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Abstract

Since the dawn of time primitive man wondered about the peculiar re-
lation that power residue symbols had to each other when their arguments
were flipped. In this paper we set to rest the souls of so many caveman
mathematicians by proving the Eisenstein reciprocity law and observing
two interesting corollaries.

We start with a couple of lemmas.

1 A Couple of Useful Lemmas

Lemma 1. Let K/Q be a number field and let σ1, σ2, . . . , σn be the n = [K : Q]
isomorphisms of K into C. If α an algebraic number has the property |ασi | ≤
1, i = 1, 2, . . . , n then α is a root of unity.

Proof. α must be a root of

f(x) =
n∏

i=1

(x− ασi) ∈ Z[x].

|ασi | ≤ 1 implies the coefficient of xm in f(x) is an integer less than or equal to(
n
m

)
. Therefore only finitely many such f can exist. |ασi | ≤ 1 implies that all

powers of alpha also have this property, and since this finite set of polynomials
has a finite set of roots, we have that two distinct powers of α must be equal.
Therefore α is a root of unity.

Lemma 2. For a galois extension K/Q with galois group G, we have for and
ideal A in the ring of integers D that∏

σ∈G

σ(A) = (N(A)).

Proof. That the norm is multiplicative allows us to simply prove the case where
A is a prime ideal P.

Let the ideals P = P1,P2, . . . ,Pg be the ideals in {σ(P) : σ ∈ G}. Then
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|G| = g|StabG(P )| where StabG(P ) is the set of automorphisms fixing P. By
our favorite equation, efg = n = [K : Q] = |G|, we must have |StabG(P )| = ef.
By stuff we did in class,∏

σ∈G

σ(P) = (P1,P2, . . . ,Pg)ef = (p)f = (pf ),

where p is the integer prime such that Pi ∩Z = pZ. But N(P) = |Dm/P| = pf ,
so we’re done.

Note here that we also used for Pi,Pj primes in D lying over p that there
exists σ ∈ G such that σ(Pi) = Pj . To see this, assume not; by the generalized
chinese remainder theorem, there exists some α ∈ D such that α ≡ 0(P0), α ≡
1(σPi) for the rest of the i and for all σ ∈ G. Then N(α) =

∏
σ∈G σα ∈

P0 ∩ Z = pZ, so N(α) ∈ Pi. Because Pi is prime, there must be some σ such
that σα ∈ Pi. But then we would have α ∈ σ−1Pi, which contradicts the fact
that α ≡ 1(σ−1Pi).

2 The Power Residue Symbol

Lemma 3. Let Dm be the ring of integers of Q(ζm), α ∈ Dm, α /∈ P a prime
ideal of Dm. Then there is an integer i, unique modulo m, such that

α(NP−1)/m ≡ ζi
m(P).

Proof. |Dm/P| = NP − 1 so by Euler’s theorem α(NP−1)/m ≡ 1(P). Therefore

m−1∏
i=0

(α(NP−1)/m − ζi
m) ≡ 0(P).

P is prime, so one of the lefthand factors must be 0, so there must be an
i, 0 ≤ i < m such that α(NP−1)/m ≡ ζi

m(P). This i is unique modulo m because
ζi
m 6= ζj

m(P) when i 6= j(m).

Definition. For α ∈ Dm,P a prime ideal not containing m, define the mth
power residue symbol (α/P)m as follows:

(i) (α/P)m = 0 if α ∈ P

(ii) If α /∈ P, (α/P)m is the unique mth root of unity such that α(NP−1)/m ≡
(α/P)m(P).

Proposition 1. (i) (α/P)m = 1 ⇐⇒ xm ≡ α(P) has a solution in Dm.

(ii) ∀α ∈ Dm, α
(NP−1)/m ≡ (α/P)m(P).

(iii) (αβ/P)m = (α/P)m(β/P)m.

(iv) If α ≡ β(P) then (α/P)m = (β/P)m.
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Proof. The proofs of these statements are similar to those for the analogous
statements when m = 2 and are therefore omitted here.

We extend the definition of (α/P)m in an analogous way for (α/β)m with β
relatively prime to m. This is essential to the language of the reciprocity law.

Definition. For an ideal A ⊂ Dm relatively prime to m with A = P1P2 . . .Pn

the decomposition of A into prime ideals. For α ∈ Dm, define (α/A)m =∏
i(α/Pi). For β ∈ Dm, β relatively prime to m let (α/β)m = (α/(β))m.

