
A 1940 Letter of 
André Weil on Analogy
in Mathematics
Translated by Martin H. Krieger

334 NOTICES OF THE AMS VOLUME 52, NUMBER 3

F
or André Weil, “having a disagreement
with the French authorities on the subject
of [his] military ‘obligations’ was the rea-
son [he] spent February through May [of
1940] in a military prison.” When he was

released, he went into the service. Weil wrote this
fourteen-page letter to Simone Weil, his sister, from
Bonne-Nouvelle Prison in Rouen in March 1940,
sixty-five years ago this month. (Keep in mind that
the letter was not written for a mathematician,
even though Simone could not understand most of
it.)

I first heard of the letter from a small passage
translated in a book by D. Reed (Figures of Thought;
London: Routledge, 1995). At the time I was trying
to understand the range of solutions to the Ising
model in mathematical physics, and in going to
Weil’s letter I found poignant his exposition of a
threefold analogy out of Riemann and Dedekind,
one that proves to organize a great deal of disparate
material. Moreover, I had just begun to appreciate
the significance of the Langlands Program for my
problem. [See the “Notes Added in Proof” to Mar-
tin H. Krieger, Constitutions of Matter: Mathemati-
cally Modeling the Most Everyday of Physical Phe-
nomena (Chicago: University of Chicago Press,
1996), pp. 311–312.] Eventually, in chapter 5 of
Doing Mathematics, I worked out the analogy and
provided an exposition of the Weil letter. A recent
Notices article (“Some of what mathematicians do”,
November 2004, pp. 1226–1230) summarizes the

argument of that book, including what I called the
Dedekind-Weil analogy.

The Weil letter is a gem, of wider interest to the
mathematical and philosophical community, con-
cerned both with the actual mathematics and with
how mathematicians describe their work. I pro-
vided a translation from the French in the book’s
appendix. I am grateful to the editor of the Notices;
publication herein will allow for an even wider au-
dience.

The letter is from André Weil, Oeuvres Scien-
tifiques, Collected Papers, volume 1 (New York:
Springer, 1979), pp. 244–255. The translation aims
to be reasonably faithful, not only to the meaning
but also to sentence structure. Brackets are in the
Oeuvres Scientifiques text. Braces indicate foot-
notes therein. My editorial insertions are indicated
by braces-and-brackets, {[ ]}. It is slightly revised,
as taken from Martin H. Krieger, Doing Mathe-
matics: Convention, Subject, Calculation, Analogy
(Singapore: World Scientific, 2003), pp. 293–305. In
the notes to the Oeuvres Scientifiques, Weil indicates
that he was wrong then about the influence of the
theory of quadratic forms in more than two vari-
ables and that Hilbert is explicit about the analogy
in his account of the Twelfth Problem (for which
see David Hilbert, “Mathematical problems”, Bul-
letin of the American Mathematical Society 37,
2000, 407-436).

While this article was in proof, Philip Horowitz
sent me his unpublished translation of the letter,
which I had not known of before. I am grateful to
Horowitz for allowing me to use his translation to
improve mine in a number of places.

—Martin H. Krieger

Martin H. Krieger is professor of planning at the Univer-
sity of Southern California. His email address is
krieger@usc.edu.

This article is excerpted from the book Doing
Mathematics (2003) by Martin H. Krieger. It is
reprinted with permission from World
Scientific Publishing.
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March 26, 1940

Some thoughts I have had of late, concerning my
arithmetic-algebraic work, might pass for a re-
sponse to one of your letters, where you asked me
what is of interest to me in my work. So, I decided
to write them down, even if for the most part they
are incomprehensible to you.

The thoughts that follow are of two sorts. The
first concerns the history of the theory of numbers;
you may be able to understand the beginning; you
will understand nothing of what follows that. The
other concerns the role of analogy in mathemati-
cal discovery, examining a particular example, and
perhaps you will be able to profit from it. I advise
you that all that concerns the history of mathe-
matics in what follows is based on insufficient
scholarship, and is derived from an a priori re-
construction, and even if things ought to have 
happened this way (which is not proven here), I 
cannot say that they did happen this way. In 
mathematics, moreover, as much as in any other
field, the line of history has many turning points.

