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Abstract

We survey the problem of existence and computation of power bases in number fields.

1 Preliminaries

A number fieldK has apower basis(or in some literature, apower integral basis) if its ring of integers
is generated by a single element; i.e.Ok = Z[α]. It is a long standing open problem in algebraic
number theory to characterize all number fields with a power basis; and, if one exists, a list of potential
generators. This in turn is a subproblem of characterizing all elements of a given index in a number
field. Note that an algebraic integer has index 1 if and only if it is a generator for a power basis ofOK .

One problem with the unity of existing literature on this subject is many equivalent formulations of
the problem (for one, the existence of a power basis is labelledmonogeneity). This is the unfortunate
(or fortunate?) result of the widespread interest of the topic.

2 Motivating Problems

It is a well-known result that at least one integral (not necessarily power) basis exists for a number field
K. Suppose it has the form{1,w2, . . . ,wn}. The discriminant of the linear forml(x) = x2w2 +x3w3 +
. . .+ xnwn can be then expressed as(I(x2, . . . ,xn))2Disc(K), whereDisc(K) is the field discriminant
andI is called theindex formcorresponding to the given integral basis.

The problem of determining all elements of indexi is equivalent to solving theindex form equation

|I(x2, . . . ,xn)|= i. (1)

So in particular, the existence of a power basis is equivalent to the existence of a solution to
|I(x2, . . . ,xn)|= 1.

Let K be an algebraic number field, andN the norm function. The pair(α,N0)1, whereN0 =
{0,1, . . . , |N(α)| − 1} is a canonical number system (CNS)in OK for an algebraic integerα if each
algebraic integer can be represented uniquely as

a0 +a1α+ . . .+al αl , (2)

1Note that the first decides the second, so an ordered pair is really not necessary. This, however, seems to be the convention.
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ai ∈ N0.
The most important connection to our problem is in [20], where Kovács claims2:

Theorem 1. In OK , where K is a number field of degree≥ 3, there exists a CNS if and only if a power
basis exists.

There is already some possible problems here with two different sets of mathematical language.
William Gilbert uses the same definition as above and calls a CNS aradix representation(see [14]),
which has its own uses in fractal tilings and other computational topics.

Some further confusion arises with a more modern and general definition of a CNS, introduced
by Attila Petḧo: let P∈ Z[x] be monic,N = |P(0)| > 1. Then(P,N), whereN = {0,1, . . . ,N−1}, is
called a canonical number system if every non-zero element ofZ[x]/PZ[x] can be written uniquely as
a0+a1x+ . . .+al xl , whereai ∈N andal is nonzero. In this case,P is called a CNS polynomial, and it is
possible that much of the work on CNS polynomials with this definition (usually done independently
in the field of computer science) may be applicable to its special case in algebraic number theory.
However, the two fields are not working in seclusion from each other. Akiyama et al. ([1]) gives a
survey of the topic of canonical number systems with some reference to algebraic number fields.

The topic of power bases is widely-studied, with many deep and difficult aspects. We will try to
give a survey of results and work through a couple of examples and theorems as length and difficulty
permits.

3 Canonical Examples

The study of the existence of a power basis is trivialized if a power basis always exists. Indeed, one
might be tempted to believe that any number field is monogenic after showing thatK = Q(

√
d) always

has a power basis ford prime, as almost any algebraic number theory text will prove. In fact, there is
a generalization for any quadratic extension:

Theorem 2. For d squarefree and K= Q(
√

d), a power basis always exists of the formZ[(1+
√

d)/2]
when Disc(K) ≡ 1 (mod 4) andZ[

√
d] otherwise. In particular, the first case happens exactly when

d≡ 1 (mod 4).

Proof. The proof is similar to the prime case and does not offer real new insight. Many algebraic
number theory texst such as [23] will do this in full.

Of course, it is not true that a power basis always exists. A classical counterexample is Dedekind’s
exampleQ(a), wherea has the minimal polynomialx3 +x2−2x+8.

Proposition 1. Q(a), a3 +a2−2a+8 = 0, has no power basis.

Proof. There are many ways of seeing this proof. They mostly all fall under the same category: sup-
pose that there is a power basisZ[b]. Then it has index 1 inOK . Thus, the factoring of 2OK corre-
sponds to the factoring ofb’s minimal polynomial inF2[x]. But note that 2OK splits completely as
idealsp1p2p3 (symbolic calculating software such as PARI or MAGMA does this easily).b has degree
at most 3, so the factoring must correspond to 3 distinct linear factors inF2[x]. But there are only two
irreducible linear polynomials inF2[x], a contradiction.