We know state three important properties of our generalization. Because
they are straightforward from the definitions, we do not include proofs here.

Proposition 2. If A,B are ideals relatively prime to (m), then

(i) (αβ/A)m = (α/A)m(β/A)m.

(ii) (α/AB)m = (α/A)m(α/B)m.

(iii) If α is relatively prime to A and xm ≡ α(A) has a solution in Dm then
(α/A)m = 1.

Below, using the exponential notation for automorphisms, we show the effect
of σ ∈ G = Gal(K/Q) on our power residue symbol.

Proposition 3. If A is relatively prime to m and σ ∈ G then

(
α

A
)σ
m = (

ασ

Aσ )m.

Proof. By the multiplicativity properties in the previous propositions, it suffices
to check this for A = P a prime ideal. By our definition of the power symbol,

α(NP−1)/m = (
α

P
)m(P).

Applying σ to both sides,

(ασ)(NP−1)/m = (
α

P
)σ
m(Pσ)

since N(Pσ) = N(P). Thus ( ασ

Aσ )m ≡ ( α
A )σ

m(P), which implies ( ασ

Aσ )m =
( α
A )σ

m(P).

3 The Stickelberger Relation

Suppose the prime ideal P ⊂ Dm ⊂ Q(ζm) and m /∈ P. Also letting N(P) =
pk = q, we have the field F = Dm/P is the field with pk = q elements. For γ ∈
Dm, γ̄ = t the residue class of γ modulo P, define the multiplicative character
χP and the additive character ψ as follows:

Definition. (i) χP = ( γ
P )−1

m = ¯( γ
P )

m
.
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(ii) ψ(t) = ζ
tr(t)
p where tr(t) = t+ tp + tp

2
+ . . .+ tp

f−1
.

Note that χP is well-defined and multiplicative by the Proposition 1. Using
these, let g(P) =

∑
t∈F χp(t)ψ(t) and Φ(P) = g(P)m. At this point we are now

ready to state the Stickelberger relation.

Theorem 4. (Stickelberger Relation) If P is prime in Dm and m /∈ P then

(Φ(P)) =
∏
σt

(σ−1
t (P))t

where 1 ≤ t < m and (t,m) = 1.

While this machinery seems complicated now, the function Φ is essential to
manipulations of the power residue symbol.

4 Moving right along...

For an ideal A ⊂ Dm relatively prime to m with prime decomposition A =
P1P2 . . .Pn, define Φ(A) = Φ(P1)Φ(P2) . . .Φ(Pn). There are a few natural
consequences of this definition.

Proposition 5. For A,B ⊂ Dm both prime to m, α ∈ Dm also prime to m,
and let γ =

∑
t tσ

−1
t . Using the symbolic power notation α

P
kσ =

∏
σ σ(α)k for

1 ≤ t < m and (t,m) = 1, we have the following:

(i) Φ(AB) = Φ(A)Φ(B)

(ii) |Φ(A)|2 = (NA)m

(iii) (Φ(A)) = Aγ

(iv) Φ((α)) = u(α)αγ for u(α) a unit in Dm

Proof. (i) is obvious from the definition of Φ(A). By multiplicativity of the
norm, we only need to show (ii) for a prime P. But then we have |Φ(A)|2 =
|g(P)m|2 = (N(P))m. (iii) is the generalized statement of the Stickleberger
Relation. By (iii), we get (Φ(A)) = (α)γ = (αγ), which means that Φ((α)) and
αγ generate the same ideal and are therefore equal up to a unit multiple.

But how, praytell, does σ act on Φ(A)?

Proposition 6. For A ⊂ Dm and σ ∈ Gal(Q(ζm)/Q), we have

Φ(A)σ = Φ(Aσ).

Proof. Once again we need only prove this for P a prime ideal by the multi-
plicativity of everything.

First note that we can write

g(P) =
∑
α

(
α

P
)−1
m ζtr(ᾱ)

p

4



summing over coset representatives of Dm/P.
Consider ρ the automorphism of Q(ζm, ζp)/Q that is σ on Q(ζm) and the

identity map on Q(ζp). Note this ρ exists because (p,m) = 1. Using Proposition
3, we get

g(P)ρ =
∑
α

(
ασ

Pσ )−1
m ζtr(ᾱ)

p ,

because tr(ᾱ) ∈ Z/pZ implies that tr(ᾱσ) = tr(ᾱ). Since this is the form of
g(P)σ, we simply raise both sides of this equation to the mth power to get the
equation we wanted for prime ideals.