With these precautions out of the way, let us start
with the history of the theory of numbers. It is dom-
inated by the law of reciprocity. This is Gauss’s the-
orema aureum (?I need to refresh my memory of
this point: Gauss very much liked names of this sort,
he had as well a theorema egregium, and I no
longer know which is which), published by him in
his Disquisitiones in 1801, which was only begin-
ning to be read and understood toward 1820 by
Abel, Jacobi, and Dirichlet, and which remained 
as the bible of the number theorist for almost 
a century. But in order to say what this law is, 
whose statement was already known to Euler and
Legendre [Euler had found it empirically, as did Le-
gendre; Legendre claimed more in giving a proof
in his Arithmetic, which apparently supposed the
truth of something which was approximately as dif-
ficult as the theorem; but he complained bitterly
of the “theft” committed by Gauss, who, without
knowing Legendre, found, empirically as well, the
statement of the theorem, and gave two very beau-
tiful proofs in his Disquisitiones, and later up to 4
or 5 others, all based on different principles.]: it is
necessary to backtrack a bit in order to explain the
law of reciprocity.

Algebra began with the task of finding, for given
equations, solutions within a given domain, which
might be the positive numbers, or the reals, or
later the complex numbers. One had not yet con-
ceived of the ingenious idea, characteristic of mod-
ern algebra, of starting with an equation and then
constructing ad hoc a domain in which it has a so-
lution (I have a fair amount to say about this idea,
which has shown itself to be extremely productive;
moreover, Poincaré has somewhere or other some
beautiful thoughts, a propos of the solution by

radicals, on the general processes whereby, after
having searched for a long time and in vain to
solve this problem by a foreordained procedure,
mathematicians inverted the question and began
to develop adequate methods). The problem had
been solved subsequently for all second-degree
equations which had solutions in negative numbers;
when the equation had no solution, the usual for-
mula having led to the imaginaries, about which
there remained many doubts (and it was thus until
Gauss and his contemporaries); just because of
the suspicion of these imaginaries, the so-called
Cardan and Tartaglia formula for the solution of
the equation of the 3rd degree in radicals pro-
duced some discomfort. Be that as it may, when
Gauss began the Disquisitiones with the notion of
congruences for building up his systematic expo-
sition, it was also natural to solve congruences of
the second degree, after having solved those of the
first degree (a congruence is a relationship among
integers a, b,m, which is written a ≡ b modulo m,
abbreviated a ≡ b (mod m) or a ≡ b(m) , meaning
that a and b have the same remainder in division
by m, or a− b is a multiple of m; a congruence of
the first degree is ax + b ≡ 0(m), of the second de-
gree is ax2 + bx + c ≡ 0(m) , etc.); the latter lead (by
the same procedure through which one reduces an
ordinary second degree equation to an extraction
of roots) to x2 ≡ a (mod m) ; if the latter has a so-
lution, one says that a is a quadratic residue of m,
if otherwise, a is a non-residue (1 and −1 are
residues of 5, 2 and −2 are non-residues). If these
notions were around for some time before Gauss,
it was not necessary that they be associated with
a notion of congruence; for the notions presented
themselves in diophantine problems (solutions of
equations in integers or rationals) which were the
object of Fermat’s most important work; the first
degree diophantine equations, ax + by = c , are
equivalent to first degree congruences
ax ≡ c (mod b) ; the second degree equations of
the type studied by Fermat (decompositions in
terms of squares, x2 + y2 = a , and equations
x2 + ay2 = b , etc.) are not equivalent to congru-
ences, but congruences and the distinction be-
tween residues and non-residues play a large role
in his work, in truth they did not appear explicitly
in Fermat’s work (it is true that we do not possess
his proofs, but he seems to have employed other
principles about which we can make some ap-
proximate inferences), but which, as far as I know
(based on second-hand evidence) were already well
in evidence in Euler.

The law of reciprocity permits us to know, given
two prime numbers p, q, whether q is or is not a
(quadratic) residue of p, if one knows already
whether, (a) p is or is not a residue of q; (b) if p and
q are respectively congruent to 1 or −1 modulo 4
(or for q = 2, if p is congruent to 1, 2, 5, or 7,
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modulo 8). For example, 53 ≡ 5 ≡ 1 (mod 4), and
53 is not a residue of 5, therefore 5 is not a residue
of 53. Since the problem for non-primes leads nat-
urally to the problem for primes, this law gives an
easy means of determining if a is or is not a residue
of b as soon as one knows their prime factoriza-
tion. But this “practical” application is insignificant.
What is crucial is there be laws. It is obvious that
the residues of m form an arithmetic progression
of increment m, for if a is a residue, it is the same
for all mx + a ; however it is beautiful and surpris-
ing that the prime numbers p for which m is a
residue are precisely those which belong to certain
arithmetic progressions of increment 4m ; for the
others m is a non-residue; and what is even more
amazing, if one recalls on the other hand that the
distribution of prime numbers in any given arith-
metic progression Ax + B (which one knows from
Dirichlet will have an infinity of primes as long as
A and B are relatively prime) does not follow any
other known law other than a statistical one (the
approximate number of primes which are ≤ T ,
which, for a given A , is the same for any B prime
to A ) and appears, for each concrete case that one
examines numerically, to be as “random” as a list
of numbers generated by a roulette wheel.