2The uses of the word “claims” in this paper does not suggest that the associated sources are dubious. Rather, due to
availability and/or language difficulties, the author was only able to read abstracts or reviews of the associated papers, mostly
through math.sci.net.
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4 Biquadratic Fields

The existence of a power basis quickly gets difficult as the degree of the extension rises above 2. While
a natural next step would be to look at cubic extensions, there is the clear possible benefit that we might
be able to generalize quadratic extension results to biquadratic extensions.

Unfortunately, just because quadratic extensions always have a power basis, it is not necessarily
the case for biquadratic extensions. We start with an example.

Proposition 2. The ring of integers ofQ(
√

x,
√

y) is not monogenic if x≡ y≡ 1 (mod 3).

Proof. For the first proof, we generalize and slightly improve on a sketched solution by J. Milne ([22]),
who proves the special case for(x,y) = (7,10):

First considera1 = (1+
√

x)(1+
√

y), a2 = (1+
√

x)(1−√y), a3 = (1−
√

x)(1+
√

y), a4 = (1−√
x)(1−√y). We know that the trace of(ai)n is an

1 +an
2 +an

3 +an
4. Note that

a2
1 ≡ (1+x+2

√
x)(1+y+2

√
y) (3)

≡ 4(1+
√

x)(1+
√

y) (4)

≡ (1+
√

x)(1+
√

y) (5)

≡ a1 (mod 3). (6)

This means that when taken(mod 3):

Tr((ai)n) ≡ an
1 +an

2 +an
3 +an

4 (7)

≡ a1 +a2 +a3 +a4 (8)

≡ 1(mod3) (9)

.
Span

i /3 is not an algebraic integer. If it were, then the minimal polynomial ofan
i would have the

second term, or trace, being a multiple of 3. Explicit computation gives thataia j for any i 6= j is
divisible by 3. A quick way to see this is to realize that the product either contains a term of the form
(1+

√
x)(1−

√
x) or (1+

√
y)(1−√y).

Now supposeOK = Z[a], a with minimal polynomialf . Forg(x) ∈ Z[x], denote its image ifF3[x]
asg(x).

It is an easy algebraic fact thatg(a) is divisible by 3 inZ[a] if and only if f |g in F3[x]. Write
ai = fi(a) for all i, wherefi ∈ Z[x]. Our results givef | fi f j for i 6= j. But f does not dividefi

n
since no

power ofai is a multiple of 3, as we showed earlier in the proof. So for eachi, we claim thatf has an
irreducible factorgi that divides all otherf j but not fi .

So we know thatf has at least 4 distinct factors, all irreducible, overF3. This is bad, sincef has
degree at most 4, sof must have degree 4. Therefore it splits into linear polynomials. But there are
only 3 distinct linear polynomials(mod 4), a contradiction.

The very elementary techniques in this proof hides the core of what is happening, as this alternative
proof elucidates:

Proof. Assume there is a power basisZ[b]. Then it has index 1 inOK . Thus, the factoring of 3OK

corresponds to the factoring ofb’s minimal polynomial inF3[x]. But note that 3OK splits as ideals
p1p2p3p4 (again, by PARI or MAGMA).b must factor as 4 distinct linear factors inF3[x]. But there
are only 3 irreducible linear polynomials inF3[x], a contradiction.
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Note the inherent similarity between the two proofs. Furthermore, we now see the nonmonogenity
of this field in light of Dedekind’s original example. We attempt to find a primep which splits into
many distinct ideals, which must correspond to distinct irreducible factors inFp[x]. As long as there
are not enough irreducible polynomials, we can reach a contradiction.

An equivalent condition of the existence of a power basis in the most general form for biquadratic
extensions was claimed by Gras ([15]):

Theorem 3. Let K = Q(
√

dm,
√

dn) be a biquadratic number field (where d,m,n ∈ Z are uniquely
determined). Letδ be determined by mn≡ (−1)δ (mod 4). K is monogenic if and only if:

1. 2δm= 2δn+4(2−δd).

2. |(u2−v2)2(2δm)(u2 +v2)2(2δn)|= 1 has solutions inZ.

While this is an exact characterization, it is not as exciting as we would hope for, considering that
the problem reduces to finding the existence of solutions of a Diophantine equation. Still, it is an
important development.