Proposition 7. For α ∈ Dm, |αγ |2 = |N(α)|m.

Proof. Let σ−1 be the complex conjugation automorphism on Q(ζm). We have

|αγ |2 = αγαγσ−1 = αγ(1+σ−1).

By our definition, σ−1γ = σ−1

∑
tσ−1

t =
∑
tσ−1

−t . The indices are equivalent
modulo m, and so γ =

∑
(m − t)σ−1

m−t. Reordering and using the fact that
t = m− (m− t) we get (1 + σ−1)γ = m

∑
σ−1

t . Since N(α) = α
P

σ−1
t , we have

the desired equation.

At this point you’re probably asking, ”Hold on, what’s with all these lemmas,
and what about that ’u(α)’ in Proposition 5?” I was just getting to that...

Proposition 8. For α ∈ Dm relatively prime to m, Φ((α)) = u(α)αγ with
u(α) = ±ζi

m for some integer i.

Proof. The first part merely restates Proposition 5, part (iv).
By Proposition 5, part (ii) we have |Φ((α))|2 = (Nα)m and Proposition 7

we have |αγ |2 = |N(α)|m.
We also know N((α)) = |N(α)|, because (N((α))) =

∏
σ((α)) =

∏
(σα) =

(
∏
σ(α)) = (N(α)). Therefore the two can differ by at most an integer unit, so

their absolute values are equal.
These three facts together show that |u(α)| = 1, and Proposition 6 implies

that |u(α)σ| = 1 as well for each σ ∈ G. Then the Useful Lemma implies that u
is a root of unity, and since the only roots of unity in Q(ζm) are ±ζi

m, it follows
that u(α) must be one of those.

5 Back to the power residue symbol

Proposition 9. For prime ideals P,P′ ⊂ Dm both prime to m with (NP, NP′) =
1, we have

(
Φ(P)
P′ )m = (

NP′

P
)m.

5



Proof. Let NP′ = p′k
′

= q′. Since q′ ≡ 1(m), we get the following modulo p′

by exponentiating:
g(P)q′ ≡

∑
χP (t)q′ψ(t)q′

≡
∑

χP (t)ψ(q′t)

≡ (
q′

P
)mg(P),

the second step arising because q′ = p′f
′
. If we separate one factor

g(P)q′−1 = Φ(P)(q
′−1)/m,

but the righthand side is equivalent to (Φ(P)
P′ )m modulo P′. We can substitute

back to get

(
Φ(P)
P′ )m ≡ (

NP′

P
)m(P′),

and since m /∈ P′ we get equality in addition to congruence.

Note that this generalizes to arbitrary ideals A,B ⊂ Dm that are prime to
m and have (NA, NB) = 1, because the power residue symbol is multiplicative.

Corollary 10. Suppose A,B are as above, and also A = (α) for some α ∈ Dm.
Then

(
u(α)
B

)m(
α

NB
)m = (

NB

α
)m.

Proof. First by Proposition 5, part (iv) we have

(
Φ(α)
B

)m = (
u(α)
B

)m(
αγ

B
)m.

By Proposition 3, we know

(
αtσ−1

t

B
)m = (

ασ−1
t

B
)t
m = (

ασ−1
t

B
)σt
m = (

α

Bσt
)m.

Therefore we can take the product over all t to get

(
αγ

B
)m =

∏
t

(
αtσ−1

t

B
)m =

∏
t

(
α

Bσt
)m = (

α

NB
)m.

The multiplicativity of the power symbol and Lemma 2 give us the final equality.

Now we assume that m = l some odd prime number.

Lemma 4. For A ⊂ Dl prime to l, we have Φ(A) ≡ ±1(l).
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Proof. If we can show that for a prime P ⊂ Dl,Φ(P) ≡ −1(l), we’ll get the
result by multiplicativity. First from the definitions, we get

Φ(P) = g(P)l ≡
∑

t

χP (t)lψ(t)l(l).