The rest of the Disquisitiones contains above all:
1. the definitive theory of quadratic forms in 2

variables, ax2 + bxy + cy2, having among other
consequences the complete resolution of the prob-
lem which gave birth to the theory: to know if
ax2 + bxy + cy2 =m has solutions in integers.

2. the study of the n-th roots of unity, and, as
we would say, the Galois theory of the fields given
by these roots and their subfields (all without using
imaginaries, nor other functions other than the
trigonometric ones, and ending up with the nec-
essary and sufficient conditions for the regular
n-gon being constructible by ruler and compass),
which appeared as an application of earlier work
in the book, as preliminary to the solution of con-
gruences, on the multiplicative group of numbers
modulo m. I will not speak of the theory of qua-
dratic forms of more than two variables since it has
had little influence until now on the general
progress of the theory of numbers.

Gauss’s subsequent research was to study cubic
and biquadratic residues (defined by x3 ≡ a and
x4 ≡ a (mod m) ); the latter are a bit simpler; Gauss
recognized that there were no simple results to be
hoped for by staying within the domain of ordinary
integers and it was necessary to employ “complex”
integers a + b

√
−1 (a propos of which he invented,

at about the same time as Argand, the geometric
representation of these numbers by points on a
plane, through which all doubts were dissipated
about the “imaginaries”). For the cubic residues, it
was necessary to have recourse to the “integers”
a + bj , a and b integers, j = the cube root of 1.

Gauss recognized as well, and even thought (there
is a trace of this in his notes) of studying the do-
main of the n-th roots of unity, at the same time
thinking to try to provide a proof of “Fermat’s the-
orem” (xn + yn = zn is impossible), which he sus-
pected would be a simple application (that is what
he said) of such a theory. But then he encountered
the fact that there was no longer a unique prime
decomposition (except for i and j , as 4th and 3rd
roots of unity, and I believe also for the 5th roots).

There are many separate threads; it would take
125 years to unravel them and assemble them
anew into a new skein. The great names here are
Dirichlet (who introduced the zeta functions or 
L-functions into the theory of quadratic forms,
through which he proved among other things that
every arithmetic progression contains an infinity
of primes; but above all, since that time we have
only needed to follow his model in order to apply
these functions to the theory of numbers), Kum-
mer (who elucidated the fields generated by roots
of unity by inventing “ideal” factors, and went far
enough in the theory of these fields in order to ob-
tain some results on Fermat’s theorem), Dedekind,
Kronecker, Hilbert, Artin. Here is a sketch of the
picture that results from their efforts.

I cannot say anything without using the notion
of a field, which according to its definition, if one
limits oneself to its definition, is simple (it is a set
where one has in effect the usual “four elementary
{[arithmetic]} operations,” these having the usual
properties of commutativity, associativity, dis-
tributivity); the algebraic extension of a field k (it
is a field k′ , containing k, of which all elements are
roots of an algebraic equation αn + c1αn−1 + · · ·
+cn−1α + cn = 0 with coefficients c1, . . . , cn in field
k); and finally the abelian extension of a field k ;
that means an algebraic extension of k whose
Galois group is abelian, that is to say commutative.
It would be illusory to give a fuller explanation of
abelian extensions; it is more useful to say that they
are almost the same thing, but not the same thing,
as an extension of k obtained by adjoining n-th
roots (roots of equations xn = a, a in k ); if k con-
tains for whatever integer n, n n-th distinct roots
of unity then it is exactly the same thing (but most
often one is interested in fields which do not have
this property). If k contains n n-th roots of unity
(for a given n), then all abelian extensions of de-
gree n (that is to say, having been generated by the
adjunction to k of one root of an equation of de-
gree n) can be generated by m-th roots (where m
is a divisor of n). Abel discovered this idea in his
research on equations solvable by radicals (Abel did
not know of the notion of the Galois group, which
clarifies all these questions). It is impossible to
say here how Abel’s research was influenced by
Gauss’s results (see above) on the division of the
circle and the n-th roots of unity (which lead to an



MARCH 2005 NOTICES OF THE AMS 337

abelian extension of the field of rationals), nor
what connections they had with the work of 
Lagrange, with Abel’s own work on elliptic functions
(where the division takes place, from Abel’s point
of view, in the abelian equation [the roots gener-
ating abelian extensions], results which were already
known to Gauss, but not published, at the very
least for the particular case of the so-called lem-
niscate) and abelian functions, or with Jacobi’s
work on the same subject (the same Jacobi who in-
vented “abelian functions” in the modern sense and
gave them that name, see his memoir “De tran-
scendentibus quibusdam abelianis”), nor with
Galois’s work (which was only understood little by
little, and much later; there is no trace in Riemann
that he had learned from it, although (this is most
remarkable) Dedekind, Privatdozent in Göttingen
and close friend of Riemann, had since 1855 or 6,
when Riemann was at the height of his powers,
given a course on abstract groups and Galois the-
ory).