5 Cubic Extensions

The reformulation in the final theorem in the last section in terms of a diophantine equation is not
unsurprising, recalling that an equivalent condition to the existence of a power basis is the existence of
solutions of the index form equation for index equalling 1.

With this, we go back a step and look at cubic extensions. Gaál et al. wrote a paper on this ([8]),
but they curiously left out the index equation. Here, attempting to make the theorems for the cubic and
quartic (to come) cases parallel, we use a method that we will revisit later:

Theorem 4. Let K = Q(ζ) be a cubic number field with the minimal polynomial f(t) = t3 + a1t2 +
a2t +a3 satisfied byζ. Let{1,w2,w3}, where wi = (1/d)Σwi j ζ j−1, be an integral basis of K. Assume
α = x0w2 +y0w3 = (1/d)(xζ+yζ2). We have I(α) = m if and only if there is an integral solution to

|x3−2a1x2y+(a2
1 +a2)xy2− (a1a2−a3)y3|= d3m/|I(ζ)| (10)

Proof. Call the conjugates ofζ ζ1, . . . ,ζ3, and similarly for other variables. We start withI(α)/I(ζ) =
m/n. Takeα′ = dα = a+xζ+yζ2, we get exactlyI(α′)/I(ζ) = d3m/n. The power ofd is 3 since the
index form is of order

(3
2

)
.

We then have from above

∏(
(α′i −α′j)
(ζi −ζ j)

) = d3m/n, (11)

where the product is over the ordered pairs(1,2),(1,3),(2,3). For each one of these we may write

(α′i −α′j)
(ζi −ζ j)

=
(x(ζi −ζ j)+y(ζ2

i −ζ2
j )

(ζi −ζ j)
(12)

= (x+y(ζi +ζ j)). (13)

A product of these gives the equation above. This actually includes neat tricks, such as for they3

term we need
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(ζ1 +ζ2)(ζ2 +ζ3)(ζ1 +ζ3) = (−a1−ζ3)(−a1−ζ2)(−a1−ζ1) (14)

= f (−a1) (15)

= (−a1)3 +a1(−a1)2 +a2(−a1)+a3 (16)

= −a1a2 +a3. (17)

But we digress.

Note that in the trivial case whenI(ζ) = 1, i.e. when we already have a power basis, Using(x,y) =
(d,0) solves the diophantine equation trivially.

Consider again the field generated byx3+x2−2x+8. It has an integral basis{1,ζ,ζ2/2}, whereζ
is a root. This shows thatI(ζ) has index 2, so the equation we need to solve is

|x3−2x2y−xy2 +38y3|= 4. (18)

Knowing that the Dedekind field is nonmonogenic, we know immediately that this equation should
have no solutions3.

Using the index form equation, [8] gives a feasible algorithm to compute all power integral bases
in totally real and totally complex cubic number fields.

There are also some non-computational results. Dummit and Kisilevsky ([4]) claims that infinitely
many cubic (in fact Galois) fields have power bases. Meanwhile, Gras ([16]) claims that infinitely
many cubic fields do not. Furthermore, she asserts:

Theorem 5. Let K be a cyclic extension ofQ with conductor m. Then, K has a power basis if and only
if K has a unit w such that

1. Tr(w+w−1) =−3; and

2. Tr((w2−w−1)/m) = n3, n∈ Z.

In particular, Spearman and Williams ([29]) generates an entire family of cubic fields with minimal
index 2 (so they cannot be monogenic).

6 Quartic Extensions, Revisited

In fact, there is an exact characterization of resolution of index form equations in the more general case
of all quartic number fields (though not an immediate generalization of the results in the biquadratic
section), found by Gáal et al. ([12]):

Theorem 6. Let K = Q(ζ) be a quartic number field with the minimal polynomial t4 +a1t3 +a2t2 +
a3t + a4 satisfied byζ. Let {1,w2,w3,w4}, where wi = (1/d)Σwi j ζ j−1, be an integral basis of K.
Assumeα = x0w2 +y0w3 +z0w4 = (1/d)(a+xζ+yζ2 +zζ3). We have I(α) = m if and only if there is
an integral solution to

u3−a2u2v+(a1a3−4a4)uv2 +(4a2a4−a2
3−a2

1a4)v3 =±d6m/I(ζ) (19)

3This suggests a perverse way to attack homogeneous Diophantine equations - by expressing them as index equations of
non monogenic fields. While this idea is currently a mere jest, it might become reality with more theoretical and computational
machinery.
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such that(x,y,z) above satisfies

x2−xya1 +y2a2 +xz(a2
1−2a2)+yz(a3−a1a2)+z2(−a1a3 +a2

2 +a4) = u (20)

y2−xz−a1yz+z2a2 = v (21)

where, for our purposes, we can just take the casem= 1.