In the character sum the χP (t)l values vanish because P is prime to l, and
ψ(t)l = ψ(tl). Since ψ is a nontrivial additive character, ψ(0) = 1 and the∑

t ψ(t) = 0, so we now have∑
t

χP (t)lψ(t)l ≡
∑
t6=0

ψ(lt) ≡ −1(l).

6 The PROOF!

Definition. α ∈ D is primary if α is prime to l and α ≡ n(1− ζl)2 for some
n ∈ Z.

Lemma 5. If α ∈ D is primary, then u(α) = ±1.

Proof. (1 − ζl) is stable under σ ∈ G because (1 − ζl) is the unique prime
above l. Then (1 − ζl)γ ⊂ (1 − ζl). Φ(α) = u(α)αγ , so by Lemma 4 we have
u(α)αγ ≡ ±1(l). By definition α ≡ n(1− ζl)2, so

αγ = nγ = n1+2+...+(l−1)(1− ζl)2.

By ol’ fashioned QR, we know n(l−1)/2 ≡ ±1(l), which implies

αγ ≡ (±1)l ≡ ±1(1− ζl)2,

which means that u(α) ≡ ±1(1 − ζl)2. Proposition 8 implies u(α) = ±ζi
l for

some i, so if we can show l | i, we’ll be done.
ζi
l ≡ ±1(1− ζl)2, and ζl = 1− (1− ζ), so

1− i(1− ζl) ≡ ±1(1− ζl)2.

If it were congruent to −1, then we would get (1 − ζl) | 2, which is impossible
since l is odd. So it must be congruent to one, and after subtracting one from
both sides we get (1− ζl) | i, which means l | i.

Proposition 11. For α ∈ Dl primary, B an ideal prime to l with NB prime
to α, we have

(
α

NB
)l = (

NB

α
)l.

Proof. By Corollary 10, all we need is that (u(α)/B) = 1. α primary implies
u(α) = ±1 by Lemma 5, and since l is odd (±1)l = ±1, so (u(α)/B) must in
fact be 1.
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Theorem 12. (Eisenstein Reciprocity) Let l be an odd prime, a ∈ Z prime to
l, and α ∈ Dl primary. Also let α and a be relatively prime. Then

(
α

a
)l = (

a

α
)l.

Proof. For a prime p ∈ Z, p 6= l with p prime to α ∈ Dl, let P ⊂ Dl lie over p.
Thus NP = pf . In Proposition 11, we substitute P for B, and we get

(
α

p
)f
l = (

p

α
)f
l .

Because f | (l − 1) = [Q(ζl) : Q], we know (f, l) = 1. So

(
α

p
)l = (

p

α
)l.

And that’s right! By multiplicativity we get

(
α

a
)l = (

a

α
)l.

7 Applications

The reciprocitly law immediately gives us an interesting test for whether integers
are lth powers.

Theorem 13. Let a ∈ Z with l - a for l an odd prime. If xl ≡ a(p) has a
solution for all but finitely many primes p, then a = bl, b ∈ Z.

Proof. We begin by restating the problem. If a 6= bl then there are infinitely
many p such that xl ≡ a(p) has no solution.

Assume a ∈ Z, a 6= bl. Let aDl = Pe1
1 Pe1

1 . . .Pen
n . We want to show l - ai

for some at least one i. Let piZ = Pi ∩ Z. l - a implies l 6= pi, which means pi

is unramified in Dl. Thus ordpia = ordPia = ai. If l | ai for all i then a would
necessarily by an lth power, so we can assume without loss of generality l does
not divide one of them, say an.

Let {Q1,Q2, . . . ,Qk} be a set of primes such that Qi 6= Pj for all i, j and
also Qi 6= (1− ζl). Using the chinese remainder theorem and the fact that these
primes are all distinct, we know there exists δ ∈ Dl such that δ ≡ 1(Qi) for
i = 1, 2, . . . , k, δ ≡ 1(l), δ ≡ 1(Pj) for j = 1, 2, . . . , n− 1, and δ ≡ α(Pn) where
the element α is such that (α/Pn)l = ζl.

δ ≡ 1(l) implies δ is primary, so by our construction we get

(
a

δ
)l = (

δ

a
)l =

∏
(
δ

Pi
)ai

l = ζan

l 6= 1.

But considering the prime decomposition (δ) = R1R2 . . .Rm, we get

(
a

δ
)l =

∏
j

(
a

Rj
)l.
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So we immediatel get that for some j, (a/Rj)l 6= 1. By construction of δ we get
that that particular Rj /∈ {Q1,Q2, . . . ,Qk} ∪ {P1,P2, . . . ,Pn} ∪ {(1− ζl)}.