To know if a (not a multiple of p) is a residue
of p (prime), is to know whether x2 − a = py has
solutions; in passing to the field extension of 

√
a ,

one gets (x−√a)(x +
√
a) = py, so in this field p is

not prime to x−√a, which, nevertheless, it does
not divide. In the language of ideals, that is as
much to say that in this field p is not prime, but
may be decomposed into two prime ideal factors.
Thus one is presented with a problem: k being a
field (here the field of rationals), k′ (here, k′ is k
adjoined by 

√
a ) an algebraic extension of k , to

know if a prime ideal (here, a number) in k re-
mains prime in k′ or if it decomposes into prime
ideals, and how: a being given, the law of reci-
procity points to those p for which a is the residue,
and so resolves the problem for this particular
case. Here and in all of what follows, k , k′ , etc. are
fields of algebraic numbers (roots of algebraic
equations with rational coefficients).

When it is a question of biquadratic residues, one
works with a field generated by 4

√
a; but such a field

is not in general an abelian extension of the “base
field” k unless the adjunction of a 4th root of a
brings along at the same time three others (namely,
if α is one of them, the others are −α, iα, and
−iα), this requires that k contains i =

√
−1; one

would have nothing so simple if one takes as the
base field the rationals, but all goes well if one takes
(as did Gauss) the field of “complex rationals”
r + si (r , s rational). The same is the case for cubic
residues. In these cases, one studies the decom-
position, in the field k′ obtained by the adjunction
of a 4th (or, respectively, 3rd) root, starting with a
base field k containing i (respectively, j), of an
ideal (here, a number) prime in k .

So, this problem of the decomposition in k′ of
ideals of k is completely resolved when k′ is an
abelian extension of k , and the solution is very

simple and it generalizes the law of reciprocity in
a straightforward and direct manner. For the arith-
metic progression in which the prime numbers are
found, with residue a, one substitutes ideal classes
{[des classes d’idéaux]}, the definition of which is
simple enough. The classes of quadratic forms in
two variables, studied by Gauss, correspond to a
particular case of these classes of ideals, as was rec-
ognized by Dedekind; Dirichlet’s analytic methods
(using zeta or L-functions) for studying quadratic
forms, is translated readily to the more general
classes of ideals that had been considered in this
theory; for example, for the theorem on arithmetic
progressions there corresponds the following re-
sult: in each of these ideal classes in k , there is an
infinity of prime ideals, therefore an infinity of
ideals of k which may be factored in a given fash-
ion in k′ . Finally, the decomposition of ideals of k
into classes determines k′ in a unique way: and, by
the theorem called the law of Artin reciprocity (be-
cause it implicitly contains Gauss’s law and all
known generalizations), there is a correspondence
(an “isomorphism”) of the Galois group of k′ with
respect to k , and the “group” of ideal classes in k .
Thus, once one knows what happens in k , one has
complete knowledge of abelian extensions of k .
This does not mean there is nothing more to do
about abelian extensions (for example, one can
generate these by the numbers exp(−2πi/n) if k
is the field of rationals, thus by means of the ex-
ponential function; if k is the field generated by√−a , a a positive integer, one knows how to gen-
erate these extensions by means of elliptic func-
tions or their close relatives; but one knows noth-
ing for all other k). But these questions are well
understood and one can say that everything that
has been done in arithmetic since Gauss up to re-
cent years consists in variations on the law of rec-
iprocity: beginning with Gauss’s law; and ending
with and crowning the work of Kummer, Dedekind,
Hilbert, is Artin’s law, it is all the same law. This is
beautiful, but a bit vexing. We know a little more
than Gauss, without doubt; but what we know more
(or a bit more) is just that we do not know more.