Proof. We follow the proof given in the paper. In fact, this proof is the prototype of the proof of the
cubic case we did previously, so they will look familiar. However, there are two extra equations here,
making the problem a bit different.

Even so, this is not as difficult as it might sound - indeed, it is again an exercise in bookkeeping,
as is the flavor of many of these theorems relating to the index form equations. However, using the
auxiliary variables, this proof gives us a polynomial of degree 3 instead of 6, making this case much
easier and much more interesting as a precedent computationally.

Call the conjugates ofζ ζ1, . . . ,ζ4, and similarly for other variables. We start withI(α)/I(ζ) = m/n.
Takeα′ = dα = a+xζ+yζ2 +zζ3, we get exactlyI(α′)/I(ζ) = d6m/n. The power ofd is 6 since the
index form is of order

(4
2

)
, taken as

Disc(α) = (I(α))2Disc(K) (22)

= ∏(αi −α j)2, (23)

taken over indices(i, j), i < j, between 1 and 4.
We then have from above

Π(
(α′i −α′j)(α′k−α′l )
(ζi −ζ j)(ζk−ζl )

) = d6m/n, (24)

taken over(i, j,k, l) = (1,2,3,4),(1,3,2,4),(1,4,2,3). Note these are just the permutations taken
equivalent modulo cyclic rotation. Each of the 3 permutations accounts for two of the factors, of which
we have 6 in total.

Now we see that

(α′i −α′j)
(ζi −ζ j)

=
(x(ζi −ζ j)+y(ζ2

i −ζ2
j )+z(ζ3

i −ζ3
j ))

(ζi −ζ j)
(25)

= (x+y(ζi +ζ j)+z(ζ2
i +ζiζ j +ζ j)2). (26)

and by multiplying a pair of these, we see that each of the factors in our main equation can now be
written as a linear polynomial(u− (ζiζ j +ζkζl )v). The coefficients are exactlyu andv as stated in the
theorem, and the product just becomes

(u− (ζ1ζ2 +ζ3ζ4)v)(u− (ζ1ζ3 +ζ2ζ4)v)(u− (ζ1ζ4 +ζ2ζ3)v) (27)

Opening this up completes our proof.

The punchline of the paper is not this theorem, though it cleverly reduces the complicated 6-th
degree index form equation to a cubic and two quadratics; rather, it gives an explicit algorithm that is
too complicated to be included here, but has a running time dominated by finding a continued fraction
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expression for algebraic integers. The result is good enough to find all “small”4 cases. In fact, with
a modified algorithm, the authors were able to find all, not just “small”, solutions for totally complex
quartic fields.

One might wonder if such an approach is the answer, and why we are bothering with any more
cases if all we have to do is to explicitly compute the index form equations. The answer lies in what
we are able to do with Thue equations.

A Thue equationis a homogeneous diophantine equation in two variables. Note that our cubic
index form equation transforms naturally into a cubic Thue equation, and in our quartic case we get
a cubic Thue equation in two auxiliary variables. As we go into higher degrees, the higher exponents
and number of variables makes the problem much more difficult to work with. If not for the reduction
we did, the quartic case itself would provide a sextic Thue equation, and a reasonable algorithm would
probably not be in sight.

Gáal’s 1996 survey ([13]) goes as far as to claim that success in computation for higher degrees“ is
only hopeful if the index form factorizes”, which happens when our field has proper subfields besides
Q. It is no surprise that a lot of new developments of higher-degree work on power bases revolves
around fields with specific subfields.

7 Composite Fields

One case of interest that comes up as we move beyond degrees of 2 and 3 is the case of our field
being the compositums of two or more fields. One might wonder if we get more information about this
case alone, and if our results for bicyclic quartic fields are just natural consequences of some hidden
structure of the existence of a power basis in the smaller contained fields.

