathbb{A}_{K}^{1} / K^{\times}\right) /\left(A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}\right) \rightarrow \mathrm{Cl}(K)
$$

Note that $A_{\infty} \prod_{v<\infty} \mathcal{O}_{v}^{\times}$is open in $\mathbb{A}_{K}^{1} / K^{\times}$which is compact so $\mathrm{Cl}(K)$ must be finite.