This explains why, for some time, mathemati-
cians have focused on the problem of the non-
abelian decomposition laws (problems concerning
k, k′, when k′ is any nonabelian extension of k ; we
remain still within the realm of a field of algebraic
numbers). What we know amounts to very little; and
that little bit was found by Artin. To each field is
attached a zeta function, discovered by Dedekind;
if k′ is an extension of k , the zeta function at-
tached to k′ decomposes into factors; Artin dis-
covered this decomposition; when k′ is an abelian
extension of k, these factors are identical to Dirich-
let’s L-functions, or rather to their generalization
for fields k and classes of ideals in k, and the iden-
tity between these factors and these functions is
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(in other words) Artin’s reciprocity law; and this is
the way Artin first arrived at this law as a bold con-
jecture (it seems that Landau made fun of him),
some time before being able to prove it (a curious
fact, his proof is a simple translation of another re-
sult by Tchebotareff that had just been published,
which he cited; however it is Artin, justly having it
bear his name, who had the glory of discovering
it). In other words, the law of reciprocity is noth-
ing other than the rule for forming the coefficients
of the series that represents the Artin factors (which
are called “Artin L-functions”). As the decomposi-
tion into factors remains valid if k′ is a non-abelian
extension, it is these factors, for these “non-abelian
L-functions”, that it is natural to tackle in order to
discover the law of formation of their coefficients.
It is worth noting that, in the abelian case, it is
known that the Dirichlet L-functions, and conse-
quently the Artin L-functions, which scarcely dif-
fer from them, are entire functions. One knows
nothing of this sort for the general case: it is there,
as already indicated by Artin, that one might find
an opening for an attack (please excuse the
metaphor): since the methods known from arith-
metic do not appear to permit us to show that the
Artin functions are entire functions, one could
hope that in proving it one could open a breach
which would permit one to enter this fort (please
excuse the straining of the metaphor).

Since the opening is well defended (it had de-
fied Artin), it is necessary to inspect the available
artillery and the means of tunneling under the fort
(please excuse, etc.). {The reader who has the pa-
tience to get to the end will see that as artillery, I
make use of a trilingual inscription, dictionaries,
adultery, and a bridge which is a turntable {[or a
turnbridge]}, not to speak of God and the devil, who
also play a role in this comedy.} And here is where
the analogy that has been referred to since the be-
ginning finally makes its entrance, like Tartuffe ap-
pearing only in the third act.

It is widely believed that there is nothing more
to do about algebraic functions of one variable, be-
cause Riemann, who had discovered just about all
that we know about them (excepting the work on
uniformization by Poincaré and Klein, and that of
Hurwitz and Severi on correspondences), left us no
indication that there might be major problems that
concern them. I am surely one of the most knowl-
edgeable persons about this subject; mainly because
I had the good fortune (in 1923) to learn it directly
from Riemann’s memoir, which is one of the great-
est pieces of mathematics that has ever been writ-
ten; there is not a single word in it that is not of
consequence. The story is not closed, however; for
example, see my memoir in the Liouville Journal
(see the introduction to this paper). {[“Généralisa-
tion des fonctions abéliennes,” Journal de Mathé-
matiques Pures et Appliquées IX 17 (1938): 47–87,

pp. 47–49.]} Of course, I am not foolish enough to
compare myself to Riemann; but to add a little bit,
whatever it is, to Riemann, that would already be,
as they say in Greek, to do something {[faire quelque
chose]}, even if in order to do it you have the silent
help of Galois, Poincaré and Artin.

Be that as it may, in the time (1875 to 1890) when
Dedekind created his theory of ideals in the field
of algebraic numbers (in his famous “XI Supple-
ments”: Dedekind published four editions of Dirich-
let’s Lectures on the theory of numbers, given at
Göttingen during the last years of Dirichlet’s life,
and admirably edited by Dedekind; among the ap-
pendices or “Supplements” of these lectures, which
contain nothing indicating they are Dedekind’s
original work, and which indeed they are only in
part, beginning with the 2nd edition there are three
entirely different expositions of the theory of ideals,
one for each edition), he discovered that an anal-
ogous principle permitted one to establish, by
purely algebraic means, the principal results, called
“elementary”, of the theory of algebraic functions
of one variable, which were obtained by Riemann
by transcendental {[analytic]} means; he published
with Weber an account of the consequences of this
principle. Until then, when the topic of algebraic
functions arose, it concerned a function y of a
variable x, defined by an equation P (x, y) = 0 where
P is a polynomial with complex coefficients. This lat-
ter point was essential in order to apply Riemann’s
methods; with those of Dedekind, in contrast, those
coefficients could come from an arbitrary field
(called “the field of constants”), since the argu-
ments were purely algebraic. This point will be im-
portant shortly.