Probably the first major theorem on composite fields was proven by Gaál in [7], where he proves
that:

Theorem 7. Let L be a number field of degree r, integral basis{l1 = 1, l2, . . . , lr}, with index form
IL(x2, . . . ,xr). Similarly, let M be a number field of degree s, integral basis{m1 = 1,m2, . . . ,ms}, with
index form IMx2, . . . ,xs. Assume that(Disc(L),Disc(M)) = 1. Let K= LM be the composite of L and
M. Suppose that

α = ∑
i

∑
j

xi j l imj , (28)

generates a power basis, where xi j are integral. Then we must have

NM/Q|(IL(∑
i

x2imi , . . . ,∑
i

xri mi))| = 1; (29)

NL/Q|(IM(∑
i

xi2l i , . . . ,∑
i

xisl i))| = 1. (30)

(31)

Later, Gáal et al. ([6]) give a condition that guarantees the nonexistence of a power basis of poly-
nomial orders:

4By which the authors mean to bound|x0|, |y0|, and |z0| by 10h for someh a priori. The authors uses the caseh = 10.
Furthermore, the authors also reference earlier papers in which they claim to have proven that it is “very unlikely” for index
equations in quartic fields to have very large solutions and it can “take a considerable amount of time to prove” that there do
not exist large solutions, even in very special cases, making this approach more reasonable.
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Theorem 8. Let f,g be distinct monic irreducible polynomials overQ of degrees m and n, respectively.
Let a and b be roots of f and g respectively. Set L= Q(a) and M= Q(b) and assume that K= LM
has degree mn. If there exists a prime p such that both f and g have a linear factor appearing with
multiplicity (modp), then the index of any primitive element ofO f g is divisible by p, whereO f g =
Z[a,b].

as a corollary,O f g has no power bases. If this coincides withOK , then we knowOK is not mono-
genic.

Similar results on composite fields interestingly makes it much easier to work with, say, certain
sextic fields than quintic fields.

A good exhibition of both theoretical and computational results can be found in [10] by Gaál,
where he attacks a nonic extension which is composed of two cubic extensions. This resulted in a pair
of relative Thue equations(now Thue equations with coefficients in ring of integers of the base field,
not necessarilyZ ⊂ Q) which are cubic. The techniques involved seem generalizable. Relative Thue
equations will come up again when we look at relative extensions.

8 Cyclotomic Fields and Equivalence of Generators

Theorem 9. The cyclotomic fieldQ(ζn) has ring of integersZ[ζn].

Proof. This is again a very instructional example, yet the proof is long. We provide a sketch of it:
First we prove it for primes. Then we show it for prime powers by first showing thatOK , K = Q(ζpa)

has a discriminant that is a power ofp, and we may write any element inOK as a sum ofzj/p(1−ζpa) j ,
wherez2

j is divisible by the discriminant. This approach will show that

OK = Z[1−ζpa] = Z[ζpa]. (32)

Finally, we use the fact that

Z[ζpaζqb] = Z[ζpa]Z[ζqb] (33)

for distinct primesp andq to get the result for a generaln. Again, there is a proof in many algebraic
number theoretical texts, such as Mollin([23]).

In a very important paper to the field ([18]), Györy claims the absolute values of coefficients of
a polynomial and its discriminant are bounded by certain computable functions (which he finds and
refines in later papers), for polynomials equivalent up toZ-equivalence, which is the existence of a
rational integera such thatg(x) = f (x+a). The results have many corollaries, including showing that
there are only finite algebraic integers with given norm and discriminant. The corollary that will be
useful to us is that it can be shown that there are only finitely many possible power basis generators up
to Z-equivalence, which in our language is havinga equivalent toa′ when

a = n+ρ(a′), (34)

for n∈ Z, ρ ∈Gal(K/Q).
This shows another area to research on power bases, namely listing the possible power basis gen-

erators up to equivalence. One of the first notable papers is by Robertson ([26]), where it is shown
that:

Theorem 10. In K = Q(ζ2m), OK = Z[ζ2m] = Z[α] if and only ifα = n±ζi
2m, n, i ∈ Z.
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For primes, A. Bremner ([3]) conjectured that forp > 3, the only non-equivalent generators of
Q(ζp) areζp (from now on justζ) andη = ζ+ζ2 + . . .+ζ(p−1)/2. He claims this is true forp = 7. T.
Nagell ([25]) claims this forp = 5.

Robertson found a mechanism to check this conjecture to prove the conjecture for primes up
through 23, except for the prime 17. He uses the key observation that

Proposition 3. Let γ = 1/(1+ζ). Thenγ is Z-equivalent toη, andZ[γ] = Z[η] = Z[ζ].