Since this set of primes was arbitrary, we have therefore shown that there
are infinitely many such R’s such that the power symbol does not equal one,
and hence xl ≡ a(R) is not solvable. Let the above Rj = Q,Q ∩ Z = qZ, then
we necessarily get infinitely many integer primes q such that xl ≡ a(q) is not
solvable because only finitely many primes of Dl lie over q.

We also consider a 1912 theorem of Furtwangler that utilizes Eisenstein
reciprocity to make progress on Fermat’s Last Theorem.

Theorem 14. (Furtwangler)For x, y, z non-zero, pairwise relatively prime in-
tegers such that xl + yl + zl = 0 and l - yz, we have for all prime factors p of y
that pl−1 ≡ 1(l2).

First we have a lemma to prove.

Lemma 6. If i 6= j, 0 ≤ i, j < l, then x+ ζiy and x+ ζjy are relatively prime
in Dl. Note here ζ = ζl.

Proof. Suppose for an ideal A ⊂ Dl and x + ζiy, x + ζjy ∈ A. This implies
(ζj − ζi)x, (ζi − ζj)y ∈ A also. (x, y) = 1 implies (ζj − ζi) ∈ A, which implies
λ = 1− ζ ∈ A. (λ) is maximal, so either (λ) = A or A = Dl. If the former were
true, the consider the factorization we get from the our supposition:

(x+ y)(x+ ζy) . . . (x+ ζl−1y) = (−z)l.

(λ) maximal then implies (−z) ∈ (λ) and consequently that z ∈ (λ), and thus
l | z, which contradicts our assumption. Therefore A = Dl, so x+ ζiy, x+ ζjy
generate the unit ideal.

We also get this nice corollary.

Corollary 15. The ideals generated by (x+ ζiy) are perfect lth powers.

Now back to our proof.

Proof. We actually make two claims: first that for an element α = (x+y)l−2(x+
ζy) we have α is a perfect lth power. This is merely by Corollary 15. The
second claim is that α ≡ 1 − uλ(λ2 with u = (x + y)l−2y. To see this notice
(x+ζy) = x+y−yλ, and so α = (x+y)l−1−λu.We know xl+yl+zl ≡ x+y+z(l).
If l | (x + y) we would get l | z, which is a contradiction. So l - (x + y) and
(x+ y)l−1 ≡ 1(l), which implies our second claim.
Now consider ζ−uα = (1 − λ)−uα ≡ (1 + uλ)(1 − uλ) ≡ 1(λ2). This is our
condition for ζ−uα to be primary. Then by Eisenstein reciprocity we get

(
p

ζ−uα
)l = (

ζ−uα

p
)l = (

ζ

p
)−u
l (

α

p
)l. (1)
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We already claimed and proved (α) = (ζ−uα) is an lth power, so we get that
the left hand side of (1) is equal to 1. Furthermore, p | y, α ≡ (x+ y)l−1(p), so

(
α

p
)l = (

(x+ y)l−1

p
)l = (

p

(x+ y)l−1
)l = 1,

becaue we know that the ideal generated by (x+ y) must be an lth power.
Now we also get from (1) that (ζ/p)u

l = 1 because otherwise the left hand
side of that equation would be −1. All that remains is to compute (ζ/p)l.

Let pDl = P1P2 . . .Pk, and since NPi = pf and also since p 6= l, e = 1, we
have that gf = l − 1. Then we have

(
ζ

p
)l =

∏
i

(
ζ

Pi
)l =

∏
i

ζ(pf−1)/l = ζk[(pf−1)/l].

Since (ζ/p)u
l = 1, we get

uk
pf − 1
l

≡ 0(l).

g | l − 1 implies l - g. u = (x+ y)l−2y implies l - u. So then we necessarily have

pf − 1
l

≡ 0(l), pf ≡ 1(l2).

The fact that f | l − 1 then gives us our desired result.

8 Conclusion

Like many great number theory achievements, what are important than this
result or its consequences are the steps needed to reach the final proof. It com-
bined a great deal of familiarity with the structure of cyclotomic field extensions
along with the arithmetic of Jacobi sums, bringing together many aspects from
the algebra we have studied up to this point.
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