The analogies that Dedekind demonstrated were
easy to understand. For integers one substituted
polynomials in x , to the divisibility of integers cor-
responded the divisibility of polynomials (it is well
known, and it is taught even in high schools, that
there are other such analogies, such as for the de-
rivation of the greatest common divisor), to the ra-
tionals correspond the rational fractions {[?of poly-
nomials, or the rational functions]}, and to algebraic
numbers correspond the algebraic functions. At
first glance, the analogy seems superficial; to the
most profound problems of the theory of numbers
(such as the decomposition into prime ideals) there
would seem to be nothing corresponding in alge-
braic functions, and inversely. Hilbert went fur-
ther in figuring out these matters; he saw that, for
example, the Riemann-Roch theorem corresponds
to Dedekind’s work in arithmetic on the ideal called
“the different”; Hilbert’s insight was only published
by him in an obscure review (Ostrowski pointed me
to it), but it was already transmitted orally, much
as other of his ideas on this subject. The unwrit-
ten laws of modern mathematics forbid writing
down such views if they cannot be stated precisely
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nor, all the more, proven. To tell the truth, if this
were not the case, one would be overwhelmed by
work that is even more stupid and if not more use-
less compared to work that is now published in the
journals. But one would love it if Hilbert had writ-
ten down all that he had in mind.

Let us examine this analogy more closely. Once
it is possible to translate any particular proof from
one theory to another, then the analogy has ceased
to be productive for this purpose; it would cease
to be at all productive if at one point we had a mean-
ingful and natural way of deriving both theories
from a single one. In this sense, around 1820,
mathematicians (Gauss, Abel, Galois, Jacobi) per-
mitted themselves, with anguish and delight, to be
guided by the analogy between the division of the
circle (Gauss’s problem) and the division of ellip-
tic functions. Today, we can easily show that both
problems have a place in the theory of abelian
equations; we have the theory (I am speaking of a
purely algebraic theory, so it is not a matter of num-
ber theory in this case) of abelian extensions. Gone
is the analogy: gone are the two theories, their con-
flicts and their delicious reciprocal reflections,
their furtive caresses, their inexplicable quarrels;
alas, all is just one theory, whose majestic beauty
can no longer excite us. Nothing is more fecund
than these slightly adulterous relationships; noth-
ing gives greater pleasure to the connoisseur,
whether he participates in it, or even if he is an his-
torian contemplating it retrospectively, accompa-
nied, nevertheless, by a touch of melancholy. The
pleasure comes from the illusion and the far from
clear meaning; once the illusion is dissipated, and
knowledge obtained, one becomes indifferent at the
same time; at least in the Gitâ there is a slew of
prayers (slokas) on the subject, each one more
final than the previous ones. But let us return to
our algebraic functions.

Whether it is due to the Hilbert tradition or to
the attraction of this subject, the analogies be-
tween algebraic functions and numbers have been
on the minds of all the great number theorists of
our time; abelian extensions and abelian functions,
classes of ideals and classes of divisors, there is 
material enough for many seductive mind-games,
some of which are likely to be deceptive (thus the
appearance of theta functions in one or another 
theory). But to make something of this, two more
recent technical contrivances were necessary. On
the one hand, the theory of algebraic functions, 
that of Riemann, depends essentially on the idea
of birational invariance; for example, if we are 
concerned with the field of rational functions of
one variable x , one introduces (initially, I take 
the field of constants to be the complex numbers)
as the points corresponding to the various complex
values of x , including the point at infinity, denoted
symbolically by x =∞ , and defined by 1/x = 0; the

fact that this point plays exactly the same role as
all the others is essential. Let R(x) =
a(x−α1) . . . (x−αm)/(x− β1) . . . (x− βn) be a ra-
tional fraction, with its decomposition into fac-
tors as indicated; it will have zeros α1, . . . , αm, the
poles β1, . . . , βn, and the point at infinity, which is
zero if n > m, and is infinite if n < m. In the do-
main of rational numbers, one always has a de-
composition into prime factors, r = p1 . . .
pm/q1 . . . qn , each prime factor corresponding to
a binomial factor (x−α) ; but nothing apparently
corresponds to the point at infinity. If one models
the theory of functions on the theory of algebraic
numbers, one is forced to give a special role, in the
proofs, to the point at infinity, sweeping the prob-
lem into a corner, if we are to have a definitive state-
ment of the result: this is just what Dedekind-
Weber did, this is just what was done by all who
have written in algebraic terms about algebraic
functions of one variable, until now, I was the first,
two years ago, to give (in Crelle’s Journal {[“Zur al-
gebraischen Theorie der algebraischen Funktio-
nen”, 179 (1938), pp. 129–133]}) a purely algebraic
proof of the main theorems of this theory, which
is as birationally invariant (that is to say, not at-
tributing a special role to any point) as were Rie-
mann’s proofs; and that is of more than method-
ological importance. {Actually, I was not quite the
first. The proofs, to be sure very roundabout, of the
Italian school (Severi above all) are, in principle, of
the same sort, although drafted in classical lan-
guage.} However fine it is to have these results for
the function field, it seems that one has lost sight
of the analogy. In order to reestablish the analogy,
it is necessary to introduce, into the theory of al-
gebraic numbers, something that corresponds to
the point at infinity in the theory of functions.
That is what one achieves, and in a very satisfac-
tory manner, too, in the theory of “valuations”.
This theory, which is not difficult but I cannot ex-
plain here, depends on Hensel’s theory of p-adic
fields: to define a prime ideal in a field (a field given
abstractly) is to represent the field “isomorphi-
cally” in a p-adic field: to represent it in the same
way in the field of real or complex numbers, is (in
this theory) to define a “prime ideal at infinity”. This
latter notion is due to Hasse (who was a student
of Hensel), or perhaps Artin, or to both of them. If
one follows it in all of its consequences, the theory
alone permits us to reestablish the analogy at many
points where it once seemed defective: it even per-
mits us to discover in the number field simple and
elementary facts which however were not yet seen
(see my 1939 article in la Revue Rose which con-
tains some of the details {[“Sur l’analogie entre les
corps de nombres algébriques et les corps de fonc-
tions algébriques,’’ Revue Scientifique 77 (1939)
104–106, and the comments in the Oeuvres Scien-
tifiques, volume 1, pp. 542–543]}). It is not so much
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this point of view that has been used up to now for
giving satisfactory statements of the principal
results of the theory of abelian extensions (I for-
got to say that this theory is most often called
“class field theory”). An important point is that the
p-adic field, or respectively the real or complex field,
corresponding to a prime ideal, plays exactly the
role, in arithmetic, that the field of power series in
the neighborhood of a point plays in the theory of
functions: that is why one calls it a local field.