Proof. First, consider the automorphism that sendsζ to its square. Thenη is equivalent to

ζ2 +ζ4 + . . .+ζp−1, (35)

adding 1 (which keepsZ-equivalence) gives 1/(1+ζ) = γ.
Z[γ]⊂ Z[ζ] since we can writeγ as a polynomial inζ. γ is a unit, since its reciprocal(1+ζ) is an

algebraic integer. So its minimal polynomial has constant term with norm 1. Thus, we have

1+a1γ+ . . .ap−1γp−1 = 0 (36)

(1+ζ)(1+a1γ+ . . .ap−1γp−1) = 0 (37)

1+ζ+a1 +a2γ+ . . .+ap−1γp−2 = 0 (38)

ζ = p(γ), (39)

wherep is a polynomial inγ with integral coefficients.

With this approach, Robertson eventually arives at:

Theorem 11. Let p be a regular prime, q= (p−1)/2, g a primitive root (mod p). Consider

1− pxq −pxq−1 −pxq−2 . . . −px1

x1 1− pxq −pxq−1 . . . −px2

x2 x1 1− pxq . . . −px3
...

...
...

...
...

xq−1 xq−2 xq−3 . . . 1− pxq

Let S be the set of(x1, . . . ,xq)∈ (Z/pZ)q which gives this matrix a determinant of1 (mod p)2 when
(x1, . . . ,xq) and all(x1(1−g3i)/(1−gi),x2(1−g5i)/(1−gi), . . . ,xq−1(1−g(p−2)i)/(1−gi),xq−si) (for
1≤ i ≤ q−1) are used as the arguments, where si ∈ Z/pZ satisfies

2p−1(1−gpi)≡ (1+ psi)(1−gi)p (mod p2). (40)

If S has cardinality q then Bremner’s conjecture is true for p.

Just in case, let us test this example on the casep= 5, which was the case Nagell worked on earlier.

Proof. Here we get the matrix

1−5x2 −5x1

x1 1−5x2

The determinant is(25x2
2−10x2 +1+5x2

1). We pickg = 2, skip the algebra that getss1 = 4, and
we get the other determinant by using the ordered pair(7x1,x2−4). Our two determinant conditions
become:
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25x2
2−10x2 +1+5x2

1 ≡ 1 (mod 2)5 (41)

25x2
2−10x2 +441−5x2

1 ≡ 1 (mod 2)5, (42)

which easily transform into:

2x2−x2
1 ≡ 0 (mod 5) (43)

2x2−8+x2
1 ≡ 0 (mod 5) (44)

So we have exactlyq = 2 solutions,(2,2) and(3,2). So indeed the conjecture is true forp = 5.

There is also work on the subfields of cyclotomic fields. Shah and Nakahara ([28]) explored sub-
fields ofQ(ζm), with the results:

Theorem 12. Let K = Q(ζm). In the cases

1. m= 2n ≥ 8, L imaginary index2 subfield of K distinct fromQ(ζm/2); and

2. m= 4pn, p an odd prime, L imaginary index2 subfield of K distinct fromQ(ζm/4),

L has the ring of integersZ[η], η = ζm−ζ−1
m . This value is called theGauss period.

They also prove that if the 4 is replaced by 3, the second case in the theorem fails. Finally, they
give a lemma

Lemma 1. Let l be a prime number and K/Q Galois of degree n= e f g with ramification index e,
relative degree f . If one of the following conditions is satisfied, then OK has no power basis:

1. elf < n;

2. elf ≤ n+e−1 if f ≥ 2.

Proof. 5 SupposeOK = Z[a]. Now, if l factors inOK as∏ pe
i , we know that

aNK(pi) ≡ a (mod p)i (45)

aNK(pi) ≡ a (mod ∏ pe
i ) (46)

(aNK(pi)−a)e ≡ 0 (mod l), (47)

where we get the second line through the Chinese Remainder Theorem.
Consider

b = (1/l)(aNK(pi)−a)e = (1/l)ael f + . . .± (1/l)ae. (48)

This is inOK .
If el f < n, then it is not inZ[a] since we have representedb as a non-integral sum of powers ofa

lower thanan.
Otherwise, supposef > 1. If (a, l) = 1, el f ≤ n+e−1, then we can divide byepowers ofa to get

5The author would like to thank Anatoly Preygel for reading over this proof with him.
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a−eb = (1/l)ael f−e+ . . .± (1/l), (49)

which is again inOK but not inZ[a] for the same reason. Finally, if(a, l) 6= 1, then without loss of
generalitya = 0 (mod p)i . Since any integerc can be written as

c = c0 +c1a+c2a+ . . .cn−1an−1, (50)

c≡ c0 (mod p)i , meaning the residue fieldOK/(pi) is just the elements 0, . . . , l −1, so f = 1 and
we have a contradiction.