With all of this, we have made great progress;
but it is not enough. The purely algebraic theory
of algebraic functions in any arbitrary field of con-
stants is not rich enough so that one might draw
useful lessons from it. The “classical” theory (that
is, Riemannian) of algebraic functions over the
field of constants of the complex numbers is infi-
nitely richer; but on the one hand it is too much
so, and in the mass of facts some real analogies be-
come lost; and above all, it is too far from the the-
ory of numbers. One would be totally obstructed
if there were not a bridge between the two.

And just as God defeats the devil: this bridge ex-
ists; it is the theory of the field of algebraic func-
tions over a finite field of constants (that is to say,
a finite number of elements: also said to be a Ga-
lois field, or earlier “Galois imaginaries” because
Galois first defined them and studied them; they
are the algebraic extensions of a field with p ele-
ments formed by the numbers 0,1,2, . . . , p− 1
where one calculates with them modulo p,p =
prime number). They appear already in Dedekind.
A young student in Göttingen, killed in 1914 or
1915, studied, in his dissertation that appeared in
1919 (work done entirely on his own, says his
teacher Landau), zeta functions for certain of these
fields, and showed that the ordinary methods of
the theory of algebraic numbers applied to them.
Artin, in 1921 or 1922, took up the question again,
again from the point of view of the zeta function;
F. K. Schmidt made the bridge between these re-
sults and those of Dedekind-Weber, in the process
of providing a definition of the zeta function that
was birationally invariant. In the last few years,
these fields were a favorite subject of Hasse and
his school; Hasse made a number of beautiful con-
tributions.

I spoke of a bridge; it would be more correct to
speak of a turntable {[?turnbridge]}. On one hand the
analogy with number fields is so strict and obvious
that there is neither an argument nor a result in arith-
metic that cannot be translated almost word for
word to the function fields. In particular, it is so for
all that concerns zeta functions and Artin functions;
and there is more: Artin functions in the abelian case
are polynomials, which one can express by saying that
these fields furnish a simplified model of what hap-
pens in number fields; here, there is thus room to
conjecture that the non-abelian Artin functions are

still polynomials: that is just what occupies me at
the moment, all of this permits me to believe that
all results for these fields could inversely, if one
could formulate them appropriately, be translated
to the number fields.

On the other hand, between the function fields
and the “Riemannian” fields, the distance is not so
large that a patient study would not teach us the
art of passing from one to the other, and to profit
in the study of the first from knowledge acquired
about the second, and of the extremely powerful
means offered to us, in the study of the latter,
from the integral calculus and the theory of ana-
lytic functions. That is not to say that at best all
will be easy; but one ends up by learning to see
something there, although it is still somewhat con-
fused. Intuition makes much of it; I mean by this
the faculty of seeing a connection between things
that in appearance are completely different; it does
not fail to lead us astray quite often. Be that as it
may, my work consists in deciphering a trilingual
text {[cf. the Rosetta Stone]}; of each of the three
columns I have only disparate fragments; I have
some ideas about each of the three languages: but
I know as well there are great differences in mean-
ing from one column to another, for which noth-
ing has prepared me in advance. In the several
years I have worked at it, I have found little pieces
of the dictionary. Sometimes I worked on one col-
umn, sometimes under another. My large study
that appeared in the Liouville journal made nice ad-
vances in the “Riemannian” column; unhappily, a
large part of the deciphered text surely does not
have a translation in the other two languages: but
one part remains that is very useful to me. At this
moment, I am working on the middle column. All
of this is amusing enough. However, do not imag-
ine that this work on several columns is a frequent
occasion in mathematics; in such a pure form, this
is almost a unique case. This sort of work suits me
particularly; it is unbelievable at this point that
distinguished people such as Hasse and his stu-
dents, who have made this subject the matter of
their most serious thoughts over the years, have,
not only neglected, but disdained to take the Rie-
mannian point of view: at this point they no longer
know how to read work written in Riemannian (one
day, Siegel made fun of Hasse, who had declared
himself incapable of reading my Liouville paper),
and that they have rediscovered sometimes with a
great deal of effort, in their dialect, important re-
sults that were already known, much as the ideas
of Severi on the ring of correspondences were re-
discovered by Deuring. But the role of what I call
analogies, even if they are not always so clear, is
nonetheless important. It would be of great inter-
est to study these things for a period for which we
are well provided with texts; the choice would be
delicate.
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P.S. I send this to you without rereading …I fear
…having made more of my research than I intended;
that is, in order to explain (following your request)
how one develops one’s research, I have been fo-
cusing on the locks I wish to open. In speaking of
analogies between numbers and functions, I do
not want to give the impression of being the only
one who understands them: Artin has thought pro-
foundly about them as well, and that is to say a
great deal. It is curious to note that one work
(signed by a student of Artin who is not otherwise
known, which without proof to the contrary, allows
one to presume that Artin is the real source) ap-
peared 2 or 3 years ago which gives perhaps the
only example of a result from the classical theory,
obtained by a double translation, starting with an
arithmetic result (on abelian zeta functions), and
which is novel and interesting. And Hasse, whose
combination of patience and talent make him a kind
of genius, has had very interesting ideas on this sub-
ject. Moreover (a characteristic trait, and which
would be sympathetic to you, of the school of mod-
ern algebra) all of this is spread by an oral and epis-
tolary tradition more than by orthodox publications,
so it is difficult to make a history of all of it in de-
tail.

You doubt and with good reason that modern
axiomatics will work on difficult material. When I
invented (I say invented, and not discovered) uni-
form spaces, I did not have the impression of work-
ing with resistant material, but rather the impres-
sion that a professional sculptor must have when
he plays by making a snowman. It is hard for you
to appreciate that modern mathematics has be-
come so extensive and so complex that it is es-
sential, if mathematics is to stay as a whole and not
become a pile of little bits of research, to provide
a unification, which absorbs in some simple and
general theories all the common substrata of the
diverse branches of the science, suppressing what
is not so useful and necessary, and leaving intact
what is truly the specific detail of each big prob-
lem. This is the good one can achieve with ax-
iomatics (and this is no small achievement). This
is what Bourbaki is up to. It will not have escaped
you (to take up the military metaphor again) that
there is within all of this great problems of strat-
egy. And it is as common to know tactics as it is rare
(and beautiful, as Gandhi would say) to plan strat-
egy. I will compare (despite the incoherence of the
metaphor) the great axiomatic edifices to commu-
nication at the rear of the front: there is not much
glory in the Commissariat and logistics and trans-
port, but what would happen if these brave folks
did not consecrate themselves to secondary work
(where, moreover, they readily earn their subsis-
tence)? The danger is only too great that various
fronts end up, not by starving (the Council for Re-
search is there for that), but by paying insufficient

attention to each other and so waste their time,
some like the Hebrews in the desert, others like Han-
nibal at Capua {[where the troops were said to have
been entranced by the place]}. The current organi-
zation of science does not take into account (un-
happily, for the experimental sciences; in mathe-
matics the damage is much less great) the fact that
very few persons are capable of grasping the en-
tire forefront of science, of seizing not only the
weak points of resistance, but also the part that is
most important to take on, the art of massing the
troops, of making each sector work toward the
success of the others, etc. Of course, when I speak
of troops the term (for the mathematician, at least)
is essentially metaphoric, each mathematician being
himself his own troops. If, under the leadership
given by certain teachers, certain “schools” have no-
table success, the role of the individual in mathe-
matics remains preponderant. Moreover, it is be-
coming impossible to apply a view of this sort to
science as a whole; it is not possible to have some-
one who can master enough of both mathematics
and physics at the same time to control their de-
velopment alternatively or simultaneously; all at-
tempts at “planning” become grotesque and it is nec-
essary to leave it to chance and to the specialists.