This lemma leads us into the next section, where we also talk about the importance of the Galois
group of the extension.

9 Examining the Galois Group

The case analysis which arose so far elude to the importance of the Galois group of the field. For
example, we can classify the bicyclic quartic fields as fields with the Galois groupC2×C2.

The previously quoted result that infinitely many cubic extensions have no power basis by Gras
([16]) considered their cyclic Galois groups. In [17] by the same author, it was claimed that:

Theorem 13. Any cyclic extension K/Q of prime degree l≥ 5 is non-monogenic except forQ+(ζ2l+1),
the maximal real subfield of the(2l +1)-th cyclotomic field, where2l +1 is prime.

Motoda and Nakahara ([24]) continues the classical case of biquadratic fields (as in [15]) in ex-
tensions with 2-elementary abelian Galois groups (groups where every nonidentity element has order
2)for [K : Q]≥ 8. Note that the biquadratic case in [15] accounts for[K : Q] = 4, and the quadratic case
takes care of[K : Q] = 2, so their following result would almost make this branch complete:

Theorem 14. If K has a 2-elementary abelian Galois group, then:

1. If [K : Q]≥ 16, K is not monogenic;

2. If [K : Q] = 8, K = Q(
√

dm,
√

dn,
√

l), mn≡ 3, l ≡ 1,d≡ 2 (mod 4),d > 0, and dmnl is square-
free, then K is monogenic if and only if K= Q(

√
−1,

√
−2,

√
−3) = Q(ζ24).

Proof. We follow the proof for part (i) in [24]. The proof uses Lemma 1 from Shah ([28]), stated in
the previous section.

First, note we can replaceQ(a,b) with Q(a,ab). If we have two distinctai anda j equivalent to 2
(mod 4), we may multiply them to geta′j ≡ 0 (mod 4). We may pull out the square of their GCD and
get an odd number, so it must be equal to either 1 or 3(mod 4). Now we only have up to one element
which is 2 (mod 4).

Of the remaining elements, if more than one is 3(mod 4), we may multiply them together to get an
element which is 1(mod 4). Removing the square of the GCD (which must be 1(mod 4), we again
get a number which is 1(mod 4). This means we may rewriteK = Q(

√
a1, . . . ,

√
an) so that only one

ai anda j can be 2 or 3(mod 4), respectively6.
The author claims7 that as a result the ramification indexewith respect to 2 is at most 4.

6We would like to thank professor William Stein for his help with this proof.
7We apologize for not understanding this step, and wish to make it clear to the reviewer of the paper that we are not

pretending to. Our hypothesis is that we first show 2 can only ramify inQ(
√

d) whend ≡ 2 or 3 (mod 4), and ramification
indices somehow multiply in the compositum of fields, and we can then deduce that 2 can be ramified with a contribution of up
to 2 each from only two possible places, and get a maximum contribution of 21+1 = 4.
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Supposer ≥ 4. Takel = 2. Then f ≤ 2. Usinge≤ 4. If f = 1 then

el f ≤ 8 < 16≤ 2r . (51)

If f = 2 then

el f ≤ 16≤ 2r ≤ 2r +e−1. (52)

So the lemma shows thatK is not monogenic.
This ends the proof for the first part, leaving the case of index 8 as the interesting one. The proof

for the second part is very technical and involves much case analysis. The authors leave as an open
problem if the monogenic fields for[K : Q] = 8 coincide withQ(ζ24) as well.

It is no wonder that looking at which Galois groups exhibit fields with power bases might give
more insight, and some mathematicians are looking in this direction. For example, the proceedings of
the West Coast Number Theory Conference ([21]) included questions on which field with Galois group
Sn,n≥ 5 has a power basis. Kiran Kedlaya claimed to have exhibited examples for generalSn. Possible
techniques used here include noting that

Proposition 4. xn− x− 1 has Galois group Sn for n≥ 2, with discriminant of absolute value nn +
(−1)n(n−1)n−1,

and a squarefree discriminant yields a field with a power basis by adjoining a root of the corre-
sponding polynomial.

In the same vein, a very recent calculation by Bilu, Györy, Gáal, and Ḱalmán ([2]) claims that the
totally real sextic field with Galois groupS6, generated by

f (x) = x6−5x5 +2x4 +18x3−11x2−19x+1 (53)

took 4.8 months of total CPU time to enumerate the power basis generators. The group noted that
this combination took more time than all of the previous smaller degree fields combined. This just goes
on to show this problem gets difficult very quickly.

10 Relative Extensions

We revisit the spirit of Dedekind’s classic proof. Recall that the proof succeeded since 2 split com-
pletely inOK . In this light, we have the result that:

Theorem 15. Let L/K denote a Galois extension. Suppose that there is an unramified prime ideal
p∈OL with norm< [L : K], then we do not haveα ∈ L such that

OL = OK [α]. (54)

Proof. We follow the proof given in Fr̈ohlich ([5])8.
This proof relies on a technique by Euler:

8This approach was found through John Voight’s online resource at http://math.berkeley.edu/ jvoight/expository/index.html.
We would again like to thank Anatoly Preygel.
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Lemma 2. Suppose R is a Dedekind domain with K its field of fractions. Let L= K(a), where a’s
minimal polynomial g(x) lies in R[x]. Then

Disc(R[a]) = NL/K(g′(a))R= Disc(g)R. (55)

Suppose the assertion holds. Since the norm is less than[L : K], by the pidgeonhole principle we
can findx andy such that

ax ≡ ay (mod p) (56)

x 6= y. (57)

So Disc(g) is 0 (mod p) by looking at it as the Vandermonde determinant - it must have two
equal columns from what we have just gotten. By the lemma,p′ = p∩OK dividesDisc(R[a])∩OK =
Disc(OK [a]). Now we use the well-known fact that

Lemma 3. Suppose all residue class fields of R are perfect, then p ramifies in L if and only if p divides
Disc(L/K).

So p does not divideDisc(L/K). But by looking at lattice indices we have

Disc(OK [a]) = Disc(OL)[OL : OK [a]]2 (58)

= Disc(L/K)[OL : OK [a]]2. (59)

So in particularp divides[OL : OK [a]]2, which is 1 by our assumption. So we have a contradiction.

This leads us to look at another popular approach used in recent years for the power basis problem
is to attack relative extensionsL/K instead of just extensions overQ. Here, as in the previous theorem,
we are interested in arelative power basis, which exists whenOL = OK [α] for α ∈OL.

Both the theoretical and computational aspects of the problem run into two main obstacles. While
an integral (not necessarily power integral) basis always existed forQ, this is not necessarily true for
relative extensions. Also, like in composite fields, attacking the index form equations naturally results
in relative Thue equations which are a bit harder to handle. Naturally, Gaál has done some work here,
such as in cubic relative extensions ([9]) and quartic relative extensions ([11]).

We end with an interesting theorem found in [19], due to Kawamoto, Suwa, and Inchimura:

Theorem 16. Let p be a fixed prime, and K containing a fixedζp. Setπ = ζp−1. Let L/K be a cyclic
extension of degree p. The following are equivalent:

1. L/K is unramified (that is, it is unramified at all finite prime divisors), and OL = OK [α] for
α ∈OL such thatαρ−ζpα ∈OK for someρ ∈Gal(L/K).

2. L= K(u1/p), u a unit such that u≡ vp (mod πp) for v∈OK .

The proof involves difficult algebra, and is a good indicator of the depth the maturing topic had
acquired.
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11 Further Thoughts and Conclusion

The difficulty of theoretical attacks on the problem, and accompanying computational attacks when a
power basis exists, should be apparent from this survey. Different angles opened up different research,
though some old problems still remain unsolved (for example, a complete algorithm for cubic and
quartic extensions that aremixed, i.e. neither totally real nor totally complex).

In its basic form, the problem is still split between the computational and theoretic side; the former
tries to improve known bounds and give explicit generators, the latter is non-constructive but gives
more insight into the general structure. At present, the former seems to be more developed than the
latter, as most of the work so far, primarily due to Gaál, et al., are algorithmic in nature.

In all, the field of finding the existence of power bases and solving index form equations retains
fairly intensive study in the recent years.

There are also parallel developments of the theory under different names (such as canonical number
systems) for which we did not do justice, mainly due to the existence of multiple definitions of budding
concepts and language barriers between fields.

References
